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Abstract

Many models of classical conditioning fail to describe important phenomena, notably the

rapid return of fear after extinction. To address this shortfall, evidence converged on the

idea that learning agents rely on latent-state inferences, i.e. an ability to index disparate

associations from cues to rewards (or penalties) and infer which index (i.e. latent state) is

presently active. Our goal was to develop a model of latent-state inferences that uses latent

states to predict rewards from cues efficiently and that can describe behavior in a diverse

set of experiments. The resulting model combines a Rescorla-Wagner rule, for which

updates to associations are proportional to prediction error, with an approximate Bayesian

rule, for which beliefs in latent states are proportional to prior beliefs and an approximate

likelihood based on current associations. In simulation, we demonstrate the model’s ability

to reproduce learning effects both famously explained and not explained by the Rescorla-

Wagner model, including rapid return of fear after extinction, the Hall-Pearce effect, partial

reinforcement extinction effect, backwards blocking, and memory modification. Lastly, we

derive our model as an online algorithm to maximum likelihood estimation, demonstrating it

is an efficient approach to outcome prediction. Establishing such a framework is a key step

towards quantifying normative and pathological ranges of latent-state inferences in various

contexts.

Author summary

Computational researchers are increasingly interested in a structured form of learning

known as latent-state inferences. Latent-state inferences is a type of learning that involves

categorizing, generalizing, and recalling disparate associations between observations in

one’s environment and is used in situations when the correct association is latent or

unknown. This type of learning has been used to explain overgeneralization of a fear

memory and the cognitive role of certain brain regions important to cognitive neurosci-

ence and psychiatry. Accordingly, latent-state inferences are an important area of inquiry.

Through simulation and theory, we establish a new model of latent-state inferences. Mov-

ing forward, we aim to use this framework to measure latent-state inferences in healthy

and psychiatric populations.
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Introduction

Learning and decision-making are fundamental aspects of day-to-day human life. Indeed,

many mental health disorders can be conceptualized from the perspective of biases or errors

in learning and decision-making [1]. Accordingly, the study of how humans learn and make

decisions is an important topic of inquiry and the past two decades has witnessed a significant

surge in the application of computational modeling approaches to the problem of human

learning and decision-making [2–5]. One significant insight this literature has made is the dif-

ferentiation of model-free and model-based learning [6, 7]. Model-free learning refers to rela-

tively simple updating of cached values based on trial-and-error experience. An early and

influential example of model free learning is the Rescorla-Wagner (RW) model [8], which pro-

posed that associative strength (i.e. the degree to which a cue predicted an outcome) updates

in response to new experiences in proportion to the magnitude of a prediction error (i.e., how

wrong the current prediction was). The RW model, and similar model-free formulations that

it inspired [9, 10], powerfully explained many aspects of learning.

Nonetheless, a notable problem for model-free accounts of learning was the phenomenon

of rapid recovery of responding following extinction learning [11]. That is, model-free

accounts of learning based on trial-by-trial updating predict that the return of responding fol-

lowing extinction should essentially occur at the same rate as initial learning. This prediction

is not supported by a wealth of data demonstrating that extinguished responding can rapidly

return via reinstatement (i.e., an un-signalled presentation of the outcome), context renewal

(i.e., returning to the initial acquisition learning context), or spontaneous recovery (i.e., return

of responding following the passage of time) [12]. This rapid return of extinguished respond-

ing is an important phenomenon with implications for treatment of clinical disorders such as

anxiety disorders and substance use [13, 14].

One of the first applications of a model-based account of learning that could address rapid

renewal of responding following extinction was by Redish and colleagues in 2007 [11]. They

argued that an agent performs two concurrent tasks during a learning experiment: 1) updating

associative strength between a cue and an outcome, and 2) recognizing the current state of the

experiment and storing separate associative strengths for the acquisition and extinction con-

texts. Rapid recovery of responding can be explained by the agent inferring that the current

state of the experiment has changed to the acquisition phase and therefore responding to the

cue with the associative strength stored for the acquisition phase. Though this initial formula-

tion had limitations [15], it stimulated subsequent research developing latent-state models of

reinforcement learning [16–19]. For example, if an agent is assumed to infer latent states to

explain observed relationships between stimuli, actions, and outcomes, and if inferring sepa-

rate latent states for acquisition and extinction phases of an experiment explains rapid recovery

of responding, then it follows that blurring the experimental distinction between acquisition

and extinction phases would result in less recovery of responding following extinction. That is,

if the contingency between cue and outcome (e.g., 50% contingency) during the acquisition

phase slowly transitions to extinction, rather than an abrupt change, then an agent is less likely

to infer a separate extinction context and more likely to modify the initial acquisition memory.

Because the acquisition associative strength is lower, less subsequent recovery of responding

would be expected in a recall test. A carefully designed experiment using an animal model

demonstrated exactly this observation, providing strong evidence for a latent-state model of

learning [20].

The application and utility of latent-state learning models is not confined to explaining

recovery of responding following extinction. Tolman’s early theory of cognitive maps [21] pos-

its that an agent forms abstract representations of a task’s state space. There has been a recent
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resurgence of interest in this concept of cognitive maps in the cognitive neuroscience field

informed by latent-state computational models [17, 22, 23]. This work, conducted both using

animal and human experimental models, suggests that essential functions of the orbitofrontal

cortex (OFC) and hippocampus are the encoding and representation of latent task space

(i.e., forming cognitive maps of a task’s state space) [23]. This theory potentially powerfully

describes a superordinate process that explains why the OFC and hippocampus are implicated

in such a diverse array of cognitive and emotional functions. This theory also has implications

that tie back into extinction learning and clinical disorders and suggest a novel understanding

of the role of the OFC in mediating poor extinction learning. However, it is important to rec-

ognize that the role of the OFC remains highly debated.

As can be seen, latent-state theories have significant implications for our understanding

of normative and disordered mechanisms of learning. The purpose of the current work is

to introduce a new model of latent-state learning and to verify the suitability and utility

of this model for explaining group-level effects of classical conditioning. The introduced

model makes six key assumptions about how an agent performs latent-state inferences, nota-

bly that a learning agent uses latent states to index disparate associations between cues in an

effort to predict rewards and that they assume latent states are relatively stable over time.

Altogether, these assumptions differentiate our model from past efforts to describe latent

state learning [11, 15, 17, 19]. These differences are highlighted in a series of simulation

experiments. In addition to formalizing a new theory of latent-state learning, we were also

motivated to provide the research community with a practical model that can be fit to data

from a diverse set of experiments probing classical conditioning and latent-state learning.

Even though every model has limitations and cannot be applied to every experiment, there

is practical significance in being able to compare fitted parameters from a model across

experiments.

Results

Model

We present a model of how an agent uses latent states to learn psychological experiments con-

sisting of a sequence of trials, wherein each trial a learning agent is exposed to a collection of

cues followed by rewards (and/or penalties). We use the following notation. Cue n on trial t is

denoted by cn(t) and takes a value of 1 when the cue is present and 0 otherwise. Cues are col-

lected in a vector~cðtÞ. Rewards on trial t are denoted by R(t). After trial t, the strength of the

association between cue n and rewards is denoted by Vn(t). An apostrophe denotes transposi-

tion, and the notation X(1:t) is shorthand for (X(1), . . ., X(t)).
Our model assumes a learning agent has a certain world view about how rewards are gener-

ated and wants to predict rewards efficiently based on this world view (Fig 1A). Their world

view assumes rewards are a function of which cues are presented, a latent state, and a latent

error. A latent state is an index to disparate associations between cues and rewards. In order

to predict rewards, they must invert their view of the world to infer which latent state is active,

how cues are associated with rewards for each latent state, and the expected uncertainty in

rewards due to the latent error. We proceed to describe our model for how an agent performs

these tasks. We leave details to the Methods section about how our model of latent-state learn-

ing can be derived formally from this world view.

Building upon the Rescorla-Wagner (RW) model. If an agent believed in only one latent

state, then a RW model could be used to determine the relationship between cues and rewards.

The RW model proposes a linear relationship between cues and expected rewards. This
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relationship is captured by an associative strength for each cue updated according to:

Vnðt þ 1Þ ¼
VnðtÞ þ anðtÞ RðtÞ �

X

n : cnðtÞ¼1

VnðtÞ

 !

if cnðtÞ ¼ 1

VnðtÞ if cnðtÞ ¼ 0;

8
>>><

>>>:

with initial associative strength Vn(1) = 0. Term αn(t) is referred to as associability and is con-

stant in the RW model. Collecting associative strengths in a vector ~V ðtÞ, we can express this

update concisely as

~V ðt þ 1Þ ¼ ~V ðtÞ þ AðtÞ~cðtÞ RðtÞ � ~cðtÞ0~V ðtÞ
� �

:

The term A(t) is now a matrix capturing associability. The RW model assumes A(t) is diag-

onal with terms αn(t) along its diagonal, whereas we will consider matrices that are not diago-

nal. Changes in associative strength depends on the learning agent’s current expectation or

best guess~cðtÞ0~V ðtÞ for rewards given observed cues. If their expectation exceeds the actual

reward, then associative strength declines for each cue present. If their expectation is below the

actual reward, then associative strength increases for each cue present. By updating associative

strength in vector form, we see that rewards are captured by a linear regression model of cues.

Hence, cues can be continuous or represent interactions, i.e. the presence or absence of a com-

pound of cues. That is, the same update formula applies for continuous cues and interaction

Fig 1. A) A learning agent’s world view whereby rewards are generated according to cues, a latent state, and a latent error. In order

to predict rewards, they must infer which latent state is active, the relationship between cues and rewards for each latent state, and

the expected uncertainty in rewards due to the latent error. B) The proposed model for how a learning agent inverts their world

view. They first observe cues to generate expectations or predictions for rewards based on L estimates of associative strengths

corresponding to L latent states. Upon observing rewards, they use errors in their predictions to update associative strengths,

measures of uncertainty, and beliefs in which state is active. The degree to which associative strengths can be updated depends on

both the agent’s belief in the corresponding latent state and the corresponding effort matrix, which keeps track of how cues covary.

https://doi.org/10.1371/journal.pcbi.1007331.g001
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terms. Also note that the RW model learns cue-reward associations rather than action-value

associations as in temporal difference reinforcement learning.

Allowing for latent-state learning. We build upon the RW model by allowing a learning

agent to propose L competing (i.e. mutually-exclusive) associations between cues and rewards.

The index to each association is referred to as a latent state and is associated with its own RW

model for predicting rewards from cues. The agent learns about associations for each latent

state while learning about their belief in which latent state best explains current observations.

We capture belief in latent state l on trial t as a positive variable pl(t) such that beliefs sum to

one: p1(t) + . . . + pL(t) = 1.

We let ~VlðtÞ represent the vector of associative strengths and Al(t) represent the associabil-

ity matrix for latent state l. The learning agent updates associative strength as before except for

the subscript l:

~Vlðt þ 1Þ ¼ ~VlðtÞ þ AlðtÞ~cðtÞElðtÞ; ð1Þ

where we used the shortened notation El(t) to represent the prediction error for latent state l
on trial t:

ElðtÞ ¼ RðtÞ � ~cðtÞ0~VlðtÞ: ð2Þ

An associability process. Associability is constant in the RW model. By contrast, experi-

ments such as those by Hall and Pearce [9, 24] suggest associative strength is path-dependent:

associability, i.e. how quickly associative strength changes, depends on the history of observa-

tions and changes over time [10]. We describe associability as depending on current beliefs

and a matrix Bl(t) which we refer to as an effort matrix:

AlðtÞ ¼ a0plðtÞBlðtÞ
� 1
; ð3Þ

for a patent-specific parameter α0 2 [0, 1] controlling how much an individual weights older

observations versus newer observations. The effort matrix Bl(t) is updated according to

Blðt þ 1Þ ¼ BðtÞ þ a0ðplðtÞ~cðtÞ~cðtÞ
0
� BðtÞÞ: ð4Þ

with Bl(1) = I. The effort matrix estimates the matrix of cue second moments associated with

each latent state. Second moment information of cues has been integrated into other models

of learning, but usually in the form of variances and covariances rather than second moments

directly [11, 19]. The use of the effort matrix is motivated in our derivation of our model in

the Methods section and is similar to matrices found in an online algorithm for solving the

machine learning problem of contextual bandits with linear rewards [25].

Updating latent-state beliefs. Beliefs link latent states in our model. The assumed world

view of the learning agent proposes that rewards are generated on trial t as follows: a latent ran-

dom variable X(t)2{1, . . ., L} is drawn from some distribution and rewards are drawn depend-

ing on the current latent state X(t) and cues~cðtÞ (Fig 1A). Further, rewards are assumed to be

mutually independent between trials conditional on latent states, and latent states are assumed

to be Markovian, i.e. X(t) depends on X(1:t − 1) only through X(t − 1). Under these assump-

tions, Bayes law yields a posterior distribution over latent states from observed rewards given

by:

P½Xð1:tÞ ¼ kð1:tÞ jRð1:tÞ� / P½Xð1:tÞ ¼ kð1:tÞ�
Yt

s¼1

P½RðsÞ jXðsÞ ¼ lðsÞ�;
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where we suppress the dependence on cue vectors to shorten notation. The posterior probabil-

ity ρl(t) that latent state X(t) is l based on observations up to trial t is then:

P½XðtÞ ¼ ljRð1:tÞ� ¼
XL

kð1Þ;...;kðt� 1Þ¼1

P½Xð1:t � 1Þ ¼ kð1:t � 1Þ;XðtÞ ¼ l jRð1:tÞ�:

From this expression, we see that optimal Bayesian inference requires enumerating over all

possible sequences of latent states, the number of which grows exponentially with t. Such com-

putation is generally considered optimistic for human computation [26]. Efforts are made to

reduce computation such as with particle methods [17], assuming one transition between

states [27], or using a functional form of memory that does not maintain the entire history of

observations.

We capture a more general dynamic learning environment similar to [26], by assuming

latent states are a Markov chain in which a latent variable transitions to itself from one trial

to the next with probability 1 − γ(L − 1)/L and transitions to a new state (all new states being

equally-likely) with probability γ(L − 1)/L. This assumption reflects that learning often involve

blocks of consecutive trials, or stages, in which rewards are generated in an identical manner.

An optimal Bayesian filtering equation could then be used to update beliefs

rlðtÞ / 1 � gð Þrkðt � 1Þ þ
g

L

� �
P R tð ÞjX tð Þ ¼ l½ �:

Unfortunately, this equation requires the learning agent knows the probability distribution

of rewards for each latent state. We thus do not think the agent reasons in an optimal Bayesian

way. Instead, we initialize beliefs pl(0) = 1/L and propose that the agent uses an approximate
Bayesian filtering equation (cf. [28])

plðtÞ ¼
1

l0
1 � gð Þplðt � 1Þ þ

g

L

� �
�

ElðtÞ
sðtÞ

� �

; ð5Þ

where ϕ is the probability density function of a standard normal random variable; σ(t) is the

agent’s estimate of the standard deviation of rewards at the start of trial t; and

l0 ¼
XL

l¼1

1 � gð Þplðt � 1Þ þ
g

L

� �
�

ElðtÞ
sðtÞ

� �

ð6Þ

is a normalizing constant to ensure beliefs sum to 1. In other words, we replace the distribu-

tion/density function of rewards in the optimal Bayesian filtering equation with a normal

density function with mean given by the agent’s current estimate~clðtÞ
0~VlðtÞ and standard devi-

ation given by the agent’s current estimate σ(t). Even though we use a normal density function,

rewards do not need to be normally-distributed or even continuous.

Measuring expected uncertainty. The learning agent may also track the standard devia-

tion σ(t) of prediction errors. With only one standard deviation, we assume the learning agent

estimates the standard deviation pooled over each latent state. We use pooled estimates to

reduce the number of variables, but it may be more realistic to use a separate estimate for each

latent state. We use the following update:

s2ðt þ 1Þ ¼ s2ðtÞ þ b0 E2ðtÞ � s2ðtÞ
� �

ð7Þ

where s2ð1Þ ¼ s2
0

is some initial estimate of the variance; β0 is a constant associability
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parameter for variance σ2(t); and E2ðtÞ is the squared prediction error averaged over latent

states:

E2ðtÞ ¼
X

l

plðtÞElðtÞ
2
: ð8Þ

Variance is also used in other models of latent-state learning, such as the model in Redish

et al [11] and the model in Gershman et al [19]. Further, Yu and Dayan [26] proposed a neural

mechanism, via acetylcholine signalling, by which a learning agent keeps track of expected

uncertainty in changing environments. As a staple to statistical inference, variance is a natural

candidate for quantifying expected uncertainty.

Measuring unexpected uncertainty. Many latent-state learning models assume the num-

ber of latent state can grow [11, 15, 17]. Similarly, we use an online mechanism to trigger an

addition of new latent states when needed to explain rewards. This mechanism reflects the

need to capture unexpected uncertainty, as discussed in Yu an Dayan [26]. It is based on Page’s

algorithm [29] for solving a problem known as change point detection (cf. [30]). The idea is

to test whether we can reject our current model in favor of an alternative model with an extra

latent state. Specifically, we let L be the number of latent states actively considered on trial t.
We keep track of model performance using a statistic q(t):

qðt þ 1Þ ¼ max qðtÞ þ log
�ð0Þ

l0

� �

� d; 0

� �

ð9Þ

with a scalar parameter δ and initialized q(1) = 0. Importantly, ϕ(0)/l0 is the likelihood ratio

between a one-state model with expected rewards given by actual rewards R(t) and the current

model, where l0 was the normalizing constant for beliefs at Eq (6). If q(t) exceeds a threshold η,

we let

qðt þ 1Þ ¼ pLþ1ðtÞ ¼ 0; ~VLþ1ðtÞ ¼
RðtÞ

~cðtÞ0~cðtÞ
~cðtÞ; ~BLþ1ðtÞ ¼ I: ð10Þ

Note that~cðtÞ0~VLþ1ðtÞ ¼ RðtÞ so that the current reward is the expected reward for the new

state. We then replace L with L + 1.

Changes in context. Learning often involves changes in context whether it be new sur-

roundings, backdrop, or point in time. Context changes are believed to influence learning in

a distinctly different way than a cue influences learning [12]. Our model supposes that these

changes in context corrodes current beliefs, whereby beliefs in a latent state on a previous

trial are thought to be less informative on the present trial. For a temporal shift in context, our

model supposes this corrosion increases with time. While the Gershman (2017) model uses a

temporal kernel, we replace beliefs pl(t) at the end of trial t with

ð1 � gÞ
ITI� 1plðtÞ þ ð1 � ð1 � gÞ

ITI� 1
Þ=L ð11Þ

where ITI is the time between trials within a task phase. This update amounts to repeatedly

updating latent state beliefs for ITI − 1 iterations according to the Markov chain transition

probabilities. Beliefs would become evenly distributed between latent states in the limit as ITI
goes to infinity. For a visual or spatial shift in context, we set ITI =1 in equation above, lead-

ing to uniform beliefs 1/L, i.e. all latent states are believed to be equally likely. As a result, an

agent does not carry their beliefs forward to the next trial when there is a spatial or visual

change of context.

A temporal shift in context might also alter how associative strengths and beliefs are

updated. Gershman et al [19] describes the influence of retrieval on a memory by way of
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“rumination”. This mechanism is captured in the model of Gershman (2017) [19] and in our

model by repeatedly replacing associative strengths ~VlðtÞ with the new estimate ~Vlðt þ 1Þ per-

forming the updates at the end of trial t again. This process is repeated for a number of trials

given by min{χ, ITI − 1} where χ is a patient-specific parameter.

Putting it all together. Our latent-state model of learning is summarized in Fig 1B and

in Algorithm 1. Briefly, a learning agent undergoes the following each trial: they observe cues,

generate expectations for rewards, observe a reward, measure error, update their belief in

latent states, and update associative strength and measures of uncertainty. In between trials, a

learning agent may adjust their beliefs and associative strengths to account for contextual shifts

whether they be visual, spatial, or temporal. Further, parameters can be tuned to describe dif-

ferences in learning between agents: α0 influences the rate of learning associative strengths, β0

influences the rate of learning variance, γ influences transitions between latent state, σ0 influ-

ences initial expected uncertainty, ν and δ influence unexpected uncertainty, and χ determines

rumination.

Our model is grounded by six major predictions or assumptions about how an agent learns:

1. An agent learns online. Model variables are updated on each trial using only current obser-

vations and current values of model variables. Consequently, an agent can learn without

remembering observations of cues and rewards from prior trials. Their memory and

computational requirements grow only in the number of latent states rather than the num-

ber of trials, which may be a more realistic reflection of how humans learn. The Rescorla-

Wagner model and other models also use online updates for certain model variables [8, 11,

17, 19].

2. An agent uses latent states to predict rewards. In deriving our model (see Methods sec-

tion), we start with the assumption that the agent’s goal is to predict rewards. The role of

a latent state is to account for different predictions that can be made upon observing cues.

By contrast, the role of a latent state could be to discriminate between different sets of cues-

reward observations [11, 17], which in turn could be used to predict rewards.

3. Associability, i.e. how quickly associations are updated, depends on beliefs in latent

states and cue novelty. Associative strength updates quickly for latent states believed to

be active, but slowly for latent states believed to be inactive. This feature is similar to the

Mackintosh model [31] in that associability increases when rewards are accurately pre-

dicted. However, associative strength also updates quickly when an agent switches their

belief to a new latent state to account for unexpected or surprising outcomes, i.e. out-

comes in which prediction error is larger relative to the expected uncertainty. This feature

is similar to Pearce-Hall model [9], which supposes associability increases in the presence

of uncertainty. Meanwhile, the effort matrix, which tracks how often a cue appears (diago-

nal entries) and a pair of cues appear (off-diagonal entries), also determines associability.

As a result, associative strength is updated more quickly when novel sets of cues are

presented.

4. Latent states are relatively stable between trials. Latent states are expected to be the same

from one trial to the next with a certain probability. This assumption causes beliefs in latent

states to be relatively consistent between trials. An alternative is to assume latent states are

exchangeable between trials, allowing beliefs in latent states to shift more sharply between

trials [17]. Stability between trials, however, might degrade with time. Our model assumes

that with time, the last trial becomes less and less informative about the latent state, to the

point that the agent eventually believes each latent state is equally likely regardless of prior

beliefs.
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5. Beliefs are maintained over multiple latent states. Our model allows an agent to main-

tain beliefs over multiple latent states on each trial as opposed to believing in only latent

state. For example, an agent is able to believe that two latent states are equally likely. This

allows the agent to explicitly state their beliefs in competing associations, as is required

by some learning tasks [32]. Maintaining beliefs over multiple states is a common feature

for Bayesian models [17, 19, 27, 32]. An alternative is to classify each trial to one state

[11, 33].

Algorithm 1: Proposed model of latent-state learning which updates variables online, i.e.

does not keep track of past cues and rewards.
/� Loop through trials �/
for each trial t = 1, . . ., T do
/� State inference �/
Update latent-state beliefs p1(t), . . ., pL(t) with Eq (5);
/� Unexpected uncertainty learning �/
Update change point statistic q(t) with Eq (9);
if q(t + 1) > ν then
/� Add new state �/
Set ~VLþ1ðtÞ;~BLþ1ðtÞ;~pLþ1ðtÞ; qðt þ 1Þ with Eq (10);
Update number of latent states L  L + 1;

end
/� Value learning �/
Update associative strengths ~V 1ðtÞ; . . . ; ~VLðtÞ with Eq (1);
Update effort matrices ~B1; . . . ;~BLðtÞ with Eq (4);
/� Expected uncertainty learning �/
Update variance σ2(t) with Eq (7);
/� Account for context �/
if Context shifts after trial t then
Repeatedly update associative strength ~VlðtÞ with Eq (1) if temporal
shift;
Update latent-state beliefs with Eq (11);

end
end

Overview of simulation

We used simulation to verify that our latent-state model can reproduce a set of group-level

effects observed from classical experiments on learning (Table 1). Our model was compared to

the Rescorla-Wagner (RW) model, fRL+decay model of Niv et al [34] and three latent-state

learning models: the Redish (2007) model [11], the infinite-mixture model of Gershman and

Niv in [17], and the Gershman (2017) model in [19]. Other model comparisons are considered

in S1 Text and S1 and S2 Figs. For each model, we computed associative strength per cue and

belief in each latent state. For our model, the infinite-mixture model, and the Gershman

(2017) model, we defined associative strength as the expected reward conditional on the cue

being presented alone and belief in a latent state as the estimated probability of the latent state

given observations. In order to compare the Redish (2007) model to other models, we defined

associative strength for each cue as average estimated value between reinforcing and not rein-

forcing the cue presented alone and defined belief in a latent state to be 1 if the state was identi-

fied as the current agent state and 0 otherwise. Our model includes pairwise interactions

between cues as additional cues and also centers rewards (i.e. R(t) = −1/2 and R(t) = 1/2 rather

than R(t) = 0 and R(t) = 1). Additional details about the simulation are found in the Methods

section.
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Blocking and other effects

We first tested whether our model could reproduce learning effects that established the RW

model as a powerful model of associative learning (Fig 2). In a blocking experiment, for

instance, a learning agent is conditioned to associate a cue (Cue A) with a reward, leading to a

high associative strength for Cue A. Afterwards, Cue A is repeatedly presented with another

cue (Cue B). The compound is then reinforced with a reward. Even though Cue B is rein-

forced, Cue B does not acquire the high associative strength as Cue A did. That is, conditioning

of Cue A blocked conditioning of cue B. The RW model, our latent-state model, and the Gersh-

man (2017) model predict blocking because of the way associative strength is updated in each

model: updates depend on prediction error and predictions depend on the sum of associative

strengths of present cues. Consequently, associative strength of Cue B changes slightly, because

the compound of an excitatory Cue A and neutral Cue B yields small prediction errors.

Our latent-state model reproduces overexpectation and conditioned inhibition, two other

group-level effects explained by the RW model. An overexpectation experiment consists of

reinforcing two cues separately with a reward and then later as a compound. When presented

as a compound, associative strengths decrease. A conditioned inhibition experiment consists

of intermixing the reinforcement of one cue (Cue A) with the omission of a reward when the

cue is presented with another cue (Cue B). Cue A increases in associative strength while Cue B

decreases in associative strength. As with blocking, the RW model, our latent-state model, and

the Gershman (2017) model capture overexpectation and conditioned inhibition because of

the way associative strength is updated. For overexpectation, expectations are twice actual

rewards when the cues are presented together, yielding negative prediction errors and a

decrease in associative strength for each cue. For conditioned inhibition, the negative associa-

tive strength of Cue B negates the positive associative strength of Cue A so that the sum of

their associative strengths predicts the weaker reward. The Redish (2007) and infinite-mixture

models do not update associative strength in the same way as the RW model, whereas the fRL

Table 1. Simulated experiments and group-level effect observed in each experiment. Models were evaluated based

on its ability to reproduce the observed effect for each simulated experiment.

Experiment Observed effect

Blocking [35] Associative strength of a neutral cue is blocked when reinforced with a cue already

associated with the reward

Overexpectation [36] Associative strength of two cues weakens when these cues are reinforced together

after reinforcing each cue separately

Conditioned inhibition [37] A cue can inhibit responding to a reward after alternating between reinforcing a

separate cue and presenting both cues with a weaker reward or no reward.

Wilson et al (1992) [38] Associative strength of a cue increases more when the cue is a less accurate predictor

of a reward (also known as the Hall-Pearce effect [24])

Rescorla (2000) [39] Changes in associative strength can be greater for one cue over another when

presented at the same time

Partial reinforcement [40–

42]

Associative strength of a cue is slower to extinguish after partial reinforcement

compared to continuous reinforcement (also known as the partial reinforcement

extinction effect)

Backwards blocking [43] Associative strength of a cue weakens when a separate cue is reinforced after

reinforcing both cues together

Rapid return of fear &

renewal [12]

Associative strength of cue returns quickly after extinction, particularly when

extinction is associated with a different context

Spontaneous recovery [12] Associative strength of a cue returns more greatly after extinction with a longer

interval between extinction and renewal

Memory modification [44,

45]

Associative strength of a cue to a fearful outcome can be weakened if extinction

occurs within a certain time window following a single retrieval trial

https://doi.org/10.1371/journal.pcbi.1007331.t001
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Fig 2. Simulated associative strengths of cues during blocking, overexpectation, and conditioned inhibition experiments,

which the Rescorla-Wagner (RW) model famously could explain. Built upon the RW model, our latent-state model and the

Gershman (2017) model can also explain these experiments. Gray dashed lines demarcate experimental stages.

https://doi.org/10.1371/journal.pcbi.1007331.g002

A flexible and generalizable model of online latent-state learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007331 September 16, 2019 11 / 31

https://doi.org/10.1371/journal.pcbi.1007331.g002
https://doi.org/10.1371/journal.pcbi.1007331


+decay model decays associative strength of cues that are not presented, leading to different

predictions for blocking, overexpectation, or conditioned inhibition experiments.

Learning effects not explained by the RW model

We also tested whether our latent-state learning model could reproduce historically-important

learning effects not predicted by the RW model due to its assumption of constant associability

(Fig 2).

Associability depends on beliefs in latent-states. Latent-state learning allows an agent to

attribute sudden shifts in associations to new latent states, even when the shift is unsignalled.

Associability starts relatively high when learning about a new state, thereby explaining the

well-known Pearce-Hall effect [9] in which associability remains high in unpredictable

circumstances.

To illustrate, we find that a shift in latent state beliefs can explain Experiment 1 from Wil-

son et al (1992) [38]. This experiment involved two groups, Group C and Group E. For Group

C, the experiment consisted of alternating between reinforcing and not reinforcing two cues (a

tone denoted by Cue B and a light denoted by Cue A) with a reward (food), followed by rein-

forcing just the light. Group E had similar experiment conditions, except the tone was omitted

in the middle of the experiment on non-reinforced trials. The omission was expected to

decrease the associative strength of the light for Group E relative to Group C, which would be

observed when the light was paired with food. Surprisingly, Group E responded more favor-

ably to the light than Group C. The leading explanation was that associability of the light was

higher for Group E than Group C [10].

Our latent-state model offers an explanation: that while indeed the associative strength of

the light does decrease for Group E relative to Group C, the pairing of the light (Cue A) solely

with food is so surprising to Group E that they correctly infer the change in experimental con-

ditions thereby shifting to a new latent state to build new expectations for the light (Fig 3).

This shift would be observed as higher associability of the light in Group E than Group C,

agreeing with experimental results. The Redish (2007) model also captures greater responding

to the light in Group E than Group C. By contrast, the RW model, infinite-mixture, and Gersh-

man (2017) models do not show greater responding to the light (cue A) in Group E. Mean-

while, the fRL+decay model captures this experiment but provides an alternative explanation:

associative strength of the tone decays less in Group E because it is presented more often,

which is compensated by an increase in the associative strength of the light.

Other learning effects can also be similarly explained by our model as a shift in latent-state

beliefs (Fig 4). Experiments 1A-B in [39], for example, examined whether a cue (Cue A) would

undergo the same change in associative strength as another cue (Cue B) when presented

together, as would be predicted by the RW model. Rescorla, however, found that Cue A

decreased more in associative strength than Cue B. Our latent-state model explains that differ-

ences in associability arises because of a shift in latent states. In Experiment 1B, for example,

the omission of the reward is so surprising to the agent—Cue A was always reinforced—that

learning agents correctly infer a change in conditions and switch their beliefs to a new latent

state in which they do not expect Cues A and B to be reinforced. Since rewards were originally

expected to follow Cue A but not cue B, the associative strength of Cue A experiences the

greater change. By contrast, the only other models to capture greater associability of Cue B

during stage 2 was the infinite-mixture model in experiment 1A and the Redish (2007) model

in experiment 1B. Otherwise, the other models for the given set of parameters do not detect

the change in experimental conditions, causing cues A and B to change a similar amount dur-

ing Stage 2.
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The partial extinction learning effect (PREE) is also similarly explained by our model as a

shift in latent-state beliefs (Fig 5). Partial reinforcement involves alternating between reinforc-

ing and not reinforcing a cue. It was found that a response was harder to extinguish after par-

tial reinforcement compared to continuous reinforcement [40]. Our model explains that an

agent is better able to discriminate between reinforcement and extinction with a continuous

reinforcement schedule. This allows the agent to switch their beliefs to a new latent state and

thus experience faster extinction. PREE was also observed even if continuous reinforcement

was administered in between partial reinforcement and extinction [41, 42]. In this case, an

agent is still better able to discriminate between reinforcement and extinction with a continu-

ous reinforcement schedule, but differences between reinforcement schedules are smaller as

an agent shifts their beliefs to a new latent state in both cases. Only the Redish (2007) model

was also able to capture greater extinction for continuous reinforcement compared to partial

reinforcement in either of the two PREE simulation experiments.

Fig 3. Associability depends on latent-state beliefs. A) Experimental results from Stage 3 of the Wilson et al (1992) experiment

[27]. Group E had higher magazine activity, i.e. greater responding, than Group C during the light (Cue A) in Stage 3. Thus, it was

believed the light had greater associative strength in Group E than Group C during Stage 3. Reprinted from Paul N. Wilson, Patrick

Boumphrey, & John M. Pearce, Quarterly Journal of Experimental Psychology 44:1 pp. 17-36. Reprinted by Permission of SAGE

Publications, Ltd. B) Simulation of associative strength of the light (Cue A) and latent state beliefs from the Wilson et al (1992)

experiment. Our model predicts that only Group E detects the change in experimental conditions and shifts their beliefs. Because of

this shift, associability is higher in Group E than C during Stage 3, leading to higher associative strength of the light. Beliefs in the

first latent state (dark and light blue solid lines) and the second latent state (dark and light blue dashed lines) are shown for models

with latent states. Gray dashed lines demarcate experimental stages.

https://doi.org/10.1371/journal.pcbi.1007331.g003
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Fig 4. Another demonstration of associability depending on beliefs in latent states. Experimental results from A)

Experiment 1A and B) Experiment 1B by Rescorla (2000) [39]. In both experiments, Rescorla concluded that associative

strength increased more for Cue B relative to Cue A when presented together based on compound tests that showed greater

responding in the compound with the Cue B than the compound with Cue A. This result suggested that associability can differ

between cues even when presented together. Reprinted from “Associative Changes in Excitors and Inhibitors Differ When
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Associability depends on history of cue presentation. Our model encodes the history

of cue presentation in effort matrices Bl(t), endowing associability in our model with unique

properties. One example is backwards blocking (Fig 6). A compound of two cues (Cues A and

X) is reinforced with a reward followed by only one of the cues (Cue X) being reinforced. In

the second part, Cue A gains associative strength while Cue X loses associative strength even
though it is not presented. The RW model cannot explain backwards blocking, because a cue

must be present to change its associative strength. The infinite-mixture and the Gershman

(2017) model also did not capture backwards blocking. By contrast, the associative strength of

Cue X correctly decreased in the second part for our latent-state model. Our latent-state model

first learns the compound predicts a reward. Without additional information, it splits associa-

tive strength equally between the two cues. Later, our latent-state model learns Cue A predicts

rewards. Reconciling both parts, our latent-state model increases the associative strength of

Cue A while decreasing the associative strength of Cue X. In other words, our latent-state

model learns about the difference in associative strengths between Cues A and X. Mathemati-

cally, applying the inverse of Bl(t) to the cue vector c(t) rotates the cue vector from being in the

direction of Cue A to be in the direction of Cue A minus Cue X. Only the fRL+decay model

was also able to reproduce backwards blocking, but provided an alternative explanation: asso-

ciative strength decays for any cue that is absent, such as Cue X in Stage 2 of this experiment.

Learning with latent-states

To complete our simulation study, we tested if our latent-state model could describe more

recent experiments that examine latent-state learning.

Renewal. Latent-state learning was offered as an explanation of renewal of expectations

after extinction and the role that context plays in this renewal [11, 12, 15, 16]. We simulated

renewal wherein a cue is reinforced, extinguished, and then reinforced (Fig 7). Two experi-

mental conditions are considered: one in which the same visual/spatial context is provided

through each phase and another in which a different visual/spatial context is provided during

the extinction phase. Following prior models [8, 11, 17, 19], context was encoded as a separate

cue in all models except our latent-state model. Our latent-state model encodes context as a

shift in beliefs. Thus, while context may directly modulate both associative strengths and latent

state inferences in other models, it only modulates latent state inferences in our model. This

latter view is consistent with Bouton [12] who says “contexts modulate or ‘set the occasion’ for

the current CS–US or CS–no US association. Put another way, they activate or retrieve the cur-

rent relation of CS with the US”. Note for this example, expected rewards are given on each

trial to account for the contribution of both the cue and the context rather than associative

strength which only accounts for the contribution of the cue.

In both experimental conditions, our latent-state learner slowly detects the shift when arm-

reward contingencies first shift and switches their beliefs to a new latent state, effectively con-

solidating the memory of the first task phase. By detecting this shift, the agent can both con-

struct new associative strengths for each arm and preserve the old associative strengths that

were accurate for the first block of trials. These associative strengths are later recalled when

arm-reward contingencies revert back and the agent switches their beliefs back to the original

They Are Conditioned in Compound” by R.A. Rescorla, 2000, Journal of Experimental Psychology, 26, p. 430-431. Reprinted

with permission from the American Psychological Association. C) Total change in associative strength was simulated during

Stage 2 of Experiments 1A-B from Rescorla (2000) [39]. The RW model does not capture these effects since associability is

constant whereas our model captures these effects because latent-state beliefs alters associability. Beliefs in the first latent state

(black solid lines) and the second latent state (black dashed lines) are shown for models with latent states. Gray dashed lines

demarcate experimental stages.

https://doi.org/10.1371/journal.pcbi.1007331.g004
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Fig 5. Partial reinforcement extinction effect. A) Experimental results from Jenkins [41] demonstrating that the

associative strength of a cue is harder to extinguish after partial reinforcement (Group 20P) compared to continuous

reinforcement (Group 20R). Reprinted from “Resistance to extinction when partial reinforcement is followed by

regular reinforcement” by H.M. Jenkins, 1962, Journal of Experimental Psychology, 64, p. 443. Reprinted with

permission from the American Psychological Association. B) Simulation of partial reinforcement effect (Experiment
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latent state. Introducing a different context during extinction allowed the learning agent to

better detect the underlying structure of the task, recalling the first latent state earlier during

reinstatement, resulting in higher associative strength in the final phase. This improvement in

detection predicted by the model, however, was very slight and most noticeable in the first few

renewal trials. The infinite-mixture model predicts that the learning agent switches beliefs in a

new latent state only when a different context is introduced otherwise using one latent state to

predict all phases of the task. For the given parameters, the Gershman (2017) model uses only

one latent state for all three phases of the task for both the no renewal and renewal conditions.

Consequently, other than our model, only the Redish (2007) model correctly predicts a rapid

return of expectations.

Spontaneous recovery. Latent-state learning also provides an explanation for how

changes in temporal context influences reinstatement (Fig 8). For example, spontaneous

recovery is a learning effect wherein the associative strength of a cue is reinstated more

strongly after a time delay between extinction and renewal [12]. We simulated spontaneous

recovery using the same schedule as renewal, but adding a time delay between extinction

and renewal. Our model accounts for time delays by shifting beliefs towards uniform beliefs

over latent states. Uniform beliefs reflects that beliefs from a prior trial is less informative on

a trial when there is a time delay between trials. As a result, a time delay causes the associative

strength of the cue predicted by our model to be about half the associative strength at the end

of its initial acquisition (first latent state) and at the end of extinction (second latent state).

Without the time delay, the associative strength predicted by our model is simply the

1). This effect is observed even when partial reinforcement is followed by continuous reinforcement prior to extinction

(Experiment 2). Our model captures these effects, because an agent is better able to discriminate between

reinforcement and extinction with a continuous reinforcement schedule. The agent can thus shift their beliefs to a new

latent state in order to build new associations for extinction. Beliefs in the first latent state are shown for models with

latent states. Gray dashed lines demarcate experimental stages.

https://doi.org/10.1371/journal.pcbi.1007331.g005

Fig 6. Associability depends on history of cue presentation. A) Experimental results of a backwards blocking experiment from

Miller and Matute [43]. After two stages of the experiment, a backwards blocking group (BB) had significantly slower response time

to Cue X than a control group (CON) even though Cue X was presented in an identical manner between groups. Their result

suggested the associative strength of Cue X can change on trials it is not presented. Reprinted from “Biological Significance in

Forward and Backward Blocking Discrepancy Between Animal Conditioning and Human Causal Judgement” by R.R. Miller and H.

Matute, 1996, Journal of Experimental Psychology, 125, p. 374. Reprinted with permission from the American Psychological

Association. B) Simulation of a backwards blocking experiment. In our model, associability depends on the history of cue

presentation through effort matrices. After the combined associative strength of Cue A and Cue X is learned, these effort matrices

rotate the direction of learning into the direction of the difference of Cue A and Cue X. As a result, associative strength of Cue X

decreases even though Cue A is presented alone, thereby allowing our model to capture backwards blocking. Gray dashed lines

demarcate experimental stages.

https://doi.org/10.1371/journal.pcbi.1007331.g006
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associative strength at the end of extinction. Only the Gershman (2017) model adjusts its pre-

diction for context changes due to temporal shifts, but does not capture a more robust return

of associative strength due to a temporal shift. The other models also do not capture this more

robust return.

Memory modification. Our last simulation experiment explores the potential role of

latent-state learning in memory modification. Monfils et al [44] in a rodent model and later

Schiller et al [45] in humans showed that a single retrieval trial between acquisition and extinc-

tion can reduce the fear response to the cue in latter tests. The time between retrieval and

Fig 7. Changes in context influences beliefs. A) Experimental results from Ricker and Bouton [46] demonstrating a faster response

during reacquistion (phase 3) than acquisition (phase 1) after extinction (phase 2). Reprinted by permission from Springer Nature

Customer Service Centre GmbH: Springer Nature, Animal learning and behavior, Reacquisition following extinction in appetitive

conditioning, Sean T. Ricker & Mark E. Bouton, (1996). B) Experimental results from Bouton and King [47] demonstrating a more

robust return of a fear when extinction occurs in different context (EXT-B) as opposed to the same context (EXT-A) as acquisition.

Reprinted from “Contextual Control of the Extinction of Conditioned Fear: Tests for the Associative Value of the Context” by M.E.

Bouton and D.A. King, 1983, Journal of Experimental Psychology: Animal Behavior Processes, 9, p. 252. Reprinted with permission

from the American Psychological Association. C) Simulation results of expected rewards when a response is reinstated after

extinction with and without a change in a visual/spatial context. The second experiment examines associative strength of cue when a

response is reinstated after extinction with and without a change in a temporal context (i.e. a time delay between trials). Our model

shows a rapid reinstatement of expectations as the agent switch their beliefs back to the first latent state. Our model also shows that

rapid reinstatement is more robust with changes in context, particular in the first few trials of reinstatement. Expected rewards are

depicted rather than associative strengths to account for the influence of context on expectations in addition to the cue, since models

other than our model treat context as an additional cue. Beliefs are shown for the first latent state. Gray dashed lines demarcate

experimental stages.

https://doi.org/10.1371/journal.pcbi.1007331.g007
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extinction was further shown to modify this effect. Only certain windows of times reduced

the fear response. They proposed that the retrieval trial helped to reconsolidate the acquisition

memory to be less fearful within this reconsolidation window. The Gershman (2017) model [19]

includes a computational explanation of this phenomenon. With a similar Bayesian framework

to the Gershman (2017) model, our model included similar memory modifications.

We simulated the Monfils-Schiller experiment in [19], varying the time between retrieval

and extinction (Fig 9). Our model reproduces a qualitatively similar result as the Gershman

(2017) model. There is a reconsolidation window which can help reduce the fear memory.

For example in both models, associative strength of the cue during testing is smaller for a time

of 5 from retrieval to extinction relative to time of 1 or 100. Both models predict that beliefs

in the first latent state (corresponding primarily with acquisition) remains relative high in the

Fig 8. Changes in temporal context also influences beliefs. A) Experimental results from Brooks and King [48] demonstrating a

more robust return of a fear when extinction occurs after a 6 day delay as opposed to immediately after acquisition. Reprinted from

“A Retrieval Cue for Extinction Attenuates Spontaneous Recovery” by D.C. Brooks and M.E. Bouton, 1993, Journal of Experimental
Psychology: Animal Behavior Processes, 19, p. 80. Reprinted with permission from the American Psychological Association. B)

Simulation results of associative strength and beliefs when a response is reinstated after extinction with and without a change in a

temporal context (i.e. a time delay between trials). Our model shows rapid reinstatement is more robust with changes in temporal

context, particular in the first few trials of reinstatement. Beliefs are shown for the first latent state. Gray dashed lines demarcate

experimental stages.

https://doi.org/10.1371/journal.pcbi.1007331.g008
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reconsolidation window, allowing the agent to update the acquisition memory to be less fear-

ful. Outside the reconsolidation window, the agent updates the second latent state (corre-

sponding primarily with extinction), leaving the acquisition memory relatively intact. While

qualitatively similar between models, the effect of retrieval is more pronounced in our model

in terms of differences in magnitude of cue associative strength during testing.

Overview of simulation results

Our model reproduced group-level effects from a series of classical experiments. Table 2

summarizes which effects were captured by which model. Different aspects of the model are

Fig 9. Memory modification. A) Experimental results from Schiller et al [45] demonstrating that different delays (10 min, 6 hr, no

reminder) of a retrieval trial can significantly modify fear response after extinction. Reprinted by permission from Springer Nature

Customer Service Centre GmbH: Springer Nature, Nature Preventing the return of fear in humans using reconsolidation update

mechanisms, Schiller et al., (2010). B-C) Simulation results of associative strength and beliefs for three different time delays (1, 5, and

100) between a single retrieval and extinction. Both models correctly predict that certain time delays can weaken the associative

strength upon testing. The bottom row depicts a ‘reconsolidation window’ of time delays after retrieval wherein the associative

strength on testing is decreased.

https://doi.org/10.1371/journal.pcbi.1007331.g009

Table 2. Models were assessed based on whether or not they could reproduce the observed effect for each simulated experiment (yes =✔ or no =✘), with observed

effects defined in Table 1. It is important to note, however, that this assessment does not account for the magnitude of the effect or whether a different set of parameters

could reproduce the effect.

Experiment RW fRL+decay Redish Infinite-mixture Gershman Our model

Blocking ✔ ✘ ✘ ✘ ✔ ✔

Overexpectation ✔ ✘ ✘ ✘ ✔ ✔

Conditioned inhibition ✔ ✔ ✘ ✘ ✔ ✔

Wilson et al (1992) ✘ ✔ ✔ ✘ ✘ ✔

Rescorla (2000) Exp 1A ✘ ✘ ✘ ✔ ✘ ✔

Rescorla (2000) Exp 1B ✘ ✘ ✔ ✘ ✘ ✔

Partial reinforcement ✘ ✘ ✔ ✘ ✘ ✔

Backwards blocking ✘ ✔ ✘ ✘ ✘ ✔

Rapid return of fear & renewal ✘ ✘ ✔ ✘ ✘ ✔

Spontaneous recovery ✘ ✘ ✘ ✘ ✘ ✔

Memory modification ✘ ✘ ✘ ✘ ✔ ✔

https://doi.org/10.1371/journal.pcbi.1007331.t002

A flexible and generalizable model of online latent-state learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007331 September 16, 2019 20 / 31

https://doi.org/10.1371/journal.pcbi.1007331.g009
https://doi.org/10.1371/journal.pcbi.1007331.t002
https://doi.org/10.1371/journal.pcbi.1007331


important for reproducing different effects. Updating associative strength similar to the RW

model, for example, allows our model to capture effects famously reproduced by the RW

model (e.g., blocking). Updating associability based on latent-state beliefs captures sharp

increases in associability when a learner shifts their beliefs to a latent state, reproducing experi-

ments from Wilson et al (1992) [38] and Rescorla (2000) [39], and experiments involving

partial reinforcement [40–42]. Additionally, updating associability based on history of cue pre-

sentation rotates updates in different directions, allowing our model to reproduce backwards

blocking. Further, using latent-states to index disparate cue-reward associations allows for a

rapid return of prior expectations as a learner recalls a prior latent-state. Changing latent-state

beliefs to reflect contextual changes allows our model to capture effects modulated by visual

or temporal context such as renewal or spontaneous recovery, and together with rumination

steps, allows our model to reproduce memory consolidation experiments [44, 45]. Finally,

our model uses interaction terms and centers rewards, which we found were important for

explaining certain group-level effects by determining whether a learning agent would shift to a

new latent state.

Discussion

We presented a computational model of latent-state learning, using the Rescorla-Wagner

(RW) model as its foundation, and positing that latent states represent disparate associations

between cues and rewards. In a series of simulation experiments, we tested the model’s ability

to reproduce learning experiments both famously explained and not explained by the RW

model and to capture behavior in recent experiments testing latent-state inferences. Lastly, we

formally derived our latent-state model under the premise of computational rationality, i.e. a

learning agent wants to predict outcomes efficiently.

Our goal was to identify a model of latent-state learning that reproduces group-level effects

from classical conditioning experiments. The resulting model makes five critical assumptions/

predictions about how an agent learns cue-reward associations: an agent learns online, an

agent uses latent states to predict rewards, associability depends on beliefs in latent states and

cue novelty, latent states are relatively stable between trials, and beliefs are maintained over

multiple latent states. Including these features helps to ensure that the proposed model could

examine learning in numerous and diverse experiments, from experiments of classical condi-

tioning to more recent experiments on latent-state inferences. We show that most features

fall-out naturally when trying to develop an online approach to reward prediction which uses

latent-state inferences. Other models of latent-state learning share some, but not all these fea-

tures [11, 17, 19].

For example, our model assumes a learning agent uses latent states to index disparate associ-
ations, or mappings, from cues to rewards in an effort to predict cues. By contrast, the Redish

(2007) and infinite-mixture models use latent states to index disparate combined observations
of cues and rewards, which can in turn be used to infer rewards from a set of cues. Also, our

model assumes latent states evolve according to a Markov chain, whereas other models assume

latent states are exchangeable or independent between trials. As a consequence, beliefs in latent

states are relatively stable between trials. This stability was observed in certain simulation

experiments, in which the predominant latent state would switch only one or two times for

our model but over a dozen times for the infinite-mixture model and Redish (2007) model.

Interestingly, our model still updates associative strength in a similar manner to a RW

model: change in associative strength is prediction error scaled by associability. In fact, the

RW model is a specific case of our latent-state model when there is only one latent state and

associability is fixed. For this reason, our latent-state model can reproduce similar learning
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effects as the RW model such as blocking, overexpectation, and conditioned inhibition.

Some latent-state models cannot capture all of these classic learning features [11, 17]. How-

ever, our latent-state model goes beyond the RW model by allowing associability to vary

across trials. This feature is thought to be important for describing learning effects not

explained by the RW model, such as the Pearce-Hall effect, and is incorporated into newer

models, such as the Hybrid RW model [9, 10, 49]. Associability in our latent-state model

involves two components: effort matrices and beliefs in latent-states. Because associability

depends on effort matrices, changes in associative strength are rotated into a direction which

has not been previously learned, helping to explain backwards blocking. These matrices

approximate Fisher information matrices, which are often incorporated into iterative

approaches to maximum likelihood estimation [28, 50]. Meanwhile, because associability

also depends on beliefs, associative strength can be updated quickly when a learning agent

infers a sudden shift in experimental conditions. This feature allowed our latent-state model

to capture experimental results from Experiment 1 in Wilson et al (1992) [27] and Experi-

ments 1A–B in Rescorla (2000) [39].

Similar to other latent-state models, our model also assumes an agent who learns online.

Online learning requires only current observations rather than the entire history of observa-

tions to update parameters and quantities such as associative strength. Consequently, online

approaches have computational and memory requirements that grow in the number of latent

states rather than in trials, which could be a more realistic reflection of how humans learn. The

infinite-mixture model also uses online updates for all its variables [17], whereas the Gershman

(2017) model and Redish model (2007) uses online updates for most variables [11, 19]. For

comparison, an optimal Bayesian approach to latent-state learning would require enumerating

over all possible sequences of latent-states, a number that grows exponentially with each trial,

imposing a computational and memory burden that is believed to be overly optimistic for

human computation [26].

Critically, our latent-state model relies on an approximate Bayesian filter to maintain

and update beliefs over latent-states online. Other models of latent-state learning use other

approaches to reduce computational burden such serial representations of committed beliefs

rather than distributing belief across multiple hypotheses [11], particle methods [15, 17, 19],

or maximum a posteriori estimates [19]. Additional assumptions might also be used such as

exchangeable trials and binary outcomes [17], one latent state [34], one latent-state transition

[27], or known cue-reward associations [32]. Assumptions, however, limit the ability of any

model to describe learning in varied experiments. For example, we can capture renewal, spon-

taneous recovery, and other learning phenomena that require a more general number of latent

states and transitions because of our use of an approximate Bayesian filter [28]. We can also

capture experiments such as [32] that require beliefs to be maintained over over multiple

latent-states. Notably, the experiment [32] suggested a link between log-beliefs and activity in

the orbitofrontal cortex.

Many of the assumptions/predictions of the presented model are testable. For example,

associability for a latent-state is predicted to be directly dependent on the beliefs in that latent-

state. Stronger beliefs lead to faster learning, whereas weaker beliefs lead to slower learning.

An experiment could be designed to test, for example, if associability decreases by 50% when

beliefs are split between two latent-states relative to when beliefs were concentrated on one

latent-state. Further, associability is predicted to depend on whether cues had previously been

presented together. New combination of cues can lead to quick learning even when individual

cues making up the combination have already been presented. Last, latent-state beliefs are

predicted to be updated in a non-optimal manner, suggesting one try to induce sub-optimal

behavior in an experiment.
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Several limitations of the proposed model should be considered. First, we anticipate there

are group-level learning effects that our model fails to describe or there are other models

that could explain participant behavior. Second, we did not examine to what extent beliefs

in latent-states and other variables from our model are encoded in various brain regions.

Third, we assume beliefs are maintained over multiple latent states, but some experiments

suggest that an agent is committed to a state and alternates between committed states [33].

One possibility is that beliefs in latent states influence which state is committed and over

time, the frequency of committed states mirrors these beliefs. Modalities such as fMRI might

then suggest beliefs are maintained over multiple states, as in [32], because they lack the tem-

poral resolution needed to detect the alternating committed states. Allowing beliefs to deter-

mine committed states might even lead to better explanations of participant data, as it allows

for more flexibility in how states are updated for a given participant. Fourth, there may be

better ways to integrate computational mechanisms of how memories are formed into our

model [51]. For example, we use online updates in order to avoid memory requirements

that grow in the number of trials, but it is possible that humans are either capable of such

requirements or use other ways than online updates to integrate past observations. Fifth,

some effects (e.g., memory modification effect [44, 45]) reproduced by our model might be

too subtle to ever be detected experimentally. Sixth, we assume latent states are relatively sta-

ble between trials. This assumption may be accurate for describing learning in experiments,

since experiments often involve blocks of trials in which rewards/cues are generated by the

same rules, but may be less accurate for real-world learning environments. Seventh, we

included interactions between cues to influence when a learning agent shifts to a new latent

state, which we found was necessary to recover one of the Rescorla (2000) experiments [39].

This inclusion, however, should be investigated further to determine if it reflects how agents

actually learn. Finally, we did not study model performance in terms of predicting rewards

as a consequence of using an approximate Bayesian filter. It may useful to know how far

from optimal our approximate method is for maximum likelihood estimation in various

settings.

In sum, this work establishes the validity of an online model for latent-state inferences that

generalizes across experiments. Establishing such a framework is a necessary step towards

quantifying normative and pathological ranges of latent-state inferences (and mediating neu-

rocircuitry) across varied contexts. Overall, this work moves us closer to a precise and mecha-

nistic understanding of how humans infer latent-states.

Methods

Simulation details

Parameters were fixed throughout the simulation (Table 3). Parameters for alternative models

were chosen from their respective papers, except for the maximum number of latent states

which we fixed at 15 to reduce memory requirements. Our model includes cues throughout

simulation to represent pairwise interaction terms (i.e. a binary indicator if a pair of cues are

present or absent). Our model also centers rewards with R(t) = 1/2 when a reward is presented

and R(t) = −1/2 when a reward is not presented. That way, initial associative strengths give rise

to neutral (i.e. 50-50) expectations for reward. Thus, associative strengths are shifted by 1/2

for our model when compared to other models. Accompanying code is publicly-available at

https://github.com/cochran4/OnlineLatentStateLearning. S1 Text provides further details on

the schedules for how cues and rewards were delivered during each simulation task and exam-

ines sensitivity of our model’s predictions to changes in parameters.
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Mathematical justification

We justify our choice of model under the premise of computational rationality [52], i.e. a

learning agent wants to predict rewards efficiently. An optimistic strategy for the learning

agent would be to use maximize likelihood estimation (MLE) to aid prediction. This would

entail starting with a probabilistic model of rewards defined up to an unknown parameter θ
and finding θ to maximize the log-likelihood of rewards (scaled by 1/t):

‘ðyÞ ¼
1

t
log f R 1:tð Þ j y½ �: ð12Þ

Treating rewards as a continuous variable, we use f to denote a probability density function.

The estimate of θ together with the reward model predict future rewards. With an eye towards

efficiency, we focus on online approaches, such as the Rescorla-Wagner model, and refer the

reader to the work in [50] and [28] on updating latent-variable models online.

Rescorla-Wagner model as an online approach to maximum likelihood estimation.

Before we motivate our latent-state model, we explore how one could perform MLE online to

predict rewards without latent-states. In the process, we show that the RW model is an online

approach to MLE and illuminate a pathway for performing MLE online with latent-states. The

most natural modeling choice for rewards is arguably a standard Gaussian regression model,

ubiquitous in statistical inference:

RðtÞ ¼~cðtÞ0~m þ �ðtÞ

where~cðtÞ is the cue vector on trial t (independent variables);~m are unknown parameters

(unknown regression coefficients); and �(t) is an independent Gaussian random variable (error)

with mean zero and unknown variance ν. Unknown parameters are collected in y ¼ ~m 0 n �
0

�
.

Although we could maximize ℓ directly, we want an online approach to maximization and

instead consider applying Newton’s method for optimization (i.e., gradient descent), which

Table 3. Fixed set of parameters used for all simulated experiments.

Model Parameter Description Value

Our model α0 Associative strength learning rate 0.05

Our model β0 Variance learning rate 0.05

Our model γ Latent-state transitions 0.05

Our model σ0 Initial expected uncertainty 0.5

Our model ν Threshold for new state 0.2

Our model δ Unexpected uncertainty update 0.6

Our model χ Rumination steps 5

Rescorla-Wagner α Learning rate 0.15

Infinite-mixture α Concentration parameter 1

Infinite-mixture M Number of particles 100

Gershman (2017) α Concentration parameter 0.1

Gershman (2017) η Learning rate 0.3

Gershman (2017) s2
r Reward variance 0.4

Gershman (2017) s2
x Cue variance 1

Gershman (2017) n/a Rumination steps 3

https://doi.org/10.1371/journal.pcbi.1007331.t003
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involves repeatedly updating an estimate ŷ of θ with a new estimate of the form:

ŷ � lðtÞHðtÞ� 1
ry‘ðyÞ

�
�
�
�
y¼ŷ

for some learning rate λ(t) and an appropriate matrix H(t). Matrix H(t) can take many forms

and is important for determining how quickly estimates converge to a maximum/minimum.

An ideal choice is the Hessian resulting in the Newton-Raphson method, but the Hessian is

often noninvertible in MLE. A common alternative is the negative of the Fisher information

matrix IðyÞ scaled by 1/t and evaluated at the current estimate [50]. Even with Newton’s

method, rewards still need to be stored up to trial t, but Newton’s method can be turned into

an online algorithm using the well-known Robbins-Monro method [53]. We simply replace

the gradient with an (stochastic) approximation that depends only on the current trial:

ry‘ðyÞ � ry log f ½RðtÞ j y�

Note that each side of the equation is equal in expectation when rewards are independent

and identically-distributed.

Upon replacing the gradient with a stochastic approximation, we arrive at the RW model if

we use a constant learning rate λ(t) = λ0 and the matrix

HðtÞ ¼ �
1

n̂

I 0

0
1

2n̂

2

6
4

3

7
5:

For the Gaussian regression model, matrix H(t) resembles

�
1

t
IðyÞ ¼

1

t
E r2

y
log f R 1:tð Þ j y½ �j y

� �
¼ �

1

n

1

t

Xt

s¼1
~cðsÞ~cðsÞ0 0

0
1

2n

2

6
6
6
4

3

7
7
7
5
:

evaluated at ŷ ¼ ~̂m 0 n̂ �
0

�
We simply replaced 1

t

P
t~cðtÞ~cðtÞ

0
with the identity matrix I, which

ensures H(t) is invertible. Putting the online approach together with the fact that

ry log f ½RðtÞ j y� ¼
1

n

~cðtÞðRðtÞ � ~cðtÞ0~mÞ

�
1

2
þ

1

2n
ðRðtÞ � ~cðtÞ0~mÞ2

2

6
4

3

7
5

for the Gaussian regression model, we arrive at the following online update for the estimate ŷ:

ŷ þ l0

~cðtÞðRðtÞ � ~cðtÞ0~̂mÞ

ðRðtÞ � ~cðtÞ0~̂mÞ2 � n̂

2

4

3

5:

Critically, estimates ~̂m are updated exactly as in an RW model:

~̂m þ l0~cðtÞðRðtÞ � ~cðtÞ~̂mÞ:

In other words, the RW model is an online approach to maximum likelihood estimation.

Latent-state learning as an online approach to expectation-maximization. Motivated

by the previous argument, we now explore how one could perform MLE online to predict
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rewards with latent-states. A natural choice for modeling rewards is to use a Markov chain

of Gaussian regression models. Latent random variable X(t)2{1, . . ., L} represents the active

hypothesis on trial t. Given the active hypothesis X(t) = l, rewards are described by a Gaussian

linear regression model:

RðtÞ ¼~cðtÞ0~m l þ �ðtÞ

where~m1; . . . ;~mL are unknown parameters and �(t) is an independent Gaussian random

variable with mean zero and unknown variance ν. The extension to latent-state learning

thus leads to L different Gaussian regression models for rewards rather than one. As dis-

cussed in the Model subsection, we assume X(t) is a Markov chain that transitions to itself

from one trial to the next with probability 1 − γ(L − 1)/L and transitions to a new state (all

new states being equally-likely) with probability γ(L − 1)/L. Parameter γ and initial proba-

bilities for X(0) are assumed to be known/given, leaving unknown parameters collected in

y ¼ ~m 0
1
� � � ~m 0L n

i0h
.

In a latent-variable setting, a popular algorithm to perform MLE is expectation-maximiza-

tion (EM) [54]. An iterative algorithm, EM improves upon a current estimate ŷ at each itera-

tion in two steps. Fixing the current trial number t, an expectation step uses a current estimate

ŷ to calculate the expectation of the complete log-likelihood of rewards and latent states given

rewards and scaled by 1/t:

QðyjŷÞ ¼
1

t
E log f R 1:tð Þ;X 1:tð Þ j y½ �jRð1:tÞ; ŷ
h i

¼
1

t

Xt

s¼1

E log f R sð Þ jX sð Þ; y½ � þ logP X sð Þ jX s � 1ð Þ½ �jRð1:tÞ; ŷ
h i

A maximization step searches for a maximum of QðyjŷÞ over θ. The maximum is then used

as the estimate in the next iteration. The crux of the EM method is that QðyjŷÞ is easier to max-

imize than the log-likelihood ℓ(θ) of the observed data and that improvement in QðyjŷÞ guar-

antees improvement in ℓ(θ).

Mirroring our argument for the Rescorla-Wagner model, we can replace the maximization

step with a Newton update:

ŷ � lðtÞHðtÞ� 1
ryQðyjŷÞ

�
�
�
�
y¼ŷ

for appropriate learning rate λ(t) and matrix H(t). Even in a latent-variable setting, one choice

for H(t) is still the negative of the Fisher’s information matrix scaled be 1/t and evaluated at ŷ,

but Newton’s method still requires all rewards up to trial t. To recover an online approach, we

use a stochastic approximation toryQðyjŷðtÞÞ in the maximization step:

ryQðyjŷðtÞÞ � ryE
h
log f ½RðtÞ jXðtÞ; y� þ logP ½XðtÞ jXðt � 1Þ�jRð1:tÞ; ŷ

i

¼
XL

l¼1

P
h
XðtÞ ¼ ljRð1:tÞ; ŷ�ry log f ½RðtÞ jXðtÞ ¼ l; y

i

We then replace P½XðtÞ ¼ ljRð1:tÞ; ŷ�, which is computed using all the rewards, with

latent-state beliefs pl(t) defined at Eq 5 which is computed online. This replacement yields the

A flexible and generalizable model of online latent-state learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007331 September 16, 2019 26 / 31

https://doi.org/10.1371/journal.pcbi.1007331


stochastic approximation

ryQðyjŷðtÞÞ �
XL

l¼1

plðtÞry log f ½RðsÞ jXðsÞ ¼ l; y�

¼
1

n

p1ðtÞ~c1ðtÞðRðtÞ � ~c1ðtÞ
0
~m lÞ

..

.

pLðtÞ~cLðtÞðRðtÞ � ~cLðtÞ
0
~mLÞ

�
1

2
þ

1

2n

XL

l¼1
plðtÞðRðtÞ � ~clðtÞ

0
~m lÞ

2

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

The last equality follows from our assumption that rewards are a Markov chain of Gaussian

regression models.

Upon replacing the gradient in Newton’s method with this stochastic approximation, we

can arrive at our latent-state learning model if we use λ(t) = α0 and matrix

HðtÞ ¼ �
1

n̂

B1ðtÞ 0 � � � 0 0

0 B2ðtÞ 0 0

..

. . .
. ..

.

0 0 BLðtÞ 0

0 0 � � � 0
1

2n̂

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

where we used the definition of Bl(t) at Eq 4. For a Markov chain of Gaussian regression mod-

els, matrix H(t) resembles the negative of the Fisher information matrix scaled by 1/t:

�
1

t
IðyÞ ¼

1

t
E r2

y
log f R 1:tð Þ;X 1:tð Þ j y½ �jy

h i

¼ �
1

n

1

t

Xt

s¼1
r1ðs; yÞ~c1ðsÞ~c1ðsÞ

0
� � � 0

. .
. ..

.

..

. 1

t

Xt

s¼1
rLðs; yÞ~cLðsÞ~cLðsÞ

0
0
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1
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7
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where rlðs; yÞ ¼ P½XðsÞ ¼ ljy�. We simply replaced diagonal blocks with Bl(t) which ensures

H(t) is invertible and replaced ρl(s, θ) with latent state beliefs pl(s). With these choices for λ(t)
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and H(t), we update ŷ online according to:

m̂1 þ a0p1ðtÞB1ðtÞ
� 1
~c1ðtÞ

�
RðtÞ � ~c1ðtÞ

0~̂m 1

�

..

.

m̂L þ a0pLðtÞBLðtÞ
� 1
~cLðtÞ

�
RðtÞ � ~cLðtÞ

0~̂m L

�

n̂ þ a0

�XL

l¼1

plðtÞ
�
RðtÞ � ~clðtÞ

0~̂m l

�2
� n̂
�

We thus arrive at our latent-state model for updating associative strengths at Eq (1). We

can also recover our latent-state model for updating variance at Eq (7), if we replace the learn-

ing rate α0 with a different learning rate β0. This completes our motivation for our latent-state

model.

Supporting information

S1 Text. Additional support and details. This supplement is divided into four sections:

Extensions, Comparison to other learning models, Simulation details, and Sensitivity of pre-

dictions to parameters. The first section discusses how to extend the latent-state model to

allow for multidimensional rewards and decision-making. The second section examines simu-

lated behavior from other learning models. The third section provides additional details on

simulated experiments. The last section examines whether the ability of our model to repro-

duce target effects in simulation is sensitive to changes in parameters.

(PDF)

S1 Fig. Hybrid model. Simulated behavior of the Hybrid model for the same learning experi-

ments in the main text. Gray dashes demarcate experimental stages.

(TIF)

S2 Fig. Gershman (2017) model with higher concentration parameter. Simulated behavior

of Gershman (2017) model with concentration parameter α = 1 for the same learning experi-

ments in the main text. Gray dashes demarcate experimental stages.

(TIF)

S1 Table. Parameter sensitivity tests. Quantities measured in each simulation experiment in

order to test sensitivity of model predictions to changes in parameters. The value of each test

quantity determines whether or not a target learning effect is reproduced by the model.

(PDF)

S2 Table. Parameter sensitivity results. Target quantity as a function of target effect (#1–13)

and which parameter was varied, keeping all other parameters fixed. By checking whether

each target quantity was positive, we could determine whether the model reproduced one

of the target effects listed in the main text. In this table, all parameter sets reproduced target

effects.

(PDF)

S3 Table. Parameter sensitivity results continued. Target quantity as a function of target

effect (#1–13) and which parameter was varied, keeping all other parameters fixed. By

checking whether each target quantity was positive, we could determine whether the model

reproduced one of the target effects listed in the main text. In this table, all parameter sets

reproduced target effects, except in one case: decreasing parameter δ (which controlled
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unexpected uncertainty) did not reproduce memory modification effect (#13).
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