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Abstract: The ultrasonographic (US) features of endometriomas and hemorrhagic ovarian cysts
(HOCs) are often overlapping. With the emergence of new computer-aided diagnosis techniques,
this is the first study to investigate whether texture analysis (TA) could improve the discrimination
between the two lesions in comparison with classic US evaluation. Fifty-six ovarian cysts (endometri-
omas, 30; HOCs, 26) were retrospectively included. Four classic US features of endometriomas
(low-level internal echoes, perceptible walls, no solid components, and less than five locules) and
275 texture parameters were assessed for every lesion, and the ability to identify endometriomas
was evaluated through univariate, multivariate, and receiver operating characteristics analyses. The
sensitivity (Se) and specificity (Sp) were calculated with 95% confidence intervals (CIs). The texture
model, consisting of seven independent predictors (five variations of difference of variance, image
contrast, and the 10th percentile; 100% Se and 100% Sp), was able to outperform the ultrasound
model composed of three independent features (low-level internal echoes, perceptible walls, and
less than five locules; 74.19% Se and 84.62% Sp) in the diagnosis of endometriomas. The TA showed
statistically significant differences between the groups and high diagnostic value, but it remains
unclear if the textures reflect the intrinsic histological characteristics of the two lesions.

Keywords: computer-aided diagnosis; endometrioma; hemorrhagic cyst; ultrasonography; tex-
ture analysis

1. Introduction

Transvaginal ultrasonography (TVUS) is the primary diagnostic modality in investigat-
ing endometriomas. Usually, this technique can provide enough information for adequate
preoperative planning [1]. However, endometriomas share some imaging features with
functional hemorrhagic ovarian cysts (HOCs) [2]. Correctly distinguishing the two lesions
is vital not only to avoid unnecessary surgery [3] but also because endometriomas are a
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sign of the presence of other endometriotic lesions at the pelvic and intestinal levels, which
can cause a series of complications [4]. As a result, the imaging distinction between the
two lesions strongly impacts the course of both medical and surgical treatment [5].

Since it was first described more than 25 years ago [6], the classic “ground glass”
appearance of endometriomas has been constantly reevaluated; because of this, researchers
have assigned it different levels of diagnostic utility [7–10] and even integrated it into
decision trees, along with other ultrasonographic, clinical, and biological parameters [11].
The ultrasound (US) appearance of endometriomas is highly variable, being influenced
by the time-lapse of blood degradation [12]. Moreover, the US features of endometriomas
overlap with other lesions such as dermoids, cystic adnexal lesions complicated by bleeding,
and cystic ovarian neoplasms [13]. Often, endometriomas and HOCs are indistinguishable,
especially in the early stages [2], as they share the characteristic of a cystic mass with
bloody content [14]. For these reasons, recent studies [15] concluded that only 60% of
endometriomas larger than 2 cm can be appropriately diagnosed with US.

Furthermore, the variety of ultrasound-based descriptors and scoring systems may
cause confusion, particularly because their parameters are changeable, sophisticated, and
frequently of arbitrary importance [16,17]. Furthermore, the interpretation of medical
images is always subjective and observer-dependent [18].

Computer-aided discrimination (CAD) systems have emerged in recent years and
attempt to overcome these limitations and increase confidence in the US detection and char-
acterization of ovarian masses [19]. Some of the recently developed CAD techniques focus
on the US identification of ovarian malignancies [20–24] and mostly rely on texture analysis
(TA) to autonomously detect the presence of a disease based on grayscale variations within
TVUS images [25]. TA is a method for extracting and processing parameters that describe
pixel intensity and variation patterns, resulting in a quantitative and comprehensive rep-
resentation of image content [26,27]. The basic concept of texture analysis of ultrasound
images is that a diseased process that affects the tissue produces an altered signal, which
gives textural features different values than those of the normal structure [28].

This is the first study to provide an ultrasound-based texture characterization of
endometriomas and HOCs. We investigated whether texture parameters could be used as
an objective diagnostic criterion for distinguishing between the two lesions and whether
these parameters were able to outperform the classic US features.

2. Materials and Methods
2.1. Study Group

This Health Insurance Portability and Accountability Act–compliant, a single-institution,
retrospective pilot study, was approved by the institutional review board, and informed
consent was waived because of its retrospective nature. From September 2017 to March
2019, a keyword search (using the terms “hemorrhagic + cyst”, alternatives and combina-
tions) in the imaging database of our institution was conducted to identify TVUS images
corresponding to ovarian cystic lesions. The keyword search resulted in 235 image reports.
Each report was analyzed by one researcher, who excluded all studies that referred to
previously documented ovarian malignant or benign tumors (other than endometriomas)
(n = 57), lesions that were described as having features strongly suggesting malignancy
(n = 31), and lesions that measured less than 2 cm (n = 28). The medical records of the
remaining 119 patients were retrieved from the archive of our healthcare institution and
investigated for disease-related data. Further, all patients that were transferred to an-
other institution (n = 19) and all lesions that were not removed and did not undergo
histopathological analysis were also excluded (n = 33). The US examinations of the remain-
ing 67 patients were reviewed by one gynecologist who selected only B-mode images that
were not affected by artifacts or technique errors. After applying these criteria, US images
from 30 endometriomas and 26 hemorrhagic cysts were selected.



J. Pers. Med. 2021, 11, 611 3 of 15

2.2. Reference Standard

All included lesions underwent pathological analysis after surgical removal. For
endometriomas, 12 lesions were removed and analyzed, along with subsequent diseases
(uterine fibromatosis, n = 9; adenomyosis, n = 3). All HOCs underwent pathological analysis
because they were included in the surgical specimen analyzed for another condition
(atypical endometrial hyperplasia, n = 1; adnexal torsion, n = 2; uterine leiomyosarcoma,
n = 2; mucinous cystadenoma, n =2; cystadenofibroma, n = 3; serous ovarian carcinoma,
n = 3; serous cystadenomas, n = 3; ovarian teratoma, n = 4; uterine fibromatosis, n = 6).

For pathological analysis, a solution of 10% buffered formalin was used to fixate the
surgical samples overnight. Further, using tissue processors, the samples were embedded
in paraffin according to the standard protocol of the pathological anatomy laboratory of our
institution. The resulting samples were sectioned at 5 µm and stained with hematoxylin
and eosin. All resulting samples underwent examination by a pathologist with 9 years of
experience in gynecological disease. Following the analysis workflow, a final diagnosis
was possible in all the included cases.

2.3. Image Acquisition and Interpretation

All the included images were acquired by four gynecologists with at least 8 years of
experience in gynecological ultrasound. All examinations were performed on the same
machine (Aplio 300, Toshiba Medical Systems, Tokyo, Japan) using a dedicated endovaginal
probe (4–10 MHz).

In the first step of image interpretation, each examination was reviewed by one
researcher (R.A.S, .) who was aware of the patients’ pathological findings, clinical outcomes,
and final diagnoses. The medical data were cross-referenced with the images to ensure the
selection of only the lesions that underwent pathological analysis. Respective lesions were
marked, and only one image that was considered representative from each examination
was retrieved and anonymized.

In the second step, the typical greyscale US characteristics of endometriomas (“a cyst
with internal homogeneous low-level echoes, a perceptible . . . , no solid component, and
a maximum of five locules for multilocular lesions”), as described by Collins et al. [12],
were quantified using anonymized images by another researcher (A.M.M.) who was also
blinded to the patients’ outcomes. The homogeneous low-level echoes (or ground glass)
appearance was considered if this was the dominant pattern in more than 90% of the
lesion’s content. The lesions were considered to have a wall if a structure at least 2 mm
thick that surrounded at least 50% of the visible portion of the cyst could be observed.
Since only gray-scale images were retrieved, any structure that was adjacent to the walls
was considered a solid component (including hyperechoic foci, papillary projections, and
retracting clots). Furthermore, unilocular lesions were also considered to have a maximum
of five locules.

2.4. Statistical Analysis

To quantify the information in a quantitative way, for each lesion, each ultrasound
parameter was given the value of “1” if present or “0” if absent. A multiple regression
(multivariate) analysis was conducted to investigate which ultrasound features could in-
dependently predict the presence of endometriomas. The analysis was conducted using
the “enter” input model, which involved entering all variables into the model in one single
step. A conventional p-value of less than 0.05 was used to determine the corresponding
independent variables that contributed significantly to the differentiation of endometri-
omas from HOCs, whereas variables with a p-value of more than 0.01 were omitted. In
addition, the coefficient of determination (R2, the proportion of the variation in the de-
pendent variable explained by the regression model, measuring of the goodness of fit
of the model), the R2-adjusted coefficient (the coefficient of determination adjusted for
the number of independent variables in the regression model), the multiple correlation
coefficient (measuring how tightly the data points clustered around the regression plane,
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calculated by taking the square root of the coefficient of determination), and the variance
inflation factor (VIF, an indicator of multicollinearity) were calculated. After the analysis,
the predicted values were saved and then used in a receiver operating characteristic (ROC)
analysis to determine the prediction model’s ability to identify endometriomas. The ROC
analysis was also used to test the ability of each ultrasound feature in the diagnosis of
endometriomas. The DeLong et al. technique was used to compute the ROC curves, and
the binomial exact confidence intervals for the areas under the curve (AUC) were stated.
The optimal cut-off values for predicting patients with malignancies were determined
using a common optimization step that maximized the Youden index (J). Specificity (Sp)
and sensitivity (Se) were calculated from the same data, without other adjustments, using
a 95% confidence interval (CI).

2.5. Texture Analysis Protocol

The radiomics approach consisted of five steps: image pre-processing, lesion segmen-
tation, feature extraction, feature selection, and prediction.

2.5.1. Image Pre-Processing and Segmentation

Images were retrieved in Digital Imaging and Communications in Medicine (DICOM)
format and were further converted into Joint Photographic Experts Group format (JPG)
and imported into a dedicated software (Topaz DeNoise AI, Topaz Labs, TX, USA) in
which the negative impact of the speckle noise was reduced using a denoising technique
based on convolutional neural networks [29]. Afterward, images were reconverted into
bitmap format and transferred to a dedicated texture analysis software (MaZda, Institute
of Electronics, Technical University of Lodz, Lodz, Poland) [30]. Using this program, the
image grey levels were normalized based on the mean and three standard deviations of
grey level intensities to reduce the contrast and brightness variations.

The image segmentation process was performed by a second researcher (P.A.S, .) who
was blinded to the outcomes of the patients. The researcher incorporated each lesion into
a two-dimensional region of interest (ROI). The first step of the ROI definition process
was performed semi-automatically. The researcher drew a circle inside each lesion and the
software automatically delineated the structure of interest based on gradient and geometry
coordinates. In the second step, if a complete overlap between the ROI and the structure’s
contours was detected, the ROI was manually adjusted (Figure 1).

Figure 1. (A) The ultrasound image of a 29-year-old patient with s histologically proven hemorrhagic
ovarian cyst, (B) the initial ROI that was automatically delineated by the software (yellow line), and
(C) the final ROI after manual adjustments (yellow).

2.5.2. Feature Extraction

The texture features (or parameters) were automatically extracted by the software
after the definition and positioning of each ROI. From each lesion, a total of 275 parameters
were computed [31]. The parameters are described in Table 1.
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Table 1. Texture parameters.

Class Parameters Computation Variations Number of
Parameters

Histogram Mean, Variance, Skewness, Kurtosis,
Perc.01–99% - - 5

Absolute gradient
GrMean, GrVariance, GrSkewness,

GrKurtosis, GrNonZeros, percentage
of pixels with nonzero gradient

4 bits/pixel - 5

Run Length Matrix RLNonUni, GLevNonU, LngREmph,
ShrtREmp, Fraction 6 bits/pixel 4 directions 20

Co-occurrence Matrix

AngScMom, Contrast, Correlat,
SumOfSqs, InvDfMom, SumAverg,

SumVarnc, SumEntrp, Entropy,
DifVarnc, DifEntrp

6 bits/pixel; 5
between-pixel

distances
4 directions 220

Auto-regressive Model Teta 1–4, Sigma - - 5

Wavelet transformation WavEn 5 scales 4 frequency bands 20

Mean, histogram’s mean; Variance, histogram’s variance; Skewness, histogram’s skewness; Kurtosis, histogram’s kurtosis; Perc.01–99%, 1st
to 99th percentile; GrMean, absolute gradient mean; GrVariance, absolute gradient variance; GrSkewness, absolute gradient skewness;
GrKurtosis, absolute gradient kurtosis; GrNonZeros, percentage of pixels with nonzero gradient); RLNonUni, run-length nonuniformity;
GLevNonU, grey level nonuniformity; LngREmph, long-run emphasis; ShrtREmp, short-run emphasis; Fraction, the fraction of image in
runs; AngScMom, angular second moment; Contrast, contrast; Correlat, correlation; SumOfSqs, the sum of squares; InvDfMom, inverse
difference moment; SumAverg, sum average; SumVarnc, sum variance; SumEntrp, sum entropy; Entropy, entropy; DifVarnc, difference of
variance; DifEntrp, difference of entropy; Teta 1–4, parameters θ1–θ4; Sigma, parameter σ; WavEn, wavelet energy.

For each lesion, the segmentation and extraction of texture parameters were repeated
1 week apart, and the process was carried out by the same researcher. The resulting values
were used to evaluate the intra-reader agreement using the intraclass coefficient.

2.5.3. Feature Selection

In order to identify the best-suited texture parameters for differentiating between
the two histopathological groups, three methods were applied successively. The first step
comprised of applying three reduction methods (based on mutual information (MI), Fisher
coefficients (F, the ratio of between-class to within-class variance), and the probability of
classification error and average correlation coefficients (POE + ACC)) [32]. Each of the
three selection methods provided a set of ten unique parameters.

Second, the intraclass correlation coefficient (ICC) was calculated using the absolute
agreement between the same rater for the all-subjects model, and average values along
with the 95% confidence interval were reported. Features that demonstrated an ICC of
below 0.85 were excluded from further analysis.

Third, the absolute values of the remaining parameters were compared between the
two groups using the Mann–Whitney U test. The statistically significant level was set at a
p-value of below 0.0016 after Bonferroni correction (which implied dividing the classic 0.05
level by 30, considering the 27 unique parameters that resulted after applying the reduction
techniques as well as age and the two separate histopathological entities). All texture
parameters that showed univariate analysis results below this threshold were excluded
from further processing.

2.5.4. Class Prediction

To investigate which of the previously selected texture features were independent
predictors of endometriomas, a multiple regression analysis was performed following
the same computational method as was used for the ultrasound features. Furthermore,
features with a VIF greater than 104 were withdrawn from further testing because a high
VIF value indicates multicollinearity. The predicted values were saved and then used in
an ROC analysis to determine the prediction model’s ability to identify endometriomas.
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The ROC analysis was also used to test the diagnostic utility of the features that were
independently associated with endometriomas, following the same workflow as described
for the ultrasound features. Statistical analysis was performed using a commercially
available dedicated software, MedCalc version 14.8.1 (MedCalc Software, Mariakerke,
Belgium). The workflow model is summarized in Figure 2.

Figure 2. Workflow model summarizing the construction of the texture (blue) and ultrasound (orange)
prediction models. US, ultrasound; ROI, region of interest; ROC, receiver operating characteristic.

3. Results

Fifty-six patients (average age ± standard deviation: 38.27 ± 14.68 years; age range:
22–54 years) were included according to their final diagnosis. Patients were divided into
an endometrioma group (n = 30) and an HOC group (n = 26).

When analyzing the gray-scale features, three out of four characteristics (internal
homogeneous low-level echoes, a perceptible wall, and a maximum of five locules) were
independently associated with endometriomas (Table 2). The multivariate analysis showed
a significance level of p < 0.0001, an R2 coefficient of determination of 0.3856, an adjusted R2

value of 0.3384, and a multiple correlation coefficient of 0.621. The diagnostic performance
of the three independent US features and the prediction model is displayed in Table 3.

For the texture analysis, one variation of the difference of variance parameter (CN5D6-
DifVarnc) was selected by both the Fisher and POE + ACC methods, while two variations
of the same feature (CN4D6DifVarnc and CH5D6DifVarnc) were highlighted by both the
Fisher and MI methods. In total, 27 unique parameters resulted after applying the three
reduction techniques. The results of the univariate analysis and intra-reader agreement
evaluation are displayed in Table 4.
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Table 2. The multivariate analysis showing independent features associated with the presence of endometriomas. The cases
in which a specific feature could be found in either group are displayed as number/total.

Parameter Endometriomas HOCs Coefficient Standard Error p-Value VIF

Internal homogeneous
low-level echoes 23/30 7/26 0.3151 0.1177 0.0099 1.178

Perceptible wall 17/30 8/26 −0.4162 0.1557 0.01 1.197

No solid component 12/30 6/26 0.1977 0.1234 0.1153 1.123

Maximum of 5 locules 21/30 26/26 0.2971 0.1167 0.0139 1.144

Bold values are statistically significant (p < 0.05). VIF, variance inflation factor.

Table 3. The receiver operating characteristic analysis results of the prediction model and the ultrasound parameters that
were independently associated with endometriomas.

US Feature AUC Sign.lvl. J Cut-Off Se (%) Sp (%)

Internal homogeneous
low-level echoes

0.736
(0.603–0.844) 0.0001 0.47 >0 74.19

(55.4–88.1)
73.08

(52.2–88.4)

Perceptible wall 0.62
(0.482–0.746) 0.0631 0.24 >0 54.84 (36–72.7) 69.23

(48.2–85.7)

Maximum of 5 locules 0.661
(0.524–0.781) 0.0002 0.32 ≤0 32.26

(16.7–51.4) 100 (86.8–100)

US prediction model 0.857
(0.739–0.936) <0.0001 0.58 >0.42 74.19

(55.4–88.1)
84.62

(65.1–95.6)

The values corresponding to 95% confidence intervals are shown in parentheses. Bold values are statistically significant. US, ultrasound;
US prediction model, the model composed of the predictive values provided by the multivariate analysis of ultrasound features; Sign.lvl.,
significance level; J, Youden index; Se, sensitivity; Sp, specificity.

Table 4. The univariate analysis (Mann–Whitney U test) and the intra-reader agreement evaluation results.

Parameter p-Value
Endometriomas Hemorrhagic Cysts Agreement

Median IQR Median IQR ICC 95% CI

Fisher

CN5D6DifVarnc 0.0001 8.33 4.73–14.81 22.85 18.94–32.58 0.98 0.97–0.99

CN4D6DifVarnc 0.0002 7.95 3.95–14.7 20.79 18.27–30.62 0.98 0.98–0.99

CV5D6DifVarnc 0.0002 7.77 4.28–15.01 23.61 16.32–28.37 0.98 0.97–0.99

CZ5D6DifVarnc 0.0002 8.37 4.75–15.55 23.25 16.6–30.34 0.98 0.97–0.99

CN3D6DifVarnc 0.0002 7.04 3.61–14.55 20.82 15.5–28.04 0.93 0.98–0.99

CV4D6DifVarnc 0.0003 7.43 3.71–14.88 22.12 15.46–26.6 0.99 0.98–0.99

CZ4D6DifVarnc 0.0004 7.81 4.49–15.16 22.67 15.14–27.66 0.99 0.98–0.99

CH5D6DifVarnc 0.0006 7.03 3.63–14.39 22.11 13.52–27.51 0.99 0.99–0.99

CZ3D6DifVarnc 0.0005 7.38 3.95–14.6 21.67 13.97–25.14 0.99 0.98–0.99

WavEnHL_s-2 0.0008 10.65 5.33–20.82 29.68 16.84–38.2 0.99 0.99–0.99

POE + ACC

RZD6Fraction 0.0445 0.74 0.7–0.8 0.67 0.43–0.76 0.99 0.98–0.99

RVD6GLevNonU 0.0006 2849.65 1420.58–3750.88 1081.5 575.26–1718.42 0.99 0.99–0.99

WavEnHL_s-5 0.007 30.72 22.22–61.06 69.11 47.55–124.11 0.99 0.99–0.99

RVD6LngREmph 0.0103 2.27 1.78–2.69 5.67 2.35–37.05 0.98 0.97–0.99
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Table 4. Cont.

Parameter p-Value
Endometriomas Hemorrhagic Cysts Agreement

Median IQR Median IQR ICC 95% CI

ATeta4 0.5085 0.15 0.01–0.38 0.16 0.12–0.31 0.99 0.99–0.99

GD4Kurtosis 0.2783 10.59 0.1–67.8 48.14 28.16–58.71 0.99 0.98–0.99

Perc10 0.0005 31.5 24–39 4 1–19 0.99 0.99–0.99

CN5D6Correlat 0.0569 0.57 0.5–0.71 0.45 0.25–0.59 0.98 0.96–0.98

RZD6GLevNonU 0.0009 3041.64 1300.63–3769.19 1079.18 559.01–1829.93 0.99 0.99–0.99

Mutual Information

WavEnHH_s-3 0.0011 8.46 3.95–10.79 15.6 9.8–19.88 0.99 0.98–0.99

CN3D6Contrast 0.0005 15.81 7.45–19.29 28.84 22.47–37.86 0.99 0.98–0.99

WavEnLH_s-3 0.0008 23.73 17.75–30.86 46.16 30.64–60.69 0.97 0.94–0.98

WavEnHH_s-4 0.0055 7.18 5.42–12.16 13.69 11.17–17.1003 0.96 0.94–0.98

CH4D6DifVarnc 0.0009 6.18 3.2–14.51 20.33 12.47–24.73 0.99 0.99–0.99

CV5D6Contrast 0.0007 16.91 9.03–21.58 33.39 23.8–40.08 0.98 0.97–0.99

CN4D6Contrast 0.0005 17.49 8.44–21.16 31.49 23.18–39.65 0.98 0.97–0.99

CH4D6Contrast 0.0033 13.22 6.17–17.78 26.23 16.25–33.47 0.99 0.99–0.99

Statistically significant results from the Mann—Whitney U-test are highlighted in bold. IQR, interquartile range; POE + ACC, probability of
classification error and average correlation coefficient; ICC, intraclass coefficient; DifVarnc, difference of variance; WavEn, wavelet energy;
Fraction, the fraction of image in runs; GLevNonU, grey level nonuniformity; GLevNonU, long-run emphasis; Teta, parameter θ4; Kurtosis,
histogram’s kurtosis; Perc10, 10th percentile; Correlat, correlation; Contrast, contrast.

Twenty parameters showed statistically significant results in the univariate analysis
and underwent multiple regression analysis. The parameter CN4D6DifVarnc was excluded
from the analysis because it had a VIF greater than 104. The multivariate analysis showed
a significance level of p < 0.001, an R2 coefficient of determination of 0.435, an adjusted
R2 value of 0.427, and a multiple correlation coefficient of 0.634. The multiple regression
analysis identified seven parameters as independent predictors of endometriomas (Table 5).

Table 5. Multivariate analysis results showing the texture parameters independently associated with
the presence of endometriomas.

Parameter Coefficient Standard Error p-Value VIF

CH4D6DifVarnc 0.2662 0.1931 0.1808 2965.650

CH5D6DifVarnc −0.2735 0.1944 0.1722 3131.661

CN3D6DifVarnc −0.04859 0.2082 0.8174 3440.996

CN5D6DifVarnc 0.4225 0.1255 0.0026 1425.172

CV4D6DifVarnc 0.01293 0.2247 0.9546 4143.205

CV5D6DifVarnc −0.5476 0.1931 0.0091 3225.142

CZ3D6DifVarnc −0.4053 0.1928 0.0462 3080.372

CZ4D6DifVarnc 1.0179 0.2813 0.0014 6825.702

CZ5D6DifVarnc −0.4797 0.1352 0.0016 1621.315

CN3D6Contrast 0.2624 0.1357 0.0651 2136.581

CN4D6Contrast −0.4877 0.1945 0.0193 5009.060

CV5D6Contrast 0.2167 0.1179 0.0784 1795.666
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Table 5. Cont.

Parameter Coefficient Standard Error p-Value VIF

Perc10 0.01755 0.004113 0.0003 3.535

RVD6GLevNonU 0.0002 0.0002 0.4101 123.113

RZD6GLevNonU −0.0001 0.0002 0.6515 125.807

WavEnHH_s_3 0.01052 0.02963 0.7255 29.482

WavEnHL_s_2 0.017 0.01602 0.2993 37.886

WavEnLH_s_3 0.008 0.006074 0.1791 7.886
Bold values are statistically significant (p < 0.05). VIF, variance inflation factor.

The ROC analysis showed that the prediction model exceeded the individual diagnos-
tic ability of all independent features in terms of both sensitivity and specificity (Table 6,
Figure 3). The texture maps that display the distribution of selected texture features in
images from each entity are shown in Figure 4.

Table 6. The receiver operating characteristic analysis results of the prediction model and the texture parameters that were
independently associated with endometriomas.

Parameter AUC Sign.lvl. J Cut-Off Se (%) Sp (%)

CN5D6DifVarnc 0.882
(0.747–0.960) <0.0001 0.7128 ≤16.73 86.67 (69.3–96.2) 84.62 (54.6–98.1)

CV5D6DifVarnc 0.856
(0.716–0.944) <0.0001 0.659 ≤21.26 96.67 (82.8–99.9) 69.23 (38.6–90.9)

CZ3D6DifVarnc 0.838
(0.694–0.933) 0.0001 0.659 ≤20.12 96.67 (82.8–99.9) 69.23 (38.6–90.9)

CZ4D6DifVarnc 0.841
(0.697–0.934) 0.0001 0.625 ≤19.43 93.33 (77.9–99.2) 69.23 (38.6–90.9)

CZ5D6DifVarnc 0.859
(0.719–0.946) <0.0001 0.6462 ≤15.67 80 (61.4–92.3) 84.62 (54.6–98.1)

CN4D6Contrast 0.838
(0.694–0.933) <0.0001 0.6897 ≤21.16 76.67 (57.7–90.1) 92.31 (64–99.8)

Perc10 0.836
(0.691–0.931) <0.0001 0.6462 >19 80 (61.4–92.3) 84.62 (54.6–98.1)

Texture prediction
model 1 (0.918–1) <0.0001 1 >0.4 100 (88.4–100) 100 (75.3–100)

The values corresponding to 95% confidence intervals are shown in parentheses. Bold values are statistically significant. Texture prediction
model, the model composed of the predictive values provided by the multivariate analysis of the texture features; Sign.lvl., significance
level; J, Youden index; Se, sensitivity; Sp, specificity.

Figure 3. Comparison of areas under the curve for the differentiation of endometriomas from hemorrhagic cysts based on
(A) the difference of variance parameters, (B) contrast and percentile parameters and the prediction model composed of
independent texture parameters, and (C) classic ultrasound features of endometriomas and their combined diagnostic value.
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Figure 4. Texture maps showing the distribution of three texture parameters (CN5D6DifVarnc,
CN4D6Contrast, and Perc10) in images of patients with a histologically proven endometrioma and
hemorrhagic ovarian cyst.

4. Discussion

Our results showed that the majority of the included endometriomas (n = 23) ex-
pressed low-level internal echoes, while this indicator was encountered in less than 30% of
HOCs (n = 7). As expected, this feature was the most distinctive sign of endometriomas, as
previously described since the first research was conducted in the field (Table 7). However,
we were unable to find a study that specifically aimed to address the distinction between
endometriomas and HOCs based on grey-level ultrasound features, with most research
focusing on distinguishing endometriomas from other ovarian tumors (sometimes includ-
ing HOCs) [7,11]. In our study, the low-level internal echoes (or ground glass appearance)
showed similar sensitivity (74.19%) but lower specificity for the diagnosis of endometri-
omas compared with the most recent research in the field (73% Se; 94% Sp) [11]. Moreover,
when other features were added to the model, the overall sensitivity did not increase.

Hemorrhagic ovarian cysts are caused by bleeding inside functional cysts that are
spontaneously resorbed [2]. They also progress slowly through different stages of acute
hemorrhage, clot development, and retraction, resulting in a shifting sonographic appear-
ance until they fully resolve in 6 weeks or shrink significantly in size [33]. In the early
stages, they appear as solid masses with thin walls. Furthermore, their content may express
variable echogenicity with reticular strands. When the clot retracts, its attachment to the
wall can mimic a papillary projection, and a fluid layer also develops within the cyst [34].

At the beginning of their formation, the US appearance of endometriomas can be
indistinguishable from that of HOCs. In time, as the bleeding becomes chronic, endometri-
omas build up more hemorrhagic debris [2], which is responsible for their classic US
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appearance (of a “unilocular cyst with fluid content expressing ground glass echogenic-
ity” or “ground glass”) [35,36]. However, further research [11] demonstrated that less
than 50% of endometriomas exhibit these characteristics, with even lower rates in the
postmenopausal population. This is most likely because endometriomas express cyclic
bleeding, which results in different time stages of blood degradation, thereby generating
variable US appearance [37].

Table 7. Research involving endometriomas’ classic ultrasound features.

Imaging Feature Author/Year Diagnostic Value

Low-level internal echoes Patel et al. (1999) [7] 95% Se; 49% Sp

Low-level internal echoes, no
neoplastic features, and no fibrinous

strands or retracting clots
Patel et al. (1999) [7] 65% Se; 76% Sp

Low-level internal echoes, no
neoplastic features, and no hyperechoic

wall foci
Patel et al. (1999) [7] 30% Se; 86% Sp

Low-level internal echoes, no
neoplastic features, and hyperechoic

wall foci or multilocularity
Patel et al. (1999) [7] 45% Se; 90% Sp

“Round, intraovarian, homogeneous,
hypoechoic tissue, with a clear

demarcation from the parenchyma and
without papillary proliferations”

Mais et al. (1993) [6] 84% Se; 90% Sp

“A cystic structure with low,
homogeneous echogenicity and a thick
cystic wall with regular margins” but

not excluding “very fine papillary
structures, not exceeding 3 mm”

Volpi et al. (1995) [8] 82.4% Se; 97.7% Sp

“The presence of a round-shaped
homogeneoushypoechoic mass of

low-level echoes”
Alcazar et al. (1997) [9] 88.9% Se; 91% Sp

“Round-shaped homogeneous
hypoechoic ‘tissue’ of low-level echoes

within the ovary”
Guerriero et al. (1996) [10] 79% Se; 76% Sp

Ground glass echogenicity of cyst fluid Van Holsbeke et al. (2010) [11] 73% Se; 94% Sp
Se, sensitivity; Sp, specificity.

In practice, the grayscale imaging of endometriomas and HOCs can be identical
due to bleeding features of different ages, making distinction difficult [2]. On one hand,
sonographic observation of fibrin strands and/or retracting clots within an adnexal cyst
reflects a recent episode of hemorrhage [35]. Due to the cyclic bleeding characteristic
of endometriomas, the appearance of fibrin stands can easily mimic the features of an
HOC [38]. On the other hand, HOCs can also demonstrate diffuse low-level internal
echoes [7], most likely because in some cases, they do not regress and instead accumulate
various quantities of intracellular deoxyhemoglobin and methemoglobin [39].

Considering the information above, together with the subjective nature of the in-
terpretation of US images, a clear differentiation between the two lesion types can be
performed only through microscopic evaluation [40]. The cell population found within
endometriomas consists of degenerate erythrocytes, hemosiderin-laden macrophages, and
endometrial and epithelial cells [41–44]. Functional hemorrhagic cysts’ content is composed
of a mixture of blood products along with plasma proteins, mucopolysaccharides, and
hyaluronic acid [45], and these lesions also have rich cellularity [43]. It is possible that
all the histopathological characteristics are reflected within US images, subtly influenc-
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ing the pixel intensity and distribution, which may be detected and quantified through
texture parameters.

Our results showed that five variations of the difference of variance parameter were in-
dependent predictors of endometriomas (CN5D6DifVarnc, CV5D6DifVarnc, CZ3D6DifVarnc,
CZ4D6DifVarnc, and CZ5D6DifVarnc). The variance is a measure of contrast severity,
which can be used to create descriptors of relative smoothness. [46]. The difference of vari-
ance measures the variance of the difference of grey level values (reflecting the randomness
within an image [47,48]. In all scenarios, this feature exhibited higher values for HOCs
than for endometriomas.

The contrast parameter shows the local variations present in an image, expressing
higher values when an image contains a large number of pixels with different grey level
values [47]. We obtained higher values for the HOCs than for endometriomas.

The first-order histogram parameters (mean, standard deviation, variance, skewness,
kurtosis, and percentiles) reflect the value of the pixel intensity, without considering the
spatial relations between the pixels [49]. The percentile number (n) is the point in the
histogram where n% of the pixel values are found to the left [50]. A percentile, in other
words, is the highest grey level value at which a given percentage of the pixels in an image
are contained [51]. This signifies that 10% of the pixels within images were distributed
under higher values for endometriomas than for HOCs.

Although it was expected that endometriomas would show a higher degree of
echogenic randomness because of the multitude of contained elements, the parameters
indicating these characteristics showed higher values for HOCs. This observation is in
accordance with the literature, which indicates that HOCs have more complex and het-
erogenous content on TVUS (probably because they more often express fine linear strands
and retracting clots) [52].

In the current study, the texture model was able to diagnose endometriomas with
almost perfect rates: 100% Se (CI, 88.4–100%) and 100% Sp (CI, 75.3–100%). In a similar
study, based on magnetic resonance (MRI) images [53], the texture model was able to
distinguish endometriomas from HOCs with similar rates, showing a sensitivity of 100%
(CI, 85.8–100%) and a specificity of 100% (CI, 71.5–100%). Once again, this model [53]
outperformed the classic MRI features of endometriomas (“T2 shading”, 75.86% Se and
35.71% Sp and “T2 dark spots”, 55.17% Se and 64.29% Sp). However, the current model
comprised different texture parameters (five variations of difference of variance, image
contrast, and 10th percentile) compared to those extracted from MRI images (which in-
cluded mostly variations of entropy) [53]. The high accuracy rates accomplished by both
models could indicate that TA is feasible in distinguishing the two lesions in both types of
imaging examinations. However, these excellent results may be influenced by the reduction
techniques (especially the Fisher method); although they provide the most distinguishing
parameters, these parameters are highly correlated [32], and they could therefore influence
the diagnostic value of the prediction model [54]. In order to at least partially counteract
this effect, in addition to the Fisher method, two other selection methods were used that
did not provide parameters with a high degree of correlation (POE + ACC and Mutual
Information). Moreover, parameters that showed statistical significance in the univariate
analysis but also demonstrated a VIF >104 were excluded from the final model.

Because the ultrasound features of the two lesions may overlap, sometimes the diagno-
sis cannot be straightforward. Our TA model may be useful in providing more confidence
in the diagnosis of a newly discovered bleeding ovarian lesion. Moreover, if this approach
is further validated, it could offer an alternative to more expensive and time-consuming
approaches for characterizing adnexal lesions, such as MRI examinations. However, the
role of MRI in the characterization of endometriomas will not be diminished since some
lesions could remain inapparent to TVUS despite the visualization of the ovaries because
of their location or the presence of periovarian adhesions [55].

Our study had several limitations. Due to the retrospective design and the decision to
include only pathologically proven lesions, the study may possess selection and verification
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bias. In the final step of patient selection, all lesions below 2 cm (n = 33) were excluded.
This threshold was necessary to provide a sufficient area for the software to analyze and
extract the pixel pattern. Therefore, the study population was relatively low. The small
population was also due to the limited time approved for this research by the ethics
committee and the strict exclusion and inclusion criteria. The menstrual phase, CA-125
levels, and menopausal status were not reported since they were inconsistently mentioned
in the retrieved medical data. Few of the selected patients had Doppler images stored
in our database; therefore, only grey scale images were selected. For this reason, other
classic features of endometriomas, such as no internal vascularity and avascular internal
nodules [12], could not be quantified. However, the use of color Doppler imaging does not
improve the diagnostic accuracy of transvaginal ultrasonography alone in the diagnosis
of ovarian endometrioma [56]. On the other hand, it is documented that the presence of
intracystic vascularization poses doubts about malignancy [57]. However, this was not the
case for selected lesions, as the pathological analysis did not raise suspicions of malignancy
in any case. A limitation was that one investigator was aware of the final diagnoses of
the lesions. However, since many patients had several adnexal lesions at the time of the
US evaluation, this strategy was necessary for selecting only documented lesions. This
researcher was not involved in the image segmentation, statistical analysis, or reporting
of the results after this point. Considering these limitations and the pilot nature of this
research, the presented TA model for discriminating endometriomas from HOCs requires
prospective research for both validation and establishment of its clinical utility compared
with the classic imaging methods.

5. Conclusions

We demonstrated a statistically significant difference between the texture features of
endometriomas and hemorrhagic ovarian cysts. Although this approach outperformed the
classic ultrasound evaluation, it remains unclear if textures reflect the lesions’ pathological
characteristics. Further studies are required to identify the exact substrate that determines
textural differentiation.
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