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Abstract: 5-Lipoxygenase (5-LOX) plays a key role in inflammation through the biosynthesis of
leukotrienes and other lipid mediators. Current evidence suggests that dietary (poly)phenols exert a
beneficial impact on human health through anti-inflammatory activities. Their mechanisms of action
have mostly been associated with the modulation of pro-inflammatory cytokines (TNF-α, IL-1β),
prostaglandins (PGE2), and the interaction with NF-κB and cyclooxygenase 2 (COX-2) pathways.
Much less is known about the 5-lipoxygenase (5-LOX) pathway as a target of dietary (poly)phenols.
This systematic review aimed to summarize how dietary (poly)phenols target the 5-LOX pathway
in preclinical and human studies. The number of studies identified is low (5, 24, and 127 human,
animal, and cellular studies, respectively) compared to the thousands of studies focusing on the
COX-2 pathway. Some (poly)phenolics such as caffeic acid, hydroxytyrosol, resveratrol, curcumin,
nordihydroguaiaretic acid (NDGA), and quercetin have been reported to reduce the formation
of 5-LOX eicosanoids in vitro. However, the in vivo evidence is inconclusive because of the low
number of studies and the difficulty of attributing effects to (poly)phenols. Therefore, increasing
the number of studies targeting the 5-LOX pathway would largely expand our knowledge on the
anti-inflammatory mechanisms of (poly)phenols.

Keywords: 5-LOX; polyphenols; inflammation; leukotrienes; eicosanoids; hemiketals; arachidonic acid

1. Introduction
1.1. Lipoxygenases

Lipoxygenases (LOXs) are found widely in nature and are abundant in plants and
animals. Polyunsaturated fatty acids (PUFA) containing cis double bonds are the substrates
of these enzymes. Linoleic and linolenic acids (18-carbon fatty acids) and arachidonic acid
(AA; 20-carbon fatty acid) are the most common substrates for LOXs in plants and animals,
respectively. The nomenclature of these enzymes is based on the specific position of the
carbon oxygenated. Some examples are 9-LOX and 13-LOX, which are important LOXs
described in plants, whereas 5-LOX, 12-LOX, and 15-LOX are present in animals [1,2].

LOXs are involved in the modulation of essential biological functions by synthesizing
specific hydroperoxides, which are further metabolized into signaling molecules/biological
mediators. Among these molecules, divinyl ethers, aldehydes, and jasmonates exert
protective effects in plants from abiotic stress and(or) pathogens [3,4], whereas lipoxins or
leukotrienes modulate the inflammatory response in humans [5]. LOX-catalyzed reactions
are also associated with undesirable effects. Legume spoilage, generation of hay-like
flavor, loss of pigments (e.g., carotenoids and chlorophylls), enzymatic browning and/or
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rancidity are effects linked to LOX oxidation (together with other oxidases) in plants [2]. In
humans, an exacerbated activation of 5-LOX produces elevated levels of leukotrienes (LTs)
promoting inflammation and related diseases (e.g., bronchoconstriction) [6,7].

The inhibition of LOX-mediated oxidation is an interesting strategy to minimize/avoid
the loss of quality of plant-derived foodstuff. Current techniques for inhibition of LOX
oxidation include the assay of phenolic compounds, which exert their protective effects
through their antioxidant activity [2]. The structural similarities and mechanisms of
action between plant and animals LOXs [8] suggest that the phenolic compounds might
interfere with animal LOXs, including 5-LOX. However, the mechanisms by which phenolic
compounds modulate 5-LOX (and the inflammatory response) go beyond their antioxidant
activity, as described in this review.

1.2. 5-Lipoxygenase and Inflammation

Inflammation is a complex physiological process that functions as a network of
interconnected elements regulated by many signaling molecules, including cytokines,
chemokines, and lipid mediators. The disruption of the equilibrium between these
molecules results in chronic inflammation and the development of related diseases [9,10].
AA is a substrate for the biosynthesis of several groups of lipid mediators collectively
termed eicosanoids. The formation of prostaglandins (PGs) and LTs are two major pathways
of eicosanoid biosynthesis catalyzed by cyclooxygenases (COX)-1/COX-2 and 5-lipoxygenase
(5-LOX), respectively. The established role of the latter enzyme is its contribution to (patho)-
physiological inflammation by the formation of LTs [11,12]. The enzyme 5-LOX is also
central for the biosynthesis of the more recently discovered (and less investigated) 5-LOX-
derived metabolites termed hemiketal (HK) eicosanoids [13] that appear to be novel lipid
mediators in inflammation. LTs, at low nanomolar concentrations, can modulate the im-
mune response and promote chronic inflammation, implying a role of these eicosanoids in
a range of inflammatory diseases, including atherosclerosis, inflammatory bowel diseases,
rheumatoid arthritis, and asthma [14,15]. The understanding of the biology of 5-LOX and
its LT products has culminated in the development of anti-LT drugs (receptor antagonist
and enzyme inhibitors) that are used clinically in the treatment of asthma and that may also
provide a clinical benefit in atherosclerosis [11,16,17]. However, although these drugs show
therapeutic effects (e.g., against asthma and atherosclerosis), the side-effects associated
with their use and/or the poor in vivo efficacy highlight the need for better therapeutic
options, including the search for possible alternatives such as natural products that may
include dietary (poly)phenolic compounds.

In this regard, dietary (poly)phenols have been tested in numerous preclinical (animal
and cellular) models and in a limited number of human studies, showing anti-inflammatory
effects by diverse mechanisms of action, including cytokine modulation, inhibition of
inducible nitric oxide synthase (iNOS) and nuclear factor kappa B (NF-κB) activation, as
well as decreasing PG production by down-regulation of COX-2 [18,19]. Much less is
known about the anti-inflammatory effect of (poly)phenols targeting the 5-LOX pathway.
It is noteworthy that the number of studies that have investigated the anti-inflammatory
effects of dietary (poly)phenols on 5-LOX (around 120 hits for a PubMed search) is much
lower compared to COX-2 (around 2500 studies). The preponderance of a focus on the
COX-2 pathway is difficult to rationalize given the importance of targeting both COX-2
and 5-LOX pathways to ameliorate undesirable effects of chronic inflammation.

Accordingly, our main objective was to perform a systematic and critical review of the
current evidence concerning the anti-inflammatory effect of dietary (poly)phenolics via
modulation of the 5-LOX pathway to identify knowledge gaps and future research needs,
allowing an increase in the understanding of the anti-inflammatory effects of (poly)phenols.
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1.3. 5-Lipoxygenase Pathway
1.3.1. Biosynthesis of 5-LOX-Derived Eicosanoids

Early studies on LT biosynthesis date back to the 1970s when Samuelsson and Borgeat
described the formation of 5S-hydroxyeicosatetraenoic acid (5S-HETE) together with
new arachidonate metabolites that were later termed LTA4 and LTB4 in peripheral leuko-
cytes [20,21]. These investigations established a novel pathway of oxidative transformation
of AA catalyzed by 5-LOX.

5-LOX is a key enzyme in the biosynthesis of LTs from AA (Figure 1). The forma-
tion of LTs requires activation of phospholipase A2 (PLA2) by Ca+2-dependent (such as
purinergic stimulation by ATP) or independent (i.e., innate immune “toll-like” recep-
tor (TLR) stimulation by LPS) mechanisms, resulting in the hydrolysis of AA esterified
in the membrane phospholipids [22,23]. In intact cells, 5-LOX is activated in response
to Ca+2 influx and associates with 5-lipoxygenase activating protein (FLAP) to form a
5-LOX/FLAP complex at the nuclear membrane. In this complex, the essential function
of FLAP is to present AA as a substrate to 5-LOX. The 5-LOX catalytic reaction involves
an initial hydrogen abstraction from carbon 7 of AA and the addition of molecular oxy-
gen to produce 5S-hydroperoxyeicosatetraenoic acid (5S-HPETE) followed by a second
hydrogen abstraction from position 10 to form LTA4. LTA4 is unstable and undergoes
enzymatic transformation by LTA4 hydrolase to form LTB4 or conjugation with glutathione
by LTC4 synthase to produce LTC4, which is further metabolized by γ-glutamyltransferase
and dipeptidase yielding LTD4 and LTE4, respectively [24,25]. Alternatively, 5S-HPETE
can undergo reduction to 5S-HETE, which is in turn oxidized by 5-hydroxyeicosanoid
dehydrogenase (5-HEDH), yielding 5-oxo-eicosatetraenoic acid (5-oxo-ETE) [26] (Figure 1).

1.3.2. Transcellular Biosynthesis of Leukotrienes and Lipoxins

LT biosynthesis goes beyond a string of enzymatic transformations in single cells (i.e.,
granulocytes and mast cells). Namely, LT biosynthesis involves transcellular biosynthesis,
a term that describes eicosanoid formation by cell–cell interactions [27]. Early evidence
on transcellular biosynthesis of LTs came from in vitro studies describing LTA4 exchange
between neutrophils and erythrocytes or endothelial cells to produce LTB4 or LTC4, respec-
tively [28,29]. Subsequent in vivo studies provided evidence that transcellular biosynthesis
of LTB4 and LTC4 does indeed occur in animal models [30,31].

The formation of lipoxins (lipoxygenase interaction products; LXs) is another paradig-
matic example of transcellular biosynthesis (Figure 2). Synthesis of LXs requires the combi-
nation of different cell types (i.e., neutrophils, endothelial cells, and(or) platelets) expressing
different lipoxygenases (i.e., 5-LOX, 12-LOX and(or) 15-LOX) [32]. For example, the tan-
dem interaction of 5-LOX- and 12-LOX-expressing cells (i.e., neutrophils and platelets,
respectively) leads to the formation of LXA4 from LTA4 [33,34]. Another transcellular mech-
anism of LX biosynthesis involves the interaction of 15-LOX (monocytes/macrophages and
epithelial cells) and 5-LOX, resulting in the sequential transformation of AA to 15S-HPETE
followed by the conversion by 5-LOX to yield LXA4 and LXB4 [35]. The synthesis of
LXs is not limited to the interaction of only lipoxygenases. Acetylated COX-2 retains
catalytic activity, forming 15R-HETE as the primary product [36,37], which can serve
as a substrate for 5-LOX producing the aspirin-triggered LXs (LXA4 and LXB4 epimers)
known as 15-epi-LXA4 and 15-epi-LXB4 [22,38,39]. LXs and aspirin-triggered LXs have
anti-inflammatory properties promoting the resolution of inflammation [40–42], which
contrasts with the largely pro-inflammatory effects of other products of the 5-LOX pathway.
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1.3.3. The 5-LOX/COX-2 Crossover Biosynthetic Pathway

Besides a role in the biosynthesis of LTs and LXs, 5-LOX is also a key enzyme in the
biosynthesis of a novel type of eicosanoids recently described. In vitro biochemical studies
showed that COX-2 catalyzes the oxidation of the 5-LOX product 5S-HETE (resulting
from the reduction of 5S-HPETE) to form a di-endoperoxide [43] and 5-OH-PGH2 [44],
which are equivalent to the prostaglandin endoperoxide PGH2 of the COX-2 pathway.
The reaction also yields two minor compounds identified as 5,11- and 5,15-di-HETE, the
5-hydroxy-analogs of the known COX by-products, 11- and 15-HETE [45,46]. Additional
studies of the 5-LOX/COX-2 crossover pathways described the in vitro transformation
(enzymatic and non-enzymatic) of the di-endoperoxide to two hemiketals (HKs) named
HKE2 and HKD2 [13] and of 5-OH-PGH2 to 5-OH-PGE2 and 5-OH-PGD2 [44] as shown in
Figure 3.

Biosynthesis of HKE2 and HKD2 was established using an ex vivo model of human
isolated leukocytes, stimulated with calcium ionophore A23187 and LPS for 5-LOX ac-
tivation and COX-2 up-regulation, respectively [13]. Analysis of the time-course of the
formation of HKs in human leukocyte mixtures revealed that their biosynthesis mainly
depends on the availability of the 5S-HETE substrate and, to a lesser extent, on the activity
of COX-2 [47]. HK formation in the mixture of human leukocytes may be another example
of transcellular biosynthesis, given that a single type of leukocyte is unlikely to exhibit a
significant activity of both 5-LOX and COX-2. The dependence of HK biosynthesis on the
activation of leukocyte mixtures by both A23187 (inducing 5-LOX) and LPS (inducing COX-
2) suggests a role for neutrophils and activated monocytes/macrophages, respectively,
although this was not directly established (Figure 4).
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1.3.4. Role of 5-Lipoxygenase-Derived Eicosanoids in Inflammation

Decades of intense investigation have identified LTs as potent inducers of inflamma-
tion through the interaction with distinct G protein-coupled receptors. LTB4 was one of the
first chemotactic molecules identified [48] and is a well-known pro-inflammatory molecule
that exerts its effects through interaction with its high-affinity receptor BLT1 [49,50]. LTB4
also binds (and activates) a second receptor, BLT2, albeit with much less affinity than
that reported for BLT1, and its function via interaction with BLT2 remains elusive [51].
Thus, LTB4 promotes pro-inflammatory responses such as leukocyte chemoattraction,
leukocyte–endothelial cell interaction, and the release of inflammatory mediators at in-
flammation sites [52]. Here, aberrant inflammation results in tissue damage and impairs
adequate function of host innate immune effectors such as neutrophils and activated mono-
cytes/macrophages to recognize, respond, and resolve inflammatory processes properly.
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This dysregulated response is implicated in the pathogenesis of chronic diseases such
as atherosclerosis, cardiovascular, and inflammatory bowel diseases [15,53–55]. On the
other hand, the cysteinyl-LTs (cysLTs), LTC4, LTD4, and LTE4 activate their cognate recep-
tors, CysLT1 and CysLT2, and exert profound effects on airway inflammation leading to
bronchoconstriction, vascular permeability, and neutrophil extravasation [6,15,56–59].
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5-HETE is a particular eicosanoid that shows limited biological activity by itself but
serves as a precursor to form biologically active molecules, including 5-oxo-ETE, HKs, and
5-OH-PGs. 5-oxo-ETE is an oxidized metabolite of 5S-HETE that binds to the 5-oxo-ETE
receptor (OXE), exerting a powerful granulocyte chemoattractant effect [60–62].

The recently described biochemical and chemical synthesis of HKs [63,64] enables
investigating the biological role(s) of these newly discovered eicosanoids. An established
activity of these molecules is the stimulation of endothelial cell migration and tubulo-
genesis [13] and the modulation of platelet aggregation [63], implying a possible role in
atherosclerosis and CVD. However, unlike LTs, it remains unexplored thus far whether
HKE2 and HKD2 exert their effects via interaction with a specific receptor (Figure 5).
Even less is known about the biological activity of 5-OH-PGs that appear not to activate
traditional prostanoid receptors [44].

1.4. Inflammation as a Target of Dietary (Poly)phenols: Role of Their Bioavailability

Evidence from epidemiological and observational studies highlight diet as one of the
cornerstones in preventing inflammatory diseases such as intestinal inflammation and
cardiovascular diseases. Dietary patterns that include a high intake of fruits and vegetables,
such as the Mediterranean diet as a source of high levels of phytochemicals, including
dietary (poly)phenols, have been shown to significantly ameliorate inflammation [65–67].
In this regard, some clinical trials have provided evidence supporting the beneficial role
of dietary (poly)phenols against chronic inflammatory diseases [68,69]. However, while
numerous preclinical studies describe the anti-inflammatory effects of many (poly)phenolic
compounds through the modulation of a plethora of cellular processes related to inflamma-
tion, the evidence of activity in humans remains unclear overall from a nutritional point of
view, partly owing to the limited bioavailability of (poly)phenols [18,70].
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The bioavailability of dietary (poly)phenols is essential for a better understanding of
the anti-inflammatory effects of (poly)phenolic compounds and to design physiologically
relevant studies to corroborate their potential effects. Plant-derived foods (e.g., Citrus fruits,
walnuts, pomegranates, green tea, soy, grapes, and others) contain phenolic compounds
in free form or conjugated with sugar moieties, which are not well absorbed in the small
intestine, thus limiting their distribution in systemic tissues in their native form. Upon
consumption, (poly)phenols reach the gastrointestinal tract in their original molecular form,
mainly as glycosides and complex oligomeric structures, and are hydrolyzed and further
metabolized by either intestinal enzymes or by the gut microbiota forming new metabo-
lites [71,72]. For instance, ellagitannins (ETs) (such as punicalagin from pomegranate) and
their hydrolysis product ellagic acid (EA) undergo gut microbiota metabolism to yield
metabolites collectively termed urolithins (Uro), with the most relevant ones identified as
Uro-C, Uro-A, IsoUro-A, and Uro-B. Similarly, isoflavones (IsoFlv) and their aglycones (e.g.,
daidzin and daidzein, respectively) also undergo microbial metabolism producing equol
and(or) O-desmethyl-angolensin (ODMA) [71,73]. The flavonoid glycoside rutin (quercetin-
3-rutinoside) acts as a precursor (via deglycosylation) of quercetin in the colon [74], whereas
curcumin and flavanones (such as the glycoside hesperidin and its aglycone hesperetin)
can be detected in the colon for hours in their original form [75,76]. Upon absorption, the
(poly)phenolic compounds and the microbial metabolites undergo phase-II metabolism to
form conjugated molecules (glucuronides, sulfates, and methyl esters), which are the main
molecules detected in the bloodstream, intestinal tissues, bile, feces, urine, and different
systemic tissues [77,78]. Animal and human metabolism and bioavailability studies have
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reported that, at the intestinal level, the parental phenolic compounds (which serve as
substrates of the gut microbiota) and their microbial-derived metabolites can achieve con-
centrations from µM to mM. In contrast, the concentrations reached in the bloodstream by
the phase-II metabolites can range from nM to low µM, show anti-inflammatory effects and
persist in the circulation for a few days after intake [79]. Among the phase-II metabolites
detected in vivo, glucuronides are recognized as the major conjugated molecules, including
Uro-A glucuronide (Uro-A glur), Quercetin-3 glur, and curcumin-glur [80–82]. Interestingly,
the increasing knowledge about the metabolism of these compounds indicates that, under
inflammatory conditions, the circulating glucuronides might also play a role as precursors
of their aglycones, including luteolin [83,84], quercetin [85–89], resveratrol [90], Uro-A [91],
and curcumin [82]. Besides, a recent trial showed that the intake of a (poly)phenolic cocktail
by breast cancer patients allowed detecting relevant concentrations of free curcumin, most
likely due to a conjugation-saturation process, in malignant mammary tumors [77].

2. Methods
Search Strategy and Study Selection

This review was conducted and reported following the Preferred Reporting Items for
Systematic Review and Meta-Analyses (PRISMA) [92]. A comprehensive literature search
was performed using PubMed and Scopus databases. The search strategy included the
combination of the following search terms in abstracts and titles and was adapted for each
database: (5-lipoxygenase or 5-LOX) and (phenol* or flavonoid* or polyphenol* or cur-
cumin or resveratrol or EGCG or urolithin or procyanidin or proanthocyanidin or flavan* or
flavone* or catechin or epicatechin or quercetin or curcumin or valerolactone or punicalagin
or ellagic or tannin or lignan or isoflavone or equol or silymarin or thistle). Independent
literature searches and article selection were completed from January to April 2021 by the
authors. The authors also hand-searched the bibliography of identified articles.

Regarding eligibility criteria and study selection, all human, animal, and cellular
model studies that investigated the role of 5-LOX in the anti-inflammatory effect of
(poly)phenolic compounds were included in this review. Otherwise, enzymatic, in silico
and in vitro studies that used physiologically unrealistic conditions, such as high concen-
trations (compared to those reported in vivo), irrelevant metabolic forms of (poly)phenols,
inappropriate cellular models, and those conducted with plant extracts were excluded.

A total of 1250 articles were found after the literature search in the two electronic
databases. Removing duplicates and full screening yielded 872 articles, of which 5 human,
24 animal, and 127 in vitro cell model studies met the inclusion criteria for this systematic
review. A summary of the selection of articles included in this study is outlined in Figure 6.

The selected studies are reviewed in detail in the following sections and are summa-
rized in independent tables (Tables 1 and 2 and Table S1) to show the current evidence of
the role of 5-LOX as a target of the anti-inflammatory effects of (poly)phenols.
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3. Results and Discussion
3.1. Human Studies

Targeting 5-LOX to address inflammation using a nutritional approach has been tested
in only a few human studies. Only five studies determined the level of 5-LOX-derived
metabolites in subjects who consumed plant-derived foodstuff (Table 1). These studies
are characterized by a small number of subjects (n = 10–18) and short-term duration (up
to four weeks). Four investigations using healthy volunteers described the modulation
of 5-LOX expression and its metabolites (LTs and lipoxins) after the consumption of soy
milk, procyanidin-enriched chocolate bars, enriched beverages, or olive oil (Table 1). One
human study evaluated the effect of a diet supplemented with soy isoflavone tablets
in patients with asthma. Lung function parameters remained unaltered, while isolated
eosinophils showed an attenuated capacity to synthesize LTB4 ex vivo after stimulation [93].
The absence of a noticeable effect of (possible) modulation of LTs by polyphenolics in
healthy subjects can be somewhat predicted and is in accord with 5-LOX-deficient animals,
which are largely normal in the absence of an inflammatory stimulus [49]. Therefore, an
insufficient number of human studies, mostly conducted in healthy subjects, makes it
difficult to draw conclusions or even speculate regarding the beneficial effects of dietary
phenolics via modulation of the 5-LOX pathway in humans.
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Table 1. Human studies describing the effects of the consumption of (poly)phenols on 5-LOX and its products.

Population of Study Design of the Study Foodstuff; Intake and Duration Main Outcomes Ref.

Healthy volunteers (n = 10;
20–55 years)

Randomized, crossover,
double-blind,
placebo-controlled.

Low- (0.09 mg/g) and high-procyanidin (4.0 mg/g)
chocolate bars; 37 g (single dose); Duration: blood
collection at 2 and 6 h; wash-out period of 1 week
between treatments.

↑Epicatechin plasma level (especially the high
procyanidins consumer group).
↓CysLTs/PGI2 ratio (relative to the effects observed
in the low procyanidins consumer group).

[94]

Patients suffering
mild/moderate persistent
asthma (n = 13; 18–65 years)

Quasi-experimental
intervention study.
No control group.

1 Soy isoflavones tablets (NOVASOY,
ArcherDanielsMidland, Decatur, IL, USA); two
50 mg tablets (once per day); duration: 4 weeks.

↓LTB4 and FENO in A23187-stimulated eosinophils
(ex vivo); no significant changes in
pre-bronchodilator FEV1 and Juniper Asthma
Control Score.

[95]

Healthy volunteers (n = 18;
22–44 years)

Acute consumption, no
control group.

Raw virgin olive oil; 50 mL (single dose consumed
with 200 g bread);
Duration: blood collection at 1 and 6 h; 1 week
wash-out period before olive oil consumption.

↑Hydroxytyrosol in plasma.
↓ALOX5AP gene expression at 1 h (basal values at
6 h). The downregulation was inversely correlated
with glucose and insulin levels.

[96]

Healthy volunteers of Asian
ethnicities (n = 18)

Randomized, crossover,
double-blind,
placebo-controlled.

2 Soy milk; 2 daily treatments (20 g);
Duration: 3 h after acute consumption followed by
1-week wash-out period and 4-weeks daily exposure.

↓LTB4 and LXA4 level in plasma after 3 h; ↓LTB4 and
F2-isoprostanes in plasma and urine after 4-weeks
daily exposure; ↑LXA4 in plasma after 4-weeks daily
exposure; ↓MPO activity, serum lipid
hydroperoxides and hsCRP in plasma after 4-weeks
daily exposure.

[93]

Senior and young taekwondo
athletes (n = 10; 18–57 years old)

Quasi-experimental
intervention study, no placebo.

Isotonic beverage enriched with almond (0.3%),
sucrose (0.8%), oils (0.2% 3 DHA-S and 0.6% olive
oil), and α-tocopherol acetate (vitamin E); duration:
5 weeks (consumed 5 days a week); blood samples
taken at the beginning and at the final of the (1 h
before and after each stress test).

Beverage supplementation exerted
↓sL-Selectin, sICAM3 and ↑IL-6 in young athletes
(after exercise) as well as ↑TNF-α level in plasma in
the young group (in absence of exercise) and in the
senior group (after exercise).
The beverage consumption exerted no significant
effects on lipoxin, PGE2, PGE1, and NF-κB.
Modulation of TNF-α, 15-LOX2, COX-2, IL-1β and
IL-8 mRNA expression in PBMC; No Effect on TLR4,
NF-κB, 5-LOX, IL-10, IL-15, HSP72 expression
(mRNA) in PBMC.

[97]

Abbreviations: CysLTs, cysteinyl leukotrienes; DHA, docosahexaenoic acid; FENO, fraction of exhaled nitric oxide; FEV1, forced expiratory volume; LTB4, leukotriene B4; LXA4, lipoxin A4; HSP72, heat shock
protein 72; hsCRP, high sensitivity C-reactive protein; MPO, myeloperoxidase; sICAM3, soluble intracellular adhesion molecule 3; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; PBMC,
peripheral blood mononuclear cells; PGI2, prostacyclin; TLR-4, toll-like receptor-4; TNF-α, tumor necrosis factor- α, Composition: 1 Soy isoflavones tables: 8 mg glycitein, 28 mg daidzein, 29 mg genistein. 2 Soy
milk powder with the BASF Vegapure®: stigmasterol, campesterol, and palmitates of β-sitosterol (maximun 23% w/w, 29% w/w, 55% w/w, respectively); 3 DHA-S; nutritional oil obtained from Schizochitrium sp.
(marine alga).
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3.2. Animal Studies

Table 2 summarizes animal studies that considered 5-LOX (together with other mark-
ers) a potential target of plant extracts and phenolic compounds administered through
the diet.

Overall, a common anti-inflammatory effect observed in animals fed diets enriched
with distinct plant extracts was the reduction of the carrageenan-induced paw edema
volume as a prototypical assay to determine anti-inflammatory activity in vivo. Fur-
ther exploration of the underlying molecular mechanisms showed inhibition of 5-LOX
and COX-2 activities, lower LTB4 and PGE2 levels, and modulation of related inflam-
matory markers. Studies using animal models of arthritis described positive effects
by ethanolic extracts of Jasminum laceolarium, Vitex negundo, Dendropanax dentiger, and
Pterospermun heterophyllum [98–101] linked to the modulation of 5-LOX and COX-2 ex-
pression in PBMCs. However, it is unclear what compound(s) were responsible for the
benefits described since crude extracts were used and the composition of the extracts
was unexplored.

The consumption of diets supplemented with phenolic compounds (single or mixtures)
showed beneficial anti-inflammatory effects via modulation of the 5-LOX pathway. Among
the phenolic compounds, curcumin inhibited 5-LOX activity in PMNLs and reduced LTC4
biosynthesis in paw edema (alone or combined with capsaicin) and in animal models
of anaphylaxis [102,103]. Caffeic acid ameliorated brain and liver damage via down-
regulation of 5-LOX mRNA expression and protein level [104,105]. Flavocoxid, a dual
inhibitor of 5-LOX and COX-2, targeted 5-LOX at the intestinal level, reducing LTB4 levels
and MPO activity (exerted by neutrophils) in colitis animal models [106]. As shown in
Table 2, other phenolics such as catechins, quercetin, salidroside, nordihydroguaiaretic acid
(NDGA), sesamol, and sesamin alleviated induced inflammation through similar molecular
mechanisms, including 5-LOX-mediated inflammation.

3.3. In Vitro Studies

In vitro cell models are an essential tool to investigate the underlying molecular
mechanisms by which phenolic compounds exert their effects. Numerous in vitro studies
indicate that a wide range of phenolic compounds might exert anti-inflammatory effects
by targeting the 5-LOX pathway (Table S1). Thus, caffeic acid, hydroxytyrosol, resveratrol,
curcumin, NDGA and quercetin are compounds with the capacity to reduce the formation
of 5-HETE, LTB4 (and itsω-oxidized metabolites), and Cys-LTs [107,122–140]. Although
desirable, these effects should be considered with caution since inhibition of the 5-LOX
pathway could result in higher (pro-inflammatory) COX-2 metabolite levels by shunting
the substrate, AA. This phenomenon has been described in stimulated leukocytes and mast
cells treated with caffeic acid and NDGA, respectively [141,142].
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Table 2. In vivo studies carried out with (poly)phenols-rich extracts or individual compounds in relation to inflammation and 5-LOX modulation.

Animal Model Extract/Compound Assayed Dose/Duration Main Outcomes Ref.

♂Wistar rats;
carrageenin-soaked sponges
implanted subcutaneously.

Quercetin and NDGA. 100 mg/kg; administered (16 and) 1 h prior
sponge implantation.

No effect on leukocyte infiltration, oedema formation or
PGE2 and LTB4 formation in A23187-stimulated
leukocytes ex vivo.

[107]

♂Wistar rats; ethanol-induced
gastric mucosal damage. NDGA.

100 mg/kg (prepared in 0.25%
carboxymethylcellulose); administration of a
single dose for 30 min.

↓Gastric lesions and LTC4 biosynthesis; no changes on
PGs and TxB2 production. [108]

♂Sprague Dawley rats;
cadmium-poisoned rats. Crude catechin powder. 1 0.25 and 0.5 g powder/100 g diet; 4 and

20 weeks.

Assays in platelets (ex vivo): ↓PLA2 and COX-1 activity,
↓TxB2; assays in aortic slices: ↓6-keto-PGF1α and ↓LTB4 in
A23187-stimulated leukocytes; ↓5-LOX activity (enzyme
fraction level).

[109,110]

♂Wistar rats;
carrageenan-induced
paw inflammation.

Curcumin, capsaicin, and a mix
of curcumin/capsaicin.

Curcumin: 0.2%, capsaicin: 0.015%,
curcumin/capsaicin: 0.2/0.015%; 10 weeks.

↓Volume of paw edema; ↓5-LOX activity in the enzyme
obtained from PMNL isolated from blood of the rats;
↓histamine release.

[103]

♂KM strain mice;
aluminum-induced
brain damage.

Caffeic acid. 10 or 30 mg/kg; days.

↓5-LOX mRNA expression in the cortical brain (at 10 and
30 mg/kg) and protein expression in hippocampi (only at
30 mg/kg); improvement of memory and learning
functions together with ↓MDA, ↓ChAT, and ↓amyloid β
and amyloid precursor protein.

[105]

♂Wistar rats;
carrageenan-induced
paw edema.

Bacopa monniera extracts. 20–200 mg/kg; 3 and 5 h.

↓Volume of paw edema; ↓LPS-induced TNF-α release in
whole blood (ex vivo); ↓5-LOX and 15-LOX (IC50 =
100 µg/mL) as well as COX-1 (IC50 = 15.66 µg/mL) and
COX-2 (IC50 = 1.22 µg) in A23187-induced rat
mononuclear cells (ex vivo).

[111]

♀New Zealand white rabbits;
hypercholesterolemic diet. Quercetin. 25 mg/kg; 90 days.

↓5-LOX, 12-LOX, COX, activity in rabbit mononuclear
cells; ↓CRP in plasma, ↓MPO activity in the aorta, and
improvement of lipid profile and histopathological
aortic features.

[112]
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Table 2. Cont.

Animal Model Extract/Compound Assayed Dose/Duration Main Outcomes Ref.

♂Wistar albino rats;
carrageenan-induced
paw edema.

Atropa acuminata
ethanolic extract. 62.5–500 mg/kg b.w.; up to 4 h.

↓LTB4 and PGE2 in carrageenan-treated paws; ↓leukocyte
and neutrophil recruitment (no effect on mononuclear
cells); ↓vascular permeability; ↓paw edema and exudate
volume; modulation of the antioxidant status.

[113]

ICR mice; IgE/Ag-mediated
passive systemic anaphylaxis. Curcumin. 20 and 50 mg/kg; 1 h. ↓LTC4, PGD2 and histamine. [102]

♂Wistar rats; CFA-induced
rheumatoid arthritis. Xanthium strumarium extract.

75 and 300 mg/kg; administered twice a day
after the adjuvant arthritis induction for
28 days.

↓5-LOX and COX-2 expression in PBMCs; ↓paw swelling
and arthritic score; ↓TNF-α and IL-1β together with ↑IL-10
in serum; improvement of histopathological features.

[114]

♂Wistar albino rats;
CFA-induced arthritis. Vitex negundo seed extract. 85 and 340 mg/kg/day; 28 days.

↓Paw swelling (from day 14th) and clinical arthritis score;
attenuation of CFA-induced weight loss and index of
spleen; ↓synovial lining hyperplasia and massive
infiltration of mononuclear cells; ↓TNF-α, IL-1β (at both
concentrations) and IL-6 (at 340 mg/kg); ↑IL-10; ↓COX-2
and 5-LOX expression in isolated PBMC.

[101]

♂Sprague Dawley albino rats;
Isoproterenol-induced
myocardial infarction.

Ocimum sanctum
methanolic extract. 50–250 mg/kg b.w.; 30 days.

↓TBARS and NF-κB expression in the heart; ↓FLAP and
BLT1 (mRNA) expression in the heart; ↓PLA, PLC and
PLD activity, whereas ↑SOD activity and phospholipids in
the heart; ↓CK-MB, LDH, hsCRP, LTB4, TxB2 (in serum);
↓COX-2 and 5-LOX activity in monocytes; attenuation of
the effects of isoproterenol on cardiomyocytes.

[115]

♂BALB/c mice;
ethanol-induced gastric ulcer. Salidroside. 20 and 40 mg/kg; 6 days.

↓5-LOX and COX-2 protein expression; ↓LTB4 level;
modulation of the MAPK and NF-κB pathways; ↓IL-6,
IL-1β and TNF-α; improvement of gastric
histopathological features.

[116]

♂Wistar rats;
carrageenan-induced rat
paw edema.

Jasminum laceolarium. 100–400 mg/kg; 7 days. ↓5-LOX (only at 400 mg/kg) and COX-2 expression in
serum; ↓paw edema. [98]
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Table 2. Cont.

Animal Model Extract/Compound Assayed Dose/Duration Main Outcomes Ref.

♀Sprague Dawley albino rats;
HCD-fed atherosclerotic rats. Quercetin. 25 mg/kg b.w.; 60 days.

↓5-LOX and COX activity as well as IL-6 expression
(mRNA) in mononuclear cells; ↓NOS activity and CRP in
serum; ↓MDA in serum and aorta.

[117]

♂Sprague Dawley rats; DNBS-
and DSS-induced colitis. Flavocoxid. 20 mg/kg/day (twice a day); 4–5 days.

↓LTB4, PGE2, 6-keto PGF1α, TxB2, and TNF-α serum level;
↓MPO activity and MDA level in colon tissue;
↓histological damage and apoptosis; ↓CD3 in colon tissue.

[106]

♂Wistar rats;
LPS-induced inflammation.

Sesamol, sesamin, and a mix of
sesamol/sesamin. 10 mg/kg b.w.; 15 days.

↓LTB4, LTC4, MCP-1, IL-1β, CRP, and TNF-α serum level;
↓5-LOX, cPLA2, and BLT-1 protein expression; ↓LTC4
synthase protein expression (only sesamol and sesamin);
↓MDA (liver tissue and serum); ↓NO serum level (only
sesamol); modulation of the antioxidant enzymes.

[118]

♂Wistar rats and New Zealand
rabbits; MSU
crystal-induced inflammation.

Salidroside. 40–80 mg/kg for rats and 20–40 mg/kg for
rabbits; 6 days.

↓LTB4, PGE2, and 20-HETE level in synovial fluid
macrophages; ↓COX-2, 5-LOX, and CYP4A1 mRNA
expression (only at 80 mg/kg) in synovial fluid
macrophages; ↓number of leukocytes and neutrophils;
binding to the catalytic side of 5-LOX, COX-2, and CYP4A1
(in silico); ↑macrophages polarization; improvement of
ankle swelling and histopathological features.

[119]

♂Wistar rats and Swiss albino
mice; carrageenan-inflammation
model and acetic
acid-induced writhes.

Salix tetrasperma
methanolic extract. 200–600 mg/kg; single dose.

↓COX-2, 5-LOX, PGE2, TNF-α, iNOS level, and NF-κB
activation in sciatic nerve and brain stem; ↓oxidative
stress; ↓p53 positive cells in brain stem tissue; ↓paw
edema in rats and leukocyte migration in mice; ↓acetic
acid-induced writhes; ↑response latency to heat
hyperalgesic stimulus; improvement of histopathological
features; antipyretic effect.

[120]

♂Sprague Dawley rats;
aluminum gluconate-induced
liver injury.

Caffeic acid. 30 mg/kg.

↓5-LOX protein expression in the liver (no effect on
COX-2); ↓TNF-α, IL-1β, IL-6, MDA and ↑SOD in the liver;
improvement of histopathological features; modulation of
the alteration of hepatic enzymes;

[104]
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Table 2. Cont.

Animal Model Extract/Compound Assayed Dose/Duration Main Outcomes Ref.

♂Sprague Dawley rats;
adjuvant-induced arthritis.

Pterospermun heterophyllum
ethanolic extract. 160–640 mg/kg/day; 22 days.

↓5-LOX, COX-2, and MMP-2 expression in rat-isolated
PBMCs; ↓TNF-α, IL-1β, IL-6, IL-17, RF, and CRP serum
level; ↑IL-4 and IL-10 serum level; improvement of
histopathological features of the knee joint and
arthritis markers.

[100]

♂Sprague Dawley rats;
adjuvant-induced arthritis.

Dendropanax dentiger
ethanolic extract. 127.5–510 mg/kg/day; 22 days.

↓5-LOX, COX-2, and MMP-2 expression in rat-isolated
PBMCs; ↓TNF-α, IL-1β, IL-6, IL-17, RF, and CRP serum
level; ↑IL-4 and IL-10 serum level; improvement of
histopathological features of the knee joint and
arthritis markers.

[99]

♂Sprague Dawley rats;
pharmaco-kinetic study.
♀Wistar rats; MIA-induced
knee OA.

A curcumin formulation
(NGUC) or turmeric extract.

NGUC or 95% turmeric extract as 100% (w/v)
aqueous solution to deliver 200 mg/kg b.w.
equivalent of curcuminoids.

Enhanced total curcuminoids bioavailability in
NGUC-treated animals; reduced swelling; improvement of
joint architecture; ↓IL-6, IL-1β, TNF-α, CRP, COMP,
NF-κB, COX-2, MMP-3, 5-LOX, COX-2 in synovial fluid;
↓MDA, SOD, CAT, and GPx level.

[121]

Abbreviations: AA, arachidonic acid; BLT-1, leukotriene B4 receptor-1; CAT, catalase; ChAT, choline acetyltransferase; CFA, complete Freund’s adjuvant; CK-MB, creatinine kinase-MB; COMP, cartilage
oligomeric matrix protein; cPLA2, cytoplasmic phospholipase A2, CRP, C-reactive protein; DNBS, dinitrobenzenesulfonic acid; DSS, dextran sulphate sodium; EpiCat, epicatechin; EpiGal, epigallocatechin;
FLAP, 5-lipoxygenase-activating protein; GPx, glutathione peroxidase; HCD, hypercholesterolemic diet; HETE, hydroxyeicosatetraenoic; hsCRP, high sensitive C-reactive protein; iNOS, inducible nitric oxide
synthase; LDH, lactate dehydrogenase; LPS, lipopolysaccharide; MAPK, mitogen activated protein kinase; MCP-1, monocyte chemoattractant protein-1; MDA, malondialdehyde; MIA, monosodium iodoacetate;
MMP, matrix metalloproteinase; MPO, myeloperoxidase; MSU, monosodium urate; NDGA, nordihydroguiaretic acid; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; NGUC, next
generation ultrasol curcumin; NO, nitric oxide; OA, osteoarthritis; PBMCs, peripheral blood mononuclear cells; PLA, phospholipase A; PLA2, phospholipase-A2; PLC, phospholipase C; PLD, phospholipase D;
RF, rheumatoid factor; SOD, superoxide dismutase; STZ, streptozocin; TBARS, thiobarbituric acid reactive substance; TNF-α, tumor necrosis factor-α; TxB2, thromboxane B2. Composition: 1 Crude catechin
powder from green tea: 4.56% EpiGal, 4.52% EpiCat, 38.56% EpiGal gallate, 20.76% EpiCat gallate.
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Blood- and peritoneal-isolated leukocytes are a widely employed cellular model,
allowing to determine whether the phenolic compounds exert dual inhibition on 5-LOX
and COX-2. In general, some phenolic compounds such as curcumin, resveratrol, and
caffeic acid show the capacity to attenuate the biosynthesis of 5-LOX (5-HETE, LTB4, Cys-
LTs) and COX-2 (PGE2) metabolites in stimulated leukocytes (Table S1). As shown in
Table S1, different molecular mechanisms account for how phenolic compounds modulate
the biosynthesis of eicosanoids. One of these mechanisms involves the interaction with
the upstream regulator cPLA2. This interaction can include lower levels of cPLA2 (i.e.,
through down-regulation of mRNA expression), reduced activation (phosphorylation)
or translocation, and inhibition of its enzymatic activity. Further mechanisms of action
are related to the inhibition of 5-LOX translocation to the nuclear membrane where it
becomes active, down-regulation of 5-LOX (and COX-2) mRNA and protein expression, as
well as inhibition of 5-LOX (and COX-2) enzymatic activity (Table S1). Despite valuable
results gained from these studies, other aspects of how phenolic compounds modulate the
5-LOX pathway are still unclear. For example, information on the interaction of phenolic
compounds with (other) essential components of the 5-LOX pathway is scarce. None of the
studies included in Table S1 tested whether the phenolic compounds target LT receptors
(i.e., BLT1 and BLT2), FLAP, and/or LTC4 hydrolase. Regarding LTA4 hydrolase, only one
study showed that isoflavones failed to inhibit (or promote) its enzymatic activity [143].
Thus, the characterization of the interaction of phenolic compounds with these elements
will be essential in future studies.

Studies using single-cell lines provide essential information about how the phenolic
compounds modulate 5-LOX (and COX-2) activity in different leukocytes. Curcumin
reduced the formation of LTB4 and PGE2 in neutrophils [144] and macrophages [145].
Curcumin also targeted LTC4 biosynthesis in mast cells by blocking 5-LOX translocation
and cPLA2 activation [102]. Quercetin reduced biosynthesis of LTB4 in RBL-1 basophils,
neutrophils, and murine PB-3c mast cells [146–148], while genistein acted on eosinophils
decreasing LTC4 synthesis via inhibition of 5-LOX translocation [95]. Likewise, the effect
of silibinin on macrophages (Kupffer cells) was associated with lower LTB4 levels while
sparing the COX-2 pathway [149,150].

A common facet to the majority of in vitro studies (Table S1) is the treatment of leuko-
cytes with glycosides and/or aglycones using conceivable concentrations at the intestinal
level. Such conditions indicate that the effects observed on eicosanoid biosynthesis might
be relevant in the context of intestinal inflammation [151]. These studies focused on de-
scribing the effects on leukocytes, thus overlooking the crucial role of other cells (i.e.,
intestinal cells). To date, a limited number of studies have investigated the interaction
between dietary phenolics and the 5-LOX and COX-2 pathways in intestinal cells. In this
regard, NDGA and geraniin (at 10 µM) decreased the synthesis of 5-HETE in stimulated
AGS cells [152], whereas methoxy flavonoids isolated from Chiliadenus montanus failed
to modulate the expression of 5-LOX in Caco-2 cells [153]. The effects of curcumin and
tetrahydrocurcumin (THC) on HT-29 colon cancer cells were related to lower AA levels
associated with cPLA2 inhibition; yet, how this affected the 5-LOX (or COX-2) pathway
was not determined [145].

Leukocytes are abundant in the bloodstream, making them an excellent model to
test in vitro the anti-inflammatory effects of phase-II metabolites. However, according
to our analysis, only two studies have approached the effect of conjugated metabo-
lites on 5-LOX and COX-2 using leukocytes (Table S1). Among the conjugated metabo-
lites tested, 3′-O-methyl-quercetin reduced the biosynthesis of LTB4 (at 2 µM) and PGE2
(IC50 = 2 µM) [154], whereas the phase II conjugated urolithins (ellagic acid-derived metabo-
lites) were inactive against 5-LOX, COX-2, and the 5-LOX/COX-2 crossover pathways [155].
Under the same conditions, their free forms (quercetin, Uro-A, IsoUro-A, and Uro-C) ef-
fectively decreased 5-HETE, LTB4, PGE2, HKE2, and HKD2 levels in a dose-dependent
manner. Although the free forms are hardly found in the bloodstream, their presence in
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inflammatory environments is conceivable via deconjugation, as described for luteolin,
quercetin, resveratrol, Uro-A, and curcumin [77,82–91].

To date, no studies describe the in vitro effect of phenolic compounds or derived
metabolites on lipoxin biosynthesis. Only two studies have investigated the effect of
phenolics on the 5-LOX/COX-2 crossover pathway and found that curcumin and urolithins
(Uro-A, IsoUro-A, and Uro-C) showed the capacity to inhibit HKE2 and HKD2 formation
in a mixture of stimulated leukocytes [47,155]. This limited evidence underscores the need
for future studies on the biosynthesis of complex 5-LOX dependent eicosanoids using
isolated cell preparation or co-incubations (i.e., platelets with neutrophils) in the presence
of phenolic compounds.

4. Conclusions

This systematic review focuses on the effect of phenolic compounds on the 5-LOX
pathway. The current evidence linking modulation of the 5-LOX pathway and the anti-
inflammatory effects of phenolic compounds is still weak. One of the main reasons comes
from the low number of human studies and clinical trials, which are essential to test the
preventive and/or therapeutic effects of phenolic compounds. Thus, well-designed and
robust clinical trials in patients suffering from 5-LOX-related inflammatory diseases (e.g.,
asthma) would be desirable. The number of animal studies is also small and more research
is needed using equivalent conditions to those reported in humans, including adequate
exposure times and doses of phenolic-rich foodstuff.

As expected, a higher number of in vitro studies describe the anti-inflammatory ef-
fects of phenolic compounds targeting the 5-LOX pathway. The in vitro studies focus on
using mixtures of leukocytes or individual cells such as neutrophils, eosinophils, basophils,
and/or mast cells. New studies should consider enlarging the range of 5-LOX-expressing
cells such as dendritic cells and should consider the interaction with other cell lines such as
endothelial (i.e., atherosclerosis) or intestinal cells and microbiota (i.e., intestinal inflamma-
tion). The specific role of immune-related receptors regarding the modulation of the 5-LOX
pathway by phenolic compounds is an additional mechanism (not considered hitherto)
that deserves attention, such as the direct effect of phenolic compounds on LT receptors or
via modulation of TLR-4, which regulates CysLT1 expression in dendritic cells [156]. These
studies should avoid the use of unreasonable concentrations and metabolic forms of pheno-
lic compounds (considering metabolism and bioavailability) since this inadequate design
limits the physiological significance (from an in vivo point of view) of these investigations.
Hence, the design of future in vitro studies should follow the roadmap set elsewhere [157]
to provide physiologically relevant results.

Another key point to contemplate is 5-LOX/COX-2 dual inhibition. Targeting the
5-LOX pathway might lead to undesirable side effects due to AA shunting towards pro-
inflammatory COX-2-derived metabolites. Therefore, identifying and studying the biolog-
ical activity of phenolic compounds that act as dual inhibitors is critical to avoid single
inhibition and resulting side effects. Otherwise, a possible drawback of this approach is the
reduced biosynthesis of anti-inflammatory eicosanoids due to blocking cyclooxygenases
and lipoxygenases (including 5-LOX). Whether the phenolic compounds can exert anti-
inflammatory effects by increasing the synthesis of lipoxins is a question not addressed
by the available preclinical studies. The expanded analysis of pro- and anti-inflammatory
eicosanoids in future studies will improve the understanding of how phenolic compounds
modulate the inflammatory response through the 5-LOX pathway.
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