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Thrombomodulin (TM), which is predominantly expressed on the endothelium, plays an

important role in maintaining vascular homeostasis by regulating the coagulation system.

Intravascular injury and inflammation are complicated physiological processes that are

induced by injured endothelium-mediated pro-coagulant signaling, necrotic endothelial-

and blood cell-derived damage-associated molecular patterns (DAMPs), and DAMP-

mediated inflammation. During the hypercoagulable state after endothelial injury, TM

is released into the intravascular space by proteolytic cleavage of the endothelium

component. Recombinant TM (rTM) is clinically applied to patients with disseminated

intravascular coagulation, resulting in protection from tissue injury. Recent studies

have revealed that rTM functions as an inflammatory regulator beyond hemostasis

through various molecular mechanisms. More specifically, rTM neutralizes DAMPs,

including histones and high mobility group box 1 (HMGB1), suppresses excessive

activation of the complement system, physiologically protects the endothelium, and

influences both innate and acquired immunity. Neutrophil extracellular traps (NETs)

promote immunothrombosis by orchestrating platelets to enclose infectious invaders

as part of the innate immune system, but excessive immunothrombosis can cause

intravascular injury. However, rTM can directly and indirectly regulate NET formation.

Furthermore, rTM interacts with mediators of acquired immunity to resolve vascular

inflammation. So far, rTM has shown good efficacy in suppressing inflammation in

various experimental models, including thrombotic microangiopathy, sterile inflammatory

disorders, autoimmune diseases, and sepsis. Thus, rTM has the potential to become a

novel tool to regulate intravascular injury via pleiotropic effects.

Keywords: thrombomodulin, damage-associated molecular patterns, disseminated Intravascular coagulation,

neutrophil extracellular traps, high mobility group box 1, immunothrombosis

INTRODUCTION

Endothelial cells coordinate vascular homeostasis, including vessel permeability, provision of
a lining surface, and coagulation system regulation. To prevent unnecessary clotting, the
endothelium expresses anti-coagulant factors, such as tissue factor pathway inhibitor and
thrombomodulin (TM), and regulators of platelet activation, such as nitric oxide, prostacyclin,
and ADPase, at steady state. When traumatic vascular injury occurs, platelet aggregation and
the activated blood coagulation system invoke a thrombus to prevent blood loss. Moreover,
damaged endothelium reduces the expression of anti-coagulant and platelet molecules, and releases
pro-coagulant factors via the activation of nuclear factor-kappa B (NF-κB) signaling, consequently
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enhancing thrombus formation. Meanwhile, during non-
traumatic intravascular injury, including disseminated
intravascular coagulation (DIC), atherosclerosis, and thrombotic
microangiopathy (1), the endothelium collaborates with the
blood coagulation system and platelets to cope with the
traumatic situation, possibly forming an unwanted thrombus.
In addition, cross-talk between the activated coagulation system
and inflammatory signaling leads to mutual amplification (2).
Accordingly, damage-associated molecular patterns (DAMPs)
released from injured tissues and blood cells activate the
innate immune system and elicit vascular inflammation (3, 4).
DAMPs directly activate platelets and indirectly induce platelet
aggregation via interaction with neutrophils, leading to an
enhancement of the pre-existing pro-coagulant state. This
series of events of coagulation and blood cell activation,
collectively referred to as immunothrombosis, is supposed to
physiologically enclose and effectively kill invading microbes
as part of an innate immune response (5). The structural
basis of the immunothrombotic clot is formed by fibrin,
consisting of coagulant factors, platelets, and leukocytes. The
immunothrombus can also be involved in the development
of non-infectious diseases, including ischemia-reperfusion,
drug-induced tissue damage, autoimmune diseases, and cancer
as an executor of intravascular injury. In the pro-coagulant
state, TM derived from altered endothelium serves to maintain
vascular homeostasis by participating in the coagulation system.
Furthermore, TM possesses multiple regulatory properties
against inflammation beyond its anti-coagulant effect, which
could possibly contribute to the termination of intravascular
injury (6, 7).

ANTI-COAGULANT EFFECTS OF TM IN
VASCULAR BIOLOGY

TM is a transmembrane glycoprotein encoded by theTHBD gene,
and it is expressed on endothelium, immune cells (including
neutrophils, macrophages, monocytes, and dendritic cells),
vascular smooth muscle cells, keratinocytes, and lung alveolar
epithelial cells (8–10). The structure of TM comprises five
domains; each domain possesses a different function. Surface
domains are a lectin-like domain (TMD1), a domain with
six epidermal growth factor-like structures (TMD2), and a
serine- and threonine-rich domain (TMD3). Certain stimuli,

Abbreviations: AE-IPF, Acute exacerbation of idiopathic pulmonary fibrosis;

ANCA, Anti-neutrophil cytoplasmic antibody; APC, Activated protein C;

DAMPs, Damage-associated molecular patterns; DIC, Disseminated intravascular

coagulation; EGPA, Eosinophilic granulomatosis with polyangiitis; GPA,

Granulomatosis with polyangiitis; GVHD, Graft-vs.-host disease; HMGB1,

High mobility group box 1; HUS, Hemolytic uremic syndrome; IRI, Ischemia-

reperfusion injury; LPS, Lipopolysaccharide; Mac-1, Macrophage-1 antigen;

MPA, Microscopic polyangiitis; MPO, Myeloperoxidase; NETs, Neutrophil

extracellular traps; NF-κB, Nuclear factor-kappa B; RAGE, Receptor for advanced

glycation endproducts; rTM, Recombinant thrombomodulin; STEC, Shiga

toxin-producing Escherichia coli; sTM, Serum thrombomodulin; TAFI, Thrombin

activatable fibrinolysis inhibitor; TA-TMA, transplant-associated thrombotic

microangiopathy; TLR, Toll-like receptor; TM, Thrombomodulin; TMA,

Thrombotic microangiopathy; TTP, Thrombotic thrombocytopenic purpura;

VEGF, Vascular endothelial growth factor.

including tissue factor, orchestrate the coagulation cascade and
produce thrombin as a coagulant executor. In response to
thrombin production, thrombomodulin on the endothelium
acts as a thrombin receptor to reduce the ability of thrombin
that converts fibrinogen to fibrin and activates platelet. The
thrombin-thrombomodulin complexes activate protein C and
the activated protein C (APC) inactivates Va and VIIIa, resulting
in the suppression of thrombin generation (11, 12). As such, TM
naturally serves to terminate excessive intravascular coagulation.

ANTI-INFLAMMATORY EFFECTS OF TM

The surface TMD1 domain has no anti-coagulant effects, but
has various anti-inflammatory properties. TM directly acts as
a natural regulator of inflammation via its lectin-like domain
TMD1 by (1) inhibiting leukocyte-mediated intravascular injury,
(2) neutralizing DAMPs, including high mobility group box 1
(HMGB1) protein and histones, (3) binding to bacteria-derived
components, and (4) suppressing the complement system. (1)
Transgenic mice with a genetically deleted TMD1 domain
showed increased mortality in endotoxin-induced sepsis,
together with the finding that adhesion molecule expression
and neutrophil infiltration were increased in TMD1-deficient
endothelium (13). Ex vivo studies have shown that additional
TMD1 binds to endothelial antigen during inflammation,
competitively inhibiting leukocyte migration and adhesion
(14). Furthermore, we (15) showed that recombinant TM
(rTM), containing TMD123, directly binds to neutrophils via
the macrophage-1 antigen (Mac-1) receptor, and thus inhibits
neutrophil activation. In addition, rTM affects lymphocytes
to inhibit pro-inflammatory cytokine/chemokine production
during an inflammatory response. (2) Necrotic parenchymal
cells and neutrophil extracellular traps (NETs) release HMGB1
and histones into the extracellular space. The former is a
nuclear chromatin-binding protein that transduces intracellular
pro-inflammatory signals via toll-like receptor 4 (TLR4) and
the receptor for advanced glycation endproducts (RAGE)
(16). The latter exerts distinct biological effects, including
direct cell toxicity, exacerbation of immune responses via
TLR stimulation, and the activation of platelets, consequently
exacerbating DIC, thrombosis, post-ischemic organ damage,
and sepsis (17, 18). TM potentially neutralizes these DAMPs,
attenuating intravascular injury and organ damage (19, 20).
(3) The TMD1 domain potentially binds to the Lewis Y
antigen of lipopolysaccharide (LPS) that has pro-inflammatory
properties, as it can interact with CD14 and TLRs, thus
inhibiting excessive inflammatory responses (21). (4) TM
and its TMD1 domain regulate the complement system
by eliciting complement-inhibitory signals (22). Abnormal
complement activation leads to endothelial dysfunction,
including thrombotic microangiopathy. TM may negatively
regulate the alternative complement pathway by enhancing
complement factor I-mediated inactivation of C3b. In addition,
TM interferes with thrombin-mediated complement factor C5
activation, which involves the production of anaphylatoxin,
and the formation of a membrane attack complex. TMD2
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and TMD3 also exert indirect anti-inflammatory effects
via APC production, which activates protease-activated
receptor-1 on the endothelium to induce cell protection by
inhibiting NF-κB signaling (23). Furthermore, TM-thrombin
binding enhances the activation of thrombin activation of
fibrinolysis inhibitor (TAFI) that degrades bradykinin and
complement factors (24), contributing to the regulation of
inflammation. Collectively, TM regulates inflammation, the
complement system, and endothelial protection in addition
to anti-coagulation during intravascular injury, consequently
preserving intravascular homeostasis.

NETS AND TM

Various stimuli induce NETs through their own NETs-signaling
mechanisms. However, regardless of the type of trigger,
the NETs resulting from it could become major sources
of DAMPs, and act as initiators of immunothrombosis in
the face of intravascular injury (25, 26). Thus, NETs have
the potential to become a therapeutic target for treatment
of immunothrombosis-related diseases. Previously, rTM
has been reported to downregulate several types of NET
formation. Shimomura et al. showed that rTM inhibited NET
formation following treatment with LPS-primed platelets
by suppressing TLR4 signaling (27, 28). Studies by Shrestha
et al. (29) indicated that rTM treatment ameliorated histone-
induced sepsis by neutralizing extracellular histones and
suppressing the formation of NETs (20). These previous reports
implied indirect effects against neutrophils. Recently, we (15)
could show the direct effect of rTM binding to neutrophils,
which inhibited auto-antibody-mediated NET formation.
In anti-neutrophil cytoplasmic antibody (ANCA)-associated
vasculitis, pathogenic myeloperoxidase (MPO)-ANCA binds
to MPO expressed on tumor necrosis factor α-primed
neutrophils, and the Fc region of ANCA crosslinks with
the Fcγ receptor coupled with Mac-1 on neutrophils to activate
spleen tyrosine kinase signaling and ROS production, which
results in peptidylarginine deiminase 4 activation and NET
formation (30–32). In this scenario, rTM binds to Mac-1 to
competitively interfere with ANCA binding on neutrophils,
and inhibits downstream signaling, which suppresses ANCA-
induced NET formation. Thus, TM potentially has direct
and indirect inhibitory effects on NET formation, which
contributes to the resolution of intravascular inflammation and
immunothrombosis (Figure 1A).

EXPERIMENTAL EVIDENCE OF
RTM-MEDIATED RESOLUTION OF
INFLAMMATORY INTRAVASCULAR
INJURY [SEPSIS, ISCHEMIC
REPERFUSION INJURY, THROMBOTIC
MICROANGIOPATHY (TMA), AND
MACROANGIOPATHY]

Of note, rTM containing all the extracellular domains
acts not only as an anti-coagulant, but also displays

anti-inflammatory properties, hence contributing
to the resolution of various diseases (Figure 1B
and Table 1A).

Sepsis
Sepsis involves multi-organ dysfunction with systemic
inflammatory processes, immune dysregulation, coagulopathy,
and other physiological responses. Among these processes, NETs
and necrotic cell-derived DAMPs directly injure the endothelium
and contribute to the development of immunothrombosis
through the activation of platelets, coagulation systems,
and recruitment of neutrophils (17, 25, 89, 90). In a mouse
histone-induced septic model, pretreatment with rTM
reduced mortality rates by neutralizing histones (20). In
a rat sepsis/peritonitis model (33) and a murine LPS-
induced septic model (34), rTM controlled sepsis-related
immunothrombosis by limiting abnormal hemostasis and
NET formation.

Ischemia-Reperfusion Injury (IRI)
IRI occurs in response to the physiological processes that
accompany tissue ischemia with inadequate oxygen supply.
This is followed by reperfusion that drives regulated necrosis
and subsequent inflammatory responses, leading not only to
local organ damage, but also to remote organ injury in the
form of necroinflammation (91, 92). In the animal brain,
heart, lung, and liver, rTM (the entire ectodomain with lectin-
like domain TMD1) ameliorated IRI tissue damage via anti-
inflammatory effects, including neutralization of HMGB1 and
histones, subsequently triggering the TLR4 signaling pathway
(13, 38–40, 93). In a mouse model of renal IRI, ischemia-
initiated tubular epithelial cell necrosis released extracellular
histones and induced NET formation, which further contributed
to remote lung injury (94). Interestingly, rTM (35) and a
histone-neutralizing antibody (94) ameliorated remote organ
damage, but did not have sufficient effects on local kidney
injury. Conversely, inhibition of regulated necrosis, including
necroptosis, mitochondrial necrosis, and ferroptosis, rescued
local kidney injury at primary lesions, but had less effect
on remote organ injury compared with histone neutralization
(94). The discrepancy between local and remote injury was
compatible with the phenomenon observed in an rTM-
treated intestinal IRI mouse model, in which rTM improved
remote liver injury, but not local intestinal damage (37).
These findings imply that primary necrotic organ injury
might develop based on the intracellular signaling cascades
arising in response to IRI, but remote organ injury might
mainly be caused by DAMPs and inflammatory responses,
which could provide a better understanding of DAMP-related
IRI pathogenicity.

TMA
TMA is characterized by thrombocytopenia, microangiopathic
hemolytic anemia, and organ injury. The underlying
pathogenesis of TMA is understood to be endothelial
dysfunction, which is caused by bacterial toxins, deficiency
or dysfunction of the complement system, deficiency or
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FIGURE 1 | (A) The pleiotropic effects of rTM in autoimmune vasculitis. Pathogenic anti-neutrophil cytoplasmic antibody (ANCA) produced by lymphocytes binds to

neutrophil antigen, inducing neutrophil extracellular traps (NETs). The NETs components cause vasculitis and could become auto-antigens, resulting in the further

(Continued)
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FIGURE 1 | ANCA production. rTM suppresses the pro-inflammatory lymphocytes and inhibits the ANCA binding to Mac-1 on neutrophil, resulting in the suppression

of NETs, which leads to the reduction of auto-antigens and ANCA production. Furthermore, rTM neutralizes cytotoxic extracellular histones in NETs and directly

protects endothelium. Collectively, rTM could regulate the multiple points in pathogenesis of autoimmune vasculitis. (B) Thrombomodulin terminates auto-amplification

of intravascular injury. (I) Intravascular injury in sepsis, ischemia-reperfusion injury, thrombotic microangiopathy, and vasculitis develops due to fibrinolysis, necrosis,

coagulation/endothelial dysfunction, and neutrophil activation, respectively, as an initial event. In the next step, these events appear jointly with endothelial dysfunction,

coagulation, neutrophil activation, damage-associated molecular patterns, complement activation, and acquired immunity to exacerbate the disease. In particular,

immunity and coagulant systems collaborate to generate robust immune-thrombi, which accelerate intravascular injury, leading to an amplification loop.

(II) Thrombomodulin is released into the intravascular space after endothelial injury and serves to counteract excessive coagulation and inflammation via its

pleiotropic effects.

TABLE 1A | Experimental evidence on recombinant thrombomodulin (rTM, including TMD1, TMD23, and TMD123 domains) in animal disease models.

Animal model Outcomes Mechanisms References

Histone-induced thrombosis (mouse) Improved mortality and thrombosis Neutralization of histones (20)

Cecal ligation and puncture-induced

peritonitis (rat)

Improved coagulopathy Regulation of NETs (33)

LPS-induced sepsis (mouse) Improved mortality Neutralization of HMGB1 (34)

Renal ischemia-reperfusion injury

(mouse)

Improved lung injury (remote organ) Regulation of NETs (35)

Renal ischemia-reperfusion injury (rat) Improved renal function and histology Reduction of leukocyte infiltration (36)

Intestinal ischemia-reperfusion

(mouse)

Increased survival and liver damage

(remote organ)

Regulation of NETs (37)

Myocardial ischemia (mouse) Reduced myocardial damage Suppression of leukocyte-endothelial

interaction and TLR signaling

(13, 38)

Lung ischemia-reperfusion injury

(mouse)

Suppressed protein leakage Reduction of leukocyte infiltration (39)

Cerebral ischemic injury (mouse) Reduced infarct volume Neutralization of HMGB1 (40)

Anti-glomerular basement membrane

glomerulonephritis (rat)

Improved histology Neutralization of HMGB1 (41)

Experimental autoimmune

encephalomyelitis (mouse)

Improved clinical and pathological

severity

Neutralization of HMGB1 (42)

ANCA-associated vasculitis (rat and

mouse)

Improved renal and lung vasculitis Suppression of NETs, acquired

immunity

(15)

Hemolytic uremic syndrome (mouse) Improved mortality and renal histology Regulation of the complement system (43)

Diabetic glomerulopathy (mouse) Improved nephrosis Inhibition of the complement system

and inflammasome

(44, 45)

Arthritis (mouse) Improved arthritis Complement inhibition (46)

Acute respiratory distress syndrome

(mouse)

Increased survival rate Neutralization of HMGB1 and

increase in regulatory T cells

(47)

Bleomycin-induced pulmonary

fibrosis (mouse)

Improved lung damage Inhibition of transforming growth

factor-β1 and HMGB1

(48, 49)

Bronchial asthma (rat) Improved lung function Modulation of dendritic cells (9)

Pre-eclampsia (rat) Improved maternal and fetal

conditions

Improvement of hypo-perfusion (50)

Recurrent spontaneous miscarriage

(mouse)

Improved fetal resorption Increase of VEGF expression (51)

Lung metastasis (mouse) Inhibited invasion and metastasis of

cancer cells

Thrombin-independent mechanism (52)

Pancreatic cancer (mouse) Suppressed tumor growth Inhibition of NF-κB activation (53)

Atherosclerosis (mouse) Improved atherosclerotic change Anti-autophagic action and inhibition

of thrombin-induced endothelial

activation

(54, 55)

Aortic aneurysm (mouse) Suppressed aneurysm Inhibition of HMGB1-RAGE signaling (56, 57)

ANCA, anti-neutrophil cytoplasmic antibody; HMGB1, high mobility group box 1; LPS, lipopolysaccharide; NETs, neutrophil extracellular traps; NF-κB, nuclear factor-kappa B; RAGE,

receptor for advanced glycation end product; TLR, Toll-like receptor; VEGF, vascular endothelial growth factor.
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TABLE 1B | The levels of serum thrombomodulin (TM) in diseases with intravascular injury.

Disease References Levels of sTM Correlation With

Sepsis/DIC (58) – Positive DIC, multiorgan dysfunction,

mortality

(59) Increase Positive Disease severity, mortality

Cerebral infarction (60) Increase – –

(61) No change Inverse Disease severity

(62) Increase No Disease severity

(63) Increase Positive Disease progression

<Autoimmune disease>

Systemic lupus erythematosus (64–66) Increase Positive Disease activity

ANCA-associated vasculitis (GPA) (67, 68) Increase Positive Disease activity

ANCA-associated vasculitis (GPA or MPA) (69) – Positive Disease activity

ANCA-associated vasculitis (EGPA) (70) – Positive Disease activity

Diabetes (71) Increase Positive Nephropathy and/or Retinopathy

(72–74) Increase Positive Nephropathy

(75) – Inverse Risk of type 2 Diabetes

<Cardiovascular disease>

Coronary heart disease (76) No change – –

(77, 78) – Inverse Risk of coronary heart disease

(79) Increase – –

(80) – Positive Risk of coronary heart disease

(81) – None Risk of coronary heart disease

Atherosclerosis (82, 83) Increase – –

(77) – Positive Risk of carotid atherosclerosis

(84) Increase Positive Sclerotic changes in

hypertensive retinopathy

(85) Increase Positive Intima-media thickness

Aortic aneurysm (86) Increase Positive Risk factors for atherosclerosis

Pre-eclampsia (87, 88) Increase – –

ANCA, anti-neutrophil cytoplasmic antibody; DIC, disseminated intravascular coagulation; EGPA, eosinophilic granulomatosis with polyangiitis; GPA, granulomatosis with polyangiitis;

MPA, microscopic polyangiitis; sTM, serum thrombomodulin.

inhibition of ADAM-TS13, drug-induced reactions, and
transplant complications (95). The major disorders are hemolytic
uremic syndrome (HUS) and thrombotic thrombocytopenic
purpura (TTP). Escherichia coli (O157:H7) induces HUS
by producing Shiga toxins, which bind to endothelial cells
in the kidney and brain, triggering them to undergo cell
death by inhibiting protein synthesis and inducing the
secretion of Von Willebrand factor multimers, which leads
to endothelial injury and microthrombi (96, 97). In mice,

TM deficiency (more specifically, lectin-like domain TMD1)
exacerbated Shiga toxin-producing E. coli (STEC)-HUS (98).

Furthermore, in STEC-HUS-induced mice, rTM treatment
protected them from kidney injury by regulating intravascular

inflammation, complement dysfunction, and the coagulation

system (43).

Macroangiopathy, Including Aortic
Aneurysm
Aortic aneurysm develops in association with certain risk
factors, including age, genetic predisposition, atherosclerosis,
and smoking. The underlying pathogenesis is characterized by
chronic vascular inflammation and degradation of collagen-
producing structural matrix proteins, which weaken the aortic
wall (99). In a CaCl2-induced abdominal aortic aneurysmmodel,
rTM [entire ectodomain (56) and lectin-like domain TMD1
(57)] treatment ameliorated abdominal aortic aneurysm by
suppressing inflammatory mediators, macrophage recruitment,
and HMGB1-RAGE signaling. In an apolipoprotein E-deficient
atherosclerosis model, rTM (TMD23) inhibited autophagy-
related cell death of aortic endothelial cells, preventing the
progression of atherosclerosis (54). In vitro studies have shown
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that rTM directly binds to fibroblast growth factor receptor 1
on the endothelium, which activates the phosphatidylinositol
3-kinase-AKT/mammalian target of rapamycin complex 1
signaling pathway, and inhibits autophagy (54, 100). These
findings indicate that TM could potentially mediate large
vessel homeostasis by controlling immunological responses and
endothelium protection.

EXPERIMENTAL EVIDENCE OF RTM AS AN
IMMUNE MODULATOR BEYOND AN
INFLAMMATORY REGULATOR

In previous sections, the anti-inflammatory effects of rTM
against intravascular injury were mainly described. In
autoimmune diseases, including Goodpasture’s syndrome
(41) and autoimmune encephalomyelitis (42), rTM ameliorated
the disease by suppressing inflammation and neutralizing
DAMPs. Interestingly, recent reports have indicated that rTM
acts as an immune modulator in addition to serving as an
inflammatory regulator. In our study, rTM affected acquired
immunity as well as neutrophil activation to resolve autoimmune
vasculitis (15). Pathogenic ANCA auto-antibodies play a pivotal
role in the development of ANCA-associated vasculitis. In this
regard, rTM binds to antibody-producing lymphocytes to alter
their activities from pro-inflammatory to anti-inflammatory,
which contributes to the reduction of ANCA production and
the resolution of the disease. Furthermore, Takagi et al. (9)
reported that rTM ameliorated the ovalbumin-induced asthma
model by regulating pathogenic dendritic cells. In a graft-vs.-host
disease (GVHD) model, rTM increased regulatory T cells via
the induction of anti-apoptotic Mcl-1 expression, resulting
in the improvement of GVHD (101, 102). Similarly, rTM
ameliorated acute respiratory distress syndrome in mice with
an increase in regulatory T cells (47). Van De Wouwer et al.
(46) showed that rTM (lectin-like domain TMD1) improved
mouse arthritis by suppressing excessive inflammatory responses
by macrophages and complement activation. As such, rTM
could potentially modulate systemic acquired immunity in
response to intravascular injury separately from maintaining
local vessel homeostasis.

CLINICAL EVIDENCE FOR RTM-BASED
STRATEGIES

Several studies have reported the serum TM level to examine its
role in various diseases. Sepsis (58), ischemic disease (63), and
autoimmune diseases (64) showed high levels of soluble TM in
serum and plasma that reflected prevailing endothelial injury,
indicating that soluble TM levels might be useful for disease
diagnosis (Table 1B). Does endogenous soluble TM protect from
intravascular injury in human disease? In coronary heart disease,
the level of soluble TM is inversely correlated with disease
severity (77), implying that endogenous TM might contribute to
the resolution of this disease. However, because soluble TM is
released from damaged endothelium to counteract the disease,
soluble TM levels are often found to increase with disease severity

(Table 1B) (77). Meanwhile, genetic polymorphisms of TM could
influence the disease beyond the quantity of TM, which might
explain the discrepancy between the titer and disease (103). It
might be difficult to determine the role of endogenous TM based
on soluble TM levels. However, the efficacy of additional TM has
been clinically revealed with regard to several diseases during the
past two decades.

DIC
In randomized, double-blind clinical trials, in which patients
with DIC associated with hematologic malignancy or infection
were treated with rTM or heparin, rTM improved DIC, and
alleviated hemorrhagic complications compared with heparin
(104). Although rTM therapy did not reduce all-cause mortality
in a large clinical trial, post-hoc subgroup analysis stratified by
the persistence of abnormal coagulation showed a tendency to
decrease mortality (105). Meanwhile, a one-arm prospective trial
revealed the effectiveness of rTM in solid tumor-associated DIC
(106). Moreover, rTM administration could potentially be useful
for treatment of obstetric DIC. During pregnancy, placental
abruption, bleeding, and hypoxia could drive DIC underlying
obstetric disorders, which is associated with maternal and fetal
morbidity and mortality (107). A retrospective comparative
study revealed that rTM significantly improved clinical and
laboratory findings compared with controls in patients with
obstetric DIC (108).

TMA
TMA is associated with high mortality regardless of
the underlying disease, including HUS, TTP, transplant
complications, and drug side effects. In a case series of three
patients with HUS, rTM ameliorated clinical outcomes with
improvements reflected in reduced platelet counts and excessive
complement activation (109). Furthermore, rTM could be
beneficial for patients with transplant-associated (TA)-TMA.
The latter is a severe complication after hematopoietic stem
cell transplantation. The putative etiology is endothelial
injury, which is caused by cytotoxic agents, infections, and
GVHD (110). A case report (111) and retrospective cohort
study (112, 113) showed the effectiveness of rTM with
favorable clinical features and overall survival. Likewise,
hepatic sinusoidal obstructive syndrome shows clinical
manifestations characterized by hepatomegaly, jaundice,
ascites, fluid retention, and thrombocytopenia following
hematopoietic stem cell transplantation, with pathogenesis
mechanisms similar to those of TA-TMA (114). Moreover,
patients treated with rTM showed remission and survival
rates equivalent to that of patients receiving defibrotide, which
is the only recommended therapy for sinusoidal obstructive
syndrome (115).

Acute Exacerbation of Idiopathic
Pulmonary Fibrosis (AE-IPF)
AE-IPF is a lethal condition associated with endothelial damage
and abnormalities of the coagulation system (116, 117). HMGB1
is involved in the pathophysiology of pulmonary fibrosis (48).
Furthermore, NETs are identified in the bronchi of patients
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diagnosed with AE-IPF, and are believed to contribute to disease
progression (118). Kataoka et al. (119) reported that rTM therapy
resulted in improved mortality rates compared with the control
group (rTM vs. control: 30 vs. 65%). However, similar to the
sepsis clinical trial, a large randomized phase III study in patients
with AE-IPF did not show the superiority of rTM using the
state of the control as primary endpoint (120). The cause is
thought to be the heterogeneous pathology in the comparison
group. Therefore, an appropriate study protocol with stratified
risk factors is required.

Clinical Perspectives of rTM Therapy via
the Anti-inflammatory and
Immune-Regulatory Effects
Although the efficacy of rTM has not been clinically shown
in autoimmune disease and inflammatory disorder, several
experimental data represent the potential to overcome these
diseases. In vitro and animal studies indicate that rTM
possesses the direct immunomodulatory effects in innate and
acquired immunity independently of anti-coagulant effect (9, 15).
Based on animal studies (Table 1A), rTM is being clinically
expected to contribute to resolving diseases with inflammation
including diabetes mellitus, arthritis, bronchial asthma, and
ischemic-reperfusion injury. In particular, autoimmune ANCA
vasculitis, which is characterized by immune dysregulation and
intravascular injury, might be a candidate for rTM treatment.
However, the dosage of rTM in many experimental situations
(15, 33, 41) is 15–50 times of therapeutic dosage in patients with
DIC and the effective concentration as an anti-inflammatory and
immune-regulatory property remains unclear. Thus, in the future
the indications of rTM therapy and the suitable dosage with

no serious complications such as bleeding tendency should be
carefully addressed.

CONCLUSIONS

Immunothrombosis during intravascular injury leads to
organ damage and further intravascular injury via cellular
and molecular signaling, including excessive inflammation,
coagulation, and cell activation. rTM regulates the
immunothrombosis to terminate inflammation/coagulation,
neutralize DAMPs, and affect immunity. The administration of
rTM has the potential to become a novel therapeutic strategy for
various diseases associated with immunothrombosis-mediated
intravascular injury.
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