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Neuronal granules are biomolecular condensates that concentrate high quantities of
RNAs and RNA-related proteins within neurons. These dense packets of information are
trafficked from the soma to distal sites rich in polysomes, where local protein synthesis
can occur. Movement of neuronal granules to distal sites, and local protein synthesis,
play a critical role in synaptic plasticity. The formation of neuronal granules is intriguing;
these granules lack a membrane and instead phase separate due to protein and RNA
interactions. Low complexity motifs and RNA binding domains are highly prevalent in
these proteins. Here, we introduce the role that coiled-coil motifs play in neuronal granule
proteins, and investigate the structure-function relationship of coiled-coil proteins in
RNA regulation. Interestingly, low complexity domains and coiled-coil motifs are highly
dynamic, allowing for increased functional response to environmental influences. Finally,
biomolecular condensates have been suggested to drive the formation of toxic,
neurodegenerative proteins such as TDP-43 and tau. Here, we review the conversion of
coiled-coil motifs to amyloid structures, and speculate a role that neuronal granules play
in coiled-coil to amyloid conversions of neurodegenerative proteins.

Keywords: coiled coil, RNA binding protein, membraneless organelle, liquid liquid phase separation, neurons,
amyloid, neurodegeneration

INTRODUCTION

Coiled-coil motifs are abundant in RNA-binding proteins (RBP). These proteins play physiological
roles in the synaptic plasticity of neurobiology. Many coiled-coil enriched RBPs are localized to
liquid-liquid phase separated (LLPS) neuronal granules, a compartmentalization that is critical
for appropriate RNA trafficking in local protein synthesis. However, these LLPS organelles are
highly implicated in the misfolding and amyloid formation of various neurodegenerative disease-
related proteins. In this perspective, we hypothesize that coiled-coil motifs within RBPs may lead to
disastrous protein misfolding and neurodegenerative amyloid formation within LLPS granules.

COILED-COIL MOTIFS

Coiled-coil motifs may have evolved as a means of addressing the need for increased functional
complexity, expanding dynamic protein structural conformations without the creation of new
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genes. This is observed by the drastic increase in the presence
of coiled-coil motifs in the prokaryotic genome to the 10%
found in the eukaryotic genome (Rose et al., 2005). Through
the supercoiling of two or more α-helices, coiled-coils form
covalently bound strong supersecondary structures, as observed
in the synaptic protein SynGAP (Figure 1A; PDB ID: 5JXC; Zeng
et al., 2016; Sehnal et al., 2018; RCSB PDB). This motif allows for
a variety of energetically feasible oligomerization and quaternary
structure formation (Yadav et al., 2006). Complexity is further
increased by the addition of non-covalently associated subunits,
expanding the extent of protein function via increased possibility
for quaternary structures (Yadav et al., 2006). Often, coiled-coil
motifs function as molecular spacers between functional domains
or as scaffolding for macromolecules, but have also been found to
play catalytic roles in some proteins (Dong et al., 2007).

The coiled-coil motif is a well-defined heptad comprising
of amino acids “a,” “b,” “c,” “d,” “e,” “f,” and “g,” where “a”
and “d” are typically hydrophobic and “b,” “c,” and “f” are
often charged. The hydrophobicity of amino acids “a” and “d”
allow for the “knobs and holes” hydrophobic core that bonds
the two or more α-helices (Truebestein and Leonard, 2016).
The canonical coiled-coil has, on average, 3.5 amino acids per
turn periodicity which is close to that of a standard α-helix
(Truebestein and Leonard, 2016). However, non-canonical,
hetero-oligomeric, and discontinuous coiled-coils exist in nature,
due to variability in hydrophobic and polar residues at the third
and/or fourth position as well as insertion of one, three, or
four residues within the motif (Truebestein and Leonard, 2016).
These discontinuities result in the formation of skips (abbcdefg),
stammers (abcabcdefg), stutters (abcdabcdefg), and α-β coiled-
coils (abcβββefg) (Truebestein and Leonard, 2016).

COILED-COIL DOMAINS ARE
OVER-REPRESENTED IN RNA-BINDING
PROTEINS

Coiled-coil motifs are possibly best known for their role
in eukaryotic motor protein function and cytoskeletal
polymerization. However, coiled-coil motifs are prevalent
in vesicle-associated/trafficked proteins as well (Rose et al., 2005).
Specifically, we find that coiled-coil motifs are over-represented
in RBPs, which are trafficked to sites of local protein synthesis
depending on the needs of the cell. This coiled-coil interaction
allows for movement of cargo proteins, lipids, and RNAs within
membrane-bound and membraneless organelles via motor
protein binding, along the microtubule cytoskeletal network.
For example, the microtubule-associated kinesin-1 cargo
adaptor complex (KLC1) moves ribonucleoprotein granules
by interacting with the RBP SFPQ via a coiled-coil motif, an
interaction that is necessary for axonal transport (Fukuda
et al., 2020). Large, membrane-bounded organelles, such as
the lysosome, can be trafficked throughout the cell via similar
coiled-coil protein-protein interactions. Annexin A11 adaptor
protein, a component of ribonucleoprotein granules containing
mRNAs necessary for growth cone morphology, is transported
throughout the neuron by “hitchhiking” on the lysosome cargo

(Liao et al., 2019). The lysosome cargo can bind dynein and traffic
through the cell via the microtubule network, relying heavily on
coiled-coil proteins for recruitment of cargo and activation of
motility (Reck-Peterson et al., 2019).

We downloaded all human RBPs listed in the RNA-binding
protein database RBPDP (Cook et al., 2011) and predicted
the presence of coiled-coil motifs within their sequences. We
used the software Coils (Lupas et al., 1991), and confirmed
the results with PCoils (McDonnell et al., 2006) and DeepCoils
(Ludwiczak et al., 2019). Overall, we found a significant over-
representation of RBP containing coiled-coils motifs with respect
to what is expected by chance (P < 0.001, χ2 test). In fact
36% of all RBPs have coiled-coil motifs in their sequence, which
is significantly higher than the 10% reference value for the
total eukaryotic genome (Rose et al., 2005; Figure 1B). Since
distinct RBPs have different sequences, we examined whether
specific RNA-binding domains were preferentially associated
with coiled-coil motifs. Domains were defined as: RNA-binding
domain [RBD, also known as ribonucleoprotein domain (RNP)
and RNA recognition motif (RRM)], K-homology (KH) domain
(type I and type II), Arg-Gly-Gly (RGG) box, Sm domain,
DEAD/DEAH box, zinc finger (ZnF), double stranded RNA-
binding domain (dsRBD), ColdShock domain; Pumilio/FBF
(PUF or Pum-HD) domain, and Piwi/Argonaute/Zwille (PAZ)
(Figure 1C).

Variability in binding domains allows for more sophisticated
nucleic acid recognition and binding. Complexity is often
increased by the presence of multiple modular units within
one protein. The actual binding between RBPs and RNA is
the result of weak interactions, and an increase in binding
domains allows the weak interaction surface to be largely
increased. As a result, RBPs containing several domains
can bind RNA with higher specificity and affinity than a
single domain. Additionally, conformational changes within
proteins or RNA can increase the binding strength We
hypothesize that flexible coiled-coil motifs can allow increased
access of RNA-binding domains to RNA targets. Additionally,
oligomerization of coiled-coil motifs allows for more RNA-
binding domains spatially. We analyzed the different classes
of human RBPs included in the RBPDB to calculate their
relative abundance and the presence of a coiled-coil motif.
We found that all categories of RBPs, with the exception
of those with Pumilio and ColdShock domains, contained a
value of coiled-coil motifs well above 10% (Figure 1D and
Supplementary Figure 1A).

RBPs containing RRM, La, and KH domains are particularly
relevant in neurobiological function (Dreyfuss et al., 1988; Burd
and Dreyfuss, 1994; Musco et al., 1996; Intine et al., 2003;
Alfano et al., 2004), thus we further analyzed the sequences of
RBPs containing these three domains to determine their spatial
organization with respect to coiled-coil motifs (Figure 1E).
First, the RRM is the most abundant domain found in RBPs.
This domain is 90 amino acids in length and consists of a
four-stranded β-sheet packed against two α-helices (Rebagliati,
1989; Milburn et al., 1990). Inside the RRM there are two
highly conserved regions. The first is a hydrophobic segment
of six residues (which is called the RNP-2 motif) and the
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FIGURE 1 | Coiled coils motifs in RNA Binding proteins. (A) (i) Helical wheel projection showing the position of amino acids in heptad repeats. (ii) Prediction of coiled
coil motifs in SynGAP. The probability of coiled coil is plotted for each amino acid using the Software Paircoils. The three different colors correspond to the probability
of assuming the coiled fold depending on the length of the amino acid sequence. (iii) Graphic representation of the Crystal structure of SynGAP coiled coil domain;
(B) Prevalence of proteins with CC motifs in the eukaryotic proteome vs presence of CC in RBP. The software Coils was used to predict the presence of CC in RBP
listed in the database RBPDB; (C) Pie chart representation of the abundance of different RNA binding domains in RBPs. RRM are the most abundant; (D) The graph
shows the percentage of RBPs with Coiled coils motifs, based on the type of RNA binding domain; (E) Graphical representation of coiled coil prediction for PABP1,
La and FMRP. Below each graph a schematic of the organization of the RNA binding domains (RBD, black) and CC motifs (blue) is shown. RBD and CC are
justaxposed, with minimal or no overlap.

second is an octapeptide motif (which is called RNP-1 or
RNP-CS) (Ayane et al., 1991). The RRM domain is found in
proteins implicated in regulation of alternative splicing, mRNA
transport, and translation (Dreyfuss et al., 1988). Second, the
KH domain was the first RNA-binding domain identified in

human RBPs. It binds to both ssDNA and ssRNA, and is about
70 amino acids in length. The important signature sequence
of this domain is (I/L/V)IGXXGXX(I/L/V). KH domains are
found in a wide variety of proteins, including ribosomal
proteins, transcription factors, and post-transcriptional modifiers
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of mRNA (Burd and Dreyfuss, 1994; Musco et al., 1996).
Finally, the La protein is a 47 kDa polypeptide that often
acts as an autoantigen in systemic Lupus Erythematosus and
Sjogren’s Syndrome patients. It occurs in both the nucleus
and the cytoplasm, where it takes on different roles. In
the nucleus, La facilitates the production of tRNAs assisting
in their folding and maturation (Intine et al., 2003; Alfano
et al., 2004). In the cytoplasm, La facilitates the translation of
specific mRNAs, protects them from endonuclease digestion,
and organizes their export from the nucleus (Intine et al., 2003;
Alfano et al., 2004).

Interestingly we observed that coiled-coil motifs and these
RNA binding domains are often in close proximity but never
overlapping (Figure 1E), confirming our hypothesis that flexible
coiled-coil motifs might allow increased access of RNA-binding
domains to RNA targets.

RNA-BINDING PROTEINS THAT
CONTAIN COILED-COIL MOTIFS ARE
OVER-REPRESENTED IN LLPS
ORGANELLES

The structural flexibility of RBPs mandates tight cellular
regulation to ensure functional structures are formed and
misfolding doesn’t occur. One way in which the cell regulates
structural flexibility is by localizing these proteins to LLPS
organelles. LLPS organelles lack a lipid membrane, instead
separating from their surrounding environment due to liquid-
liquid phase separation, a biophysical phenomena that makes the
organelle more dense than its environment.

Since coiled-coils are overrepresented in RBP, we measured
the prevalence of coiled-coils across various LLPS organelles,
including processing bodies (P bodies), stress granules (SGs),
Chromatoid Bodies (CHRBs), RNP granules, cytoplasmic RNA
granules, P granules, Pi-bodies, Piwi-containing P granules (PiP)-
bodies, neuronal RNP granules, and nuclear SGs (Figures 2A,B
and Supplementary Figure 2). Of the organelles investigated,
neuronal RNP granules contained the highest prevalence of
coiled-coils, with 50% of neuronal RNPs containing a coiled-coil
motif (Figure 2B).

Perhaps, coiled-coil prevalence within LLPS organelles
provides structure or molecular spacing for the protein
components of the organelle “core.” Additionally, the non-
canonical non-covalent properties of coiled-coils may play a role
in the weak interactions that characterize the organelle “shell.”
These hypotheses are in line with the LLPS theory that suggests
the immiscible organelle is composed of at least two layers,
a core and a shell, which have distinct biophysical properties
(Feric et al., 2016; Peng and Wang, 2020). Cellular application
of these hypotheses are complicated by the lack of precise
characterization of neuronal granules, due to their dynamicity
and ability to interact and fuse with other cytoplasmic LLPS
organelles (Buchan, 2014). However, P bodies, and Staufen-
containing and fragile X mental retardation protein (FMRP)-
containing neuronal granules are well-defined.

Processing bodies play a role in translation repression through
mRNA storage (Brengues et al., 2005; Bhattacharyya et al., 2006),
microRNA-mediated repression (Liu et al., 2005; Pillai et al.,
2005; Teixeira and Parker, 2007), and degradation of mRNA
via non-sense mediated- and normal decay (Unterholzner and
Izaurralde, 2004; Sheth and Parker, 2006). These functions are
ubiquitous in eukaryotic cells. Canonical P body components
are abundant with predicted coiled-coil motifs, as observed
in decapping protein 1 (DCP1) (NP_060873.4; nearly 100%
prediction), GW182 (NP_055309.2; 100% prediction), and Piwi 2
(NP_060538.2; 40% prediction).

Neuronal P bodies have additional functions which include
the transport, modification, and translation of mRNAs (Barbee
et al., 2006; Kiebler and Bassell, 2006), being functionally and
structurally similar to the well-characterized neuronal granules
that contain Staufen and FMRP (Barbee et al., 2006). Of
neuronal granules, one of the best understood is the double-
stranded RBP Staufen-containing neuronal granules, which
traffic mRNAs into dendrites via microtubules (Kohrmann
et al., 1999; Tang et al., 2001; Figures 2A,C). The predicted
presence of coiled-coils in Staufen is high (NP_059348.2; ∼70%);
functionally, Staufen RBD binds coiled-coil regions of interactors
in neuroblast development (Yousef et al., 2008; Jia et al., 2015).
Furthermore, while Staufen remains within its neuronal granule
after stimulation, the non-canonical coiled-coil protein Caprin-1
leaves the neuronal granule when localized to the dendritic
ribosome after BDNF stimulation, allowing for translation of its
mRNA targets under specific physiological conditions (Shiina
et al., 2005). It appears that the coiled-coil motif in Caprin-1
is both necessary for neuronal granule formation, and is
sufficient for its major RNA-binding ability (Shiina et al., 2005;
Figures 2A,C).

The movement of synaptic transcripts to specific distal sites is
necessary for growth, synaptic plasticity, and the strengthening
of neuronal connections. This requires inhibition of translation
until the transcript is appropriately localized, a process in which
coiled-coils play an important functional role (Shiina et al.,
2005; Fiumara et al., 2010; Figure 2C). Several proteins are
critically implicated in this phenomenon, among which the
interplay between the Polyadenylate binding protein (PABP)
(Kahvejian et al., 2005) and initiations factors is particularly
relevant (Bernstein et al., 1989; Burd et al., 1991; Chang et al.,
2004; Kozak, 2006; Bag and Bhattacharjee, 2010). This fine-tuned
regulation is a critical component of greater cognitive processes
such as long-term memory (Richter and Lorenz, 2002; Klann
and Dever, 2004). Beside PABP, other well studied RBPs in this
context are FMRP and CPEB.

Fragile X mental retardation protein is localized to the
synapse upon metabotropic glutamate receptor activation, where
it functions to target dendritic mRNAs and regulates translation
under specific physiological conditions (Jin and Warren, 2003;
Antar et al., 2004; Figure 2A). FMRP, as well as paralogs
FXR1 and FXR2, are known to homo- and hetero-dimerize
via coiled-coil motifs, although the functional consequences of
this are unknown (Winograd and Ceman, 2011; Figure 1D).
Lack of FMRP produces Fragile X Mental Retardation in
humans, and in the mouse model of the disease, neural
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FIGURE 2 | RNA Binding Proteins with CC motifs in Membraneless organelles. (A) Graphic representation of a neuron containing several different types of molecular
condensate, within the nucleus and cytosol. RBPs can shuttle form nucleus and cytosol and move from organelles depending on the cell physiological state.
Example RBPs are listed, and organelle localization is color-coded. (B) The chart shows the percentage of proteins with cc motifs in RBP, based on the type of
organelle. P-body, cytoplasmic RNP granule (cy RNP granule), and neuronal RNP are shown. (C) Graphical representation of CC prediction for Staufen, Caprin1,
and Dcp1. Below each graph is a schematic of the organization of the RNA binding domains (RBD, black) and CC motifs (blue) is shown. RBD and CC are
justaxposed, with minimal or no overlap. (D) Graphical representation of CC prediction for Aplysia CPEB, mouse CPEB and human CPEB. Below each graph a
schematic of the organization of the RNA binding domains (RBD, black) and CC motifs (blue) is shown. RBD and CC are justaxposed, with minimal or no overlap.

spine morphology is disrupted and forms excessively long and
thin filopodia-like structures (Nimchinsky et al., 2001). The
spine morphology of this mouse model is predicated to be a

direct result of FMRP disruption, which likely has widespread
consequences on synaptic plasticity, and learning and memory
(Klann and Dever, 2004).
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Within both neuronal P bodies and FMRP-containing
neuronal granules, αCamKII is bound and trafficked via the
cytoplasmic polyadenylation element (CPE) in its 3’ untranslated
region (UTR) by the RBP cytoplasmic polyadenylation element
binding protein 1 and 3 (CPEB1, CPEB3) (Huang et al., 2003;
Ford et al., 2019, 2020). Many dendrite-bound mRNAs contain
CPE elements and neuronal granules contain a large amount
of CPE element-containing mRNAs (Martin and Ephrussi,
2009). The CPE elements promote cytoplasmic polyadenylation-
induced translation of the mRNAs in response to synaptic
stimulation, such as NMDA-dependent long-term potentiation
(Huang et al., 2002; Fioriti et al., 2015). Indeed, CPEB3 binds
CPE elements of dendrite-bound mRNAs and is necessary for
memory persistence (Fioriti et al., 2015). CPEB3 moves from
the DCP1-containing P body to the distally located polysome
after chemically induced long-term potentiation (Ford et al.,
2019), and is present in FMRP-containing neuronal granules
(Ford et al., 2020). CPEB3 prediction for the presence of coiled-
coils is high (NP_938042.2, ∼70%) and the Aplysia ortholog
ApCPEB has a coiled-coil motif that allows the protein to
localize to neuronal, cytoplasmic LLPS organelles (Fiumara et al.,
2010; Figure 2C). The role of coiled-coils in ApCPEB function
was further bolstered by computational data, suggesting that
low-n oligomer ApCPEB exists through coiled-coil interactions
(Chen et al., 2016).

COILED COIL TO β-SHEET CONVERSION

Kandel, Fioriti, and Lindquist publicized the concept of
functional amyloids in the brain by their novel discoveries
of functional ApCPEB and CPEB3 aggregates (Si et al., 2003;
Drisaldi et al., 2015; Fioriti et al., 2015; Stephan et al., 2015).
Interestingly, ApCPEB and its orthologs are RBPs with significant
areas of intrinsic disorder and coiled-coil motifs (Fiumara
et al., 2010; Stephan et al., 2015; Figure 2C). The notion
of incremental structural conversion from intrinsic disorder
to coiled-coil to β-sheet of ApCPEB was first hypothesized
by Kandel and Hendrickson, and later explained through
computational modeling (Fiumara et al., 2010; Chen et al., 2016).
The model suggests that as concentrations of ApCPEB increase,
as could occur in highly concentrated LLPS organelles (Ford
et al., 2019), coiled-coil ApCPEB is poised to form β-sheet-rich
structures in the upstream polyQ region (Chen et al., 2016).
Remarkably, this model fits within the known mechanisms of
neurodegenerative Huntingtin amyloidogenesis (Fiumara et al.,
2010), spinocerebellar ataxia SCA3 amyloidogenesis (Kwon et al.,
2018), and cleidocranial dysplasia RUNX2 aggregation and
toxicity (Pelassa et al., 2014).

It is interesting to speculate that coiled-coil oligomerization
of polyQ-rich proteins could lead to polyQ β-sheet formation,
given appropriate environmental conditions. Additionally, data
indicates there could be structural conversion of coiled-coils
themselves to cross β-sheet amyloids. Biochemically, coiled-
coils and β-sheets are facial amphiphiles; hydrophobic packing
allows for strengthening of the hydrogen-bonding network, a
key difference being that β-sheets have intermolecular hydrogen

bonding as opposed to the coiled-coil intramolecular bonding
(Dong and Hartgerink, 2007). In vitro and in silico, coiled-coil
peptides can convert from an α-helical to β-sheet fibril when
heated (Ciani et al., 2002; Dong and Hartgerink, 2006; Steckmann
et al., 2017) or subjected to pH change (de Freitas et al., 2018).
Rendering the coiled-coil structurally unstable could lead to
β-sheet formation; one way in which this may occur is through a
discontinuity in the heptad, creating a longer hydrophobic patch
that is more favorable to β-sheet formation (Ciani et al., 2002;
Dong and Hartgerink, 2007).

Furthermore, post-translational modifications may play a
role in coiled-coil to amyloid fibrillization. Post-translational
modifications are already heavily implicated in the aggregation
or solubilization of various neurodegenerative proteins. For
example, phosphorylation of amyotrophic lateral sclerosis (ALS)-
related RBP fused in sarcoma (FUS) reduces the protein’s
propensity to aggregate (Monahan et al., 2017). An additional
ALS-related RBP, TAR-DNA binding protein 43 (TDP-43), also
exhibits increased solubility and decreased aggregation when
phosphorylated (Li et al., 2018). However, it is important to
note that post-translational modifications have an effect on
conformational change and protein aggregation in a protein-
specific manner (for example, see Ford et al., 2020). Still, it is
tantalizing to compare the in vivo amyloid studies to in vitro
coiled-coil studies.

In vitro coiled-coil peptides that convert to β-sheet amyloids
can be suppressed by monophosphorylation of the peptide
(Broncel et al., 2010). Even when the charge of the single
phosphate moiety is neutralized, β-sheet formation is inhibited
(Broncel et al., 2010). Once protein phosphatase lambda is added
to the solution, the peptide clearly converts from an α-helical to
β-sheet state (Broncel et al., 2010). This appears to be similar to
how FUS and TDP-43 are altered in regards to phosphorylation.
It is critical to validate these speculations under physiological
conditions, and to carefully consider differences in modifications
across proteins.

DISCUSSION

In this perspective, we identify a high abundance of coiled-
coil motifs within RBPs and discern over-representation of
these motifs based on the specific RNA-binding domains
present. We speculate that the possibility for flexibility and/or
oligomerization allows for more dynamic functions in RBPs
with specific RNA-binding domains. In fact our analysis shows
that coiled-coil motifs do not overlap with RNA-binding
domains, thus suggesting that they are not directly implicated
in RNA binding. Instead they flank RBD, and this modular
organization might allow protein-protein interactions necessary
to assemble phase separated RNA granules and/or to dock
them to motor proteins for their transport along neuronal
projections. We then focus on functional LLPS organelles,
P bodies and neuronal granules, and identify the abundance
of coiled-coil motifs in LLPS organelle components. We
find that, again, coiled-coil motifs are over-represented in
these biophysically unique organelles. Furthermore, we link
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coiled-coil RBP components of P bodies and neuronal granules
with functional relevance to neurobiology. Finally, we review
the biochemical literature that suggests that coiled-coils may
convert to amyloid β-sheets. This in turn could give rise to
neurodegenerative and aggregated structures.

Critically, the in vitro coiled-coil peptide switching studies
must be investigated within neurons. With current technology,
this is an extremely difficult task. However, we believe that
the study of LLPS organelles in neurobiology provides an ideal
physiologically relevant approach. Functional amyloids exist in
these organelles (Raveendra et al., 2013; Fioriti et al., 2015;
Ford et al., 2019, 2020). Furthermore, recent neurodegenerative
studies have identified the presence of amyloidogenic TDP-43,
FUS, and hnRNP A/B (in Amyotrophic Lateral Sclerosis) and
amyloidogenic tau (in Frontotemporal Dementia) in LLPS
organelles in brain cells (Wolozin, 2012; Lenzi et al., 2015;
Vanderweyde et al., 2016; Apicco et al., 2018; Khalfallah et al.,
2018; Wegmann et al., 2018; Fang et al., 2019; Zhang et al., 2020).
These data pose the question: do LLPS organelles play a role in
amyloid formation, and if so, can we utilize this for coiled-coil to
β-sheet switching studies?

Liquid-liquid phase separated organelles are highly
concentrated in proteins, often with significant regions of
disorder, and RNAs. In vitro, LLPS proteins have been observed
to change states from liquid-like to gel-like and solid (Shin
and Brangwynne, 2017). The proteins within these more
solid structures appear to fibrilize and, in some cases, form
amyloids (Lin et al., 2015; Molliex et al., 2015; Murakami
et al., 2015; Patel et al., 2015). Mutations in proteins linked
to neurodegenerative pathology also appear to exist within
these gel-like LLPS structures (Kato et al., 2012; Kwon et al.,
2013; Molliex et al., 2015; Patel et al., 2015). Much of the
fibrillization and solidification has been linked to the highly
concentrated environment, and the specific components of these
LLPS organelles. One of the key properties of LLPS is weak,
multivalent interactions between intrinsically disordered regions
and/or defined modular domains (Alberti et al., 2019; Feng et al.,
2019). Interestingly, multivalent electrostatic forces are predicted
to play a role in α to β switching of coiled-coil peptides (Ciani
et al., 2002) and this electrostatic-driven switching produces
reversible amyloids in vitro (Ciani et al., 2002). It is thus very
plausible that the LLPS environment is prime for the formation
of functional and pathogenic amyloids from coiled-coil structural
switching, due to molecular crowding, electrostatic forces, and
other considerations unique to the LLPS environment.

Furthermore, the LLPS field is booming in the production of
new technology (Tang, 2019) and universal methods of study
(Alberti et al., 2019). For the past 5 years, the field has been
moving from in vitro to in vivo work, expanding the physiological
relevance and understanding of these studies. We believe that
coiled-coil to β-sheet switching within the context of LLPS
biology is a feasible means to investigate technically difficult
protein biochemistry within a physiological context. If coiled-
coils indeed play a role in functional or pathological amyloid
formation, the production of therapeutic coiled coil peptides may
provide an already established avenue for disease intervention
(Woolfson, 2005).

BIOINFORMATIC ANALYSIS

The FASTA protein sequences of the complete list of RBP in the
RBPDB of Homo sapiens were downloaded from the Uniprot
online database of complete reference proteomes (available at)1.
The Paircoil2 CC-prediction software was downloaded from2. Ad
hoc scripts were generated to identify the proteins containing
predicted CC domains according to Paircoil2, using a P-score
<0.05 as a detection threshold. Observed and expected values
were then compared statistically using the CHI-squared test.
Data were analyzed quantitatively using Excel (Microsoft). We
used the Software AmiGo2 to retrieve the list of the RBP
distributed in each phase separated organelle. We then extracted
the protein sequences from Uniprot and run Paircoils2 to identify
the proteins containing predicted CC domains.
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type of RNA binding domain. The software Coils was used to predict the presence
of CC in RBP listed in the database RBPDB; (B) Graphical representation of coiled
coil prediction for members of each family. Below each graph a schematic of the
organization of the RNA binding domains (RBD, black) and CC motifs (blue) is
shown. RBD and CC are justaxposed, with minimal or no overlap.

Supplementary Figure 2 | (A) The chart shows the percentage of proteins with
cc motifs in RBP, based on the type of organelle in which they resides. Neuronal
RNPs, chromatoid bodies, cytosolic RNP, and Piwi-containing P granules possess
the highest percentage of components with predicted CC motifs. The Software
AmiGo2 was used to download the RBP distributed in each organelle.
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