
REVIEW

T cell pathology in skin inflammation

Robert Sabat1 & Kerstin Wolk1,2 & Lucie Loyal2 & Wolf-Dietrich Döcke3
& Kamran Ghoreschi4

Received: 12 February 2019 /Accepted: 22 March 2019 /Published online: 26 April 2019
# The Author(s) 2019

Abstract
Forming the outer body barrier, our skin is permanently exposed to pathogens and environmental hazards. Therefore, skin
diseases are among the most common disorders. In many of them, the immune system plays a crucial pathogenetic role. For
didactic and therapeutic reasons, classification of such immune-mediated skin diseases according to the underlying dominant
immune mechanism rather than to their clinical manifestation appears to be reasonable. Immune-mediated skin diseases may be
mediated mainly by T cells, by the humoral immune system, or by uncontrolled unspecific inflammation. According to the
involved T cell subpopulation, T cell–mediated diseases may be further subdivided into T1 cell–dominated (e.g., vitiligo), T2
cell–dominated (e.g., acute atopic dermatitis), T17/T22 cell–dominated (e.g., psoriasis), and Treg cell–dominated (e.g., melano-
ma) responses. Moreover, T cell–dependent and -independent responses may occur simultaneously in selected diseases (e.g.,
hidradenitis suppurativa). The effector mechanisms of the respective T cell subpopulations determine the molecular changes in
the local tissue cells, leading to specific microscopic and macroscopic skin alterations. In this article, we show how the increasing
knowledge of the T cell biology has been comprehensively translated into the pathogenetic understanding of respective model
skin diseases and, based thereon, has revolutionized their daily clinical management.
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Introduction

As the barrier between the organism and the environment, the
skin protects against external hazards, noxious substances,

and pathogens. It is the largest and heaviest human organ
and is built up by three distinct layers: the outermost epider-
mis, the dermis, and the subcutis [1–3]. The numerically dom-
inant cell population of the continuously renewing epidermis
is that of keratinocytes. Proliferation of these cells usually
takes place within the stratum basale (attached to the base-
ment membrane). Here, the epidermal stem cells are situated,
which, upon their rare divisions, deliver the so-called transit
amplifying cells (TA cells), a frequently proliferating popula-
tion [1, 4]. Each division of an individual TA cell delivers a
daughter cell able to leave the basement membrane and to start
terminal differentiation in the suprabasal stratum spinosum.
During terminal differentiation, these cells move upward, be-
coming granular (stratum granulosum) and undergoing a par-
ticular apoptotic process to become horny constructs. Tightly
covering the skin surface, these so-called corneocytes form the
uppermost layer of the epidermis, the stratum corneum [1–3].
Under normal conditions, there is a balance between stem cell
proliferation, TA cells, terminal differentiation, and the con-
tinuous desquamation of corneocytes from the skin surface
(about 50 billion daily). This equilibrium is markedly
disrupted in some chronic immune-mediated skin diseases
[5]. Besides keratinocytes, Merkel cells, melanocytes, and
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immune cells, including Langerhans cells and resident mem-
ory CD8+ T cells, are also present in the epidermis [6, 7]. The
dermis, lying under the epidermis, consists of connective tis-
sue containing collagenous, elastic, and reticular fibers as well
as fibroblasts and hosts immune cells like macrophages, im-
mature dendritic cells (DCs), mast cells, and some resident
memory CD4+ T cells.

The permanent contact of the skin with exogenous stimuli
and antigens frequently leads to activation of the resident im-
mune cells. The cutaneous persistence of the stimulus/antigen
and/or a relative deficiency of counter-regulatory mecha-
nisms, particularly in the context of a genetic predisposition,
results in local immune cell infiltration and chronic activation,
which also involves the cutaneous tissue cells. Hence, it is not
surprising that chronic immune-mediated skin diseases are
some of the most common disorders in humans. For the af-
fected patients, these diseases induce not only physical but
also psychological burdens due to the visibility of the symp-
toms and the frequent association with itching, pain, and burn-
ing [8–10]. They may be primarily mediated by the uncon-
trolled activation of T cells, the humoral immune system, or
unspecific inflammation (innate immunity). Disorders domi-
nated by pathogenic CD4+ and/or CD8+ T cells comprise the
largest group within the chronic immune-mediated skin dis-
eases [11]. A deeper understanding of the molecular and cel-
lular mechanisms underlying these disorders might lead to the
identification of novel target molecules and, as a consequence,
to the development of innovative therapeutic strategies. In this
review, we will discuss the mechanisms of development and
maintenance of specialized T cell subtypes and refer to repre-
sentative diseases, in which the specific T cell subtypes play a
crucial pathogenic role.

Characteristics, development, and functions
of T cell subpopulations

T cells, a central component of the adaptive immunity, play a
pivotal role in the defense against pathogens and tumors,
while their dysregulation contributes to the development and
maintenance of various diseases. T cells mature in the thymus,
where they undergo somatic gene rearrangement resulting in
the expression of a unique T cell receptor (TCR) [12]. During
the positive selection process, detection of antigens presented
on major histocompatibility complex class 1 (MHCI) or class
2 (MHCII) by the rearranged TCR implements either a CD8+
or CD4+ T cell lineage fate, respectively [13]. Presentation of
autoantigens in the thymic medulla ensures the elimination of
autoreactive T cells [14], and remaining T cells egress into
circulation where they patrol blood and lymph as CD45RA+
CCR7+ naïve T cells [15].

When T cells bind their cognate antigen by the TCR ac-
companied by a sufficient co-stimulatory signal, they become

activated, start proliferating, and contribute to pathogen clear-
ance as effector cells [16]. After pathogen clearance, 95% of
the effector cells undergo apoptosis; the remaining Tcells give
rise to a highly specialized set of memory cells that have lost
CD45RA expression and instead express CD45RO [17]. The
memory compartment can be subdivided into CCR7+ central
memory (TCM), CCR7- effector memory (TEM), and CCR7-
effector memory T cells re-expressing CD45RA (TEMRA)
[15]. While TCM migrate through lymphatic tissue and were
described to be less responsive, TEM patrol peripheral tissues
and provide rapid effector function upon reactivation [15].
Single-cell-based experiments suggest a progressive matura-
tion of Tcells from naive via TCM and TEM to TEMRA cells that
are associated with chronic activation and display features of
exhaustion such as impaired cytokine secretion and the ex-
pression of exhaustion markers such as programmed death-1
(PD-1) and TIM3 [18–20]. Upon migration into the different
lymphoid and non-lymphoid tissues, some memory T cells
gain tissue residency characterized by the upregulation of
CD69 and CD103, the hallmarks of tissue-resident memory
T cells (TRM), as well as expression of Hobit and Blimp1,
which together suppress the re-egress into circulation [21].
Those cells exhibit an outstanding long-term maintenance
and act as sentinels that protect against re-infections.

Antigen detection by CD4+ T cells is restricted to MHCII
expressed on professional antigen-presenting cells (APCs) in-
cluding dendritic cells (DCs), B cells, and macrophages [22].
These APCs continuously sample proteins and present pep-
tides derived thereof on their surface. In the presence of con-
served pathogenic structures or danger signals that are re-
leased by distressed cells, they become activated and migrate
to the secondary lymphoid organs, where they in turn activate
CD4+ T cells [23, 24]. A central role of CD4+ T cells is to
migrate into B cell follicles upon activation, where they me-
diate B cell help by CD40L:CD40 interaction. This CD40L-
mediated help is indispensable for the induction of germinal
center formation, antibody class switch, and somatic
hypermutation [25]. During T cell activation, the cytokine
milieu at the site of infection moreover modulates the differ-
entiation and subsequent specialization of the Tcells, allowing
pathogen-tailored responses. The cytokines IL-12 and IFN-γ
induce the expression of the transcription factor T-bet in T
cells, resulting into IFN-γ-producing type 1 helper (Th1) T
cells that contribute to the clearance of virus-infected cells and
intracellular pathogens [26]. Induction of Gata3 expression by
IL-4 gives rise to type 2 helper (Th2) cells secreting IL-4, IL-
5, and IL-13, which are critical mediators of extracellular par-
asite expulsion and mediate B cell class switch [27]. In recent
years, the spectrum of CD4+ T cell subsets rapidly broadened
by the identification of type 17 and type 22 helper (Th17,
Th22), T follicular helper (Tfh) and regulatory (Treg) T cells.
Th17 cells differentiate upon RORγt expression and produce
IL-17 that induces epithelial antimicrobial defense and leads
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to recruitment and activation of neutrophils [28]. The work of
Acosta-Rodriguez et al. suggests that IL-17-producing cells
are a heterogeneous population consisting of Th17 cells dom-
inating anti-fungal responses, whereas Th17+1 cells addition-
ally secrete IFN-γ and are the main responders in the defense
of extracellular bacteria [29]. Th22 cells differentiate
upon aryl hydrocarbon receptor expression, act on epithelial
cells like keratinocytes by IL-22 secretion, and promote
wound healing and tissue protection against damage [30].
Upon activation, some naïve CD4+ T cells upregulate the
transcription factor Bcl6 and migrate into B cell follicles
where they become resident Tfh cells contributing to germinal
center formation [31, 32]. In contrast, FoxP3+ Treg cells do
not contribute to pathogen defense but instead prevent auto-
immune disorders by suppressing unwanted immune re-
sponses [33]. The major population of CD4+ Treg cells was
found to be characterized by high expression of the IL-2 re-
ceptor alpha chain (CD25), and the transcription factor FoxP3,
the latter being indispensable for the development and sup-
pressive function of Treg cells [34, 35].

Extensive analyses of the CD4+ T cell subsets revealed
differing migration abilities, which are reflected by the
expression of unique sets of chemokine receptors that me-
diate migration along a chemokine gradient. Combinations
of the chemokine receptors CCR4, CCR6, CCR10, and
CXCR3 were identified as separators of Th1 (CCR6-
CCR4-CXCR3+), Th2 (CCR6-CCR4+CXCR3-), Th17+1
(CCR6+CCR4-CXCR3+), Th17 (CCR6+CCR4+CXCR3-
CCR10-), and Th22 (CCR6+CCR4+CXCR3-CCR10+)
cells [29, 36, 37]. CCR6 expression is—together with
CD161—a common feature of IL-17-secreting cells [29,
38, 39]. The ligand for CCR6 is CCL20, which is predom-
inantly produced by epithelial cells, organ-associated lym-
phoid tissues, and liver, allowing a broad migration pattern
that is specified by the co-expression of further chemokine
receptors [40]. In contrast, CCR4 and CCR10 expression is
implemented by DCs in skin-draining lymph nodes and
allows the chemotactic migration along CCL17/CCL22
and CCL27/28, respectively [41, 42]. CCR4- and
CCR10-expressing T cells co-express the so-called cutane-
ous leukocyte-antigen (CLA) and altogether mediate hom-
ing into the skin [43]. CXCR3 binds to CXCL9, CXCL10,
and CXCL11, which are secreted in the presence of IFN-γ
and recruit CXCR3+ cells to sites of inflammation
(reviewed in [44]). Beyond, the expression of CXCR5 is
characteristic of Tfh cells, which binds the chemokine
CXCL13 secreted by the follicular stroma, allowing the
recruitment into the B cell follicle zones [45]. This con-
certed differentiation of T cells orchestrated by DCs en-
sures the right response at the right place in the body.
CD4+ T cells possess a broad flexibility regarding the sub-
set they differentiate into. By comparison of the TCR clone
repertoire in Mycobacterium tuberculosis and Candida

albicans infection, Becattini et al. could demonstrate over-
laps in the clones found in the different CD4+ helper sub-
sets, suggesting that priming of a single naïve CD4+ T cell
can give rise to multiple fates [46].

In contrast to CD4+ T cells, CD8+ T cells were de-
scribed cytotoxic T lymphocytes (Tc) that directly kill ma-
lign or infected cells. They detect antigens presented by
MHCI, which is expressed by almost every cell in the
body, to either eliminate the cell by the secretion of cyto-
lytic molecules including perforin and granzymes or to
induce Fas-mediated apoptosis (reviewed in [47]). In the
memory stage, most (Tc1) cytotoxic CD8+ T cells express
the transcription factor T-bet and secrete high levels of
IFN-γ. However, some CD8+ T cells were identified that
express Gata3 and display a type 2 cytotoxic (Tc2) T cell
phenotype with secretion of IL-4, IL-5, and IL-13.
Comparable with their CD4+ Th2 counterparts, they pos-
sess a CCR4+ and CRTH2+ phenotype [48]. Effector pro-
files of CD8+ T cells in multiple diseases such as psoriasis
vulgaris demonstrated that, among memory CD8+ T cells,
also IL-17, IL-22, and IL-17/IFN-γ producers exist [49].
We could demonstrate that the CD8+ T cell subsets Tc1,
Tc2, Tc17, Tc1+1, and Tc22 express the same set of che-
mokine receptors and utilize the same differentiation pro-
grams based on T-bet, Gata3, RORγt, and aryl hydrocar-
bon receptor as do CD4+ T cells (Loyal et al., manuscript
under review). While Tc1 and Tc17+1 CD8+ T cells dis-
play a classical cytotoxic phenotype, Tc2, Tc17, and Tc22
lack the capability to kill target cells and express the Th
cell–typical molecule CD40L instead (Loyal et al., manu-
script under review; [50]). In contrast to CD4+ T cells, the
differentiation flexibility is restricted among CD8+ T cells,
with a certain flexibility to gain Tc1 or Tc17+1 phenotype
on the one side or to gain Tc2, Tc17, or Tc22 phenotype on
the other side, but with very little clonal overlap between
these two groups (Loyal et al., manuscript under review).
They share the ability to secrete IL-13 and provide CD40L-
dependent help (Loyal et al., manuscript under review;
[50]). This striking effect might be caused by the site of
priming, the involved APC, the priming conditions, and
especially the type of antigen that gives rise to non-cyto-
toxic, Bhelper-type^ CD8+ T cells. Their chemokine recep-
tor expression, effector profile, and lack of cytotoxicity
suggest a tissue homeostasis–maintaining function instead
of contribution to the elimination of infected/malign/
distorted cells. Cheuk et al. demonstrated that, in human
skin, a significant fraction of CD8+ T cells lack cytotoxic
features including the expression of CD49a and instead
produce IL-17 [51]. In a murine model, those skin Tc17
cells were shown to contribute to wound healing by IL-13
release upon recognition of non-classical MHCI (H2-M3)-
presented peptides derived from commensal bacteria [52,
53]. Altogether, CD4+ and CD8+ T cells provide a broad
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repertoire of highly specific features and functions adapted
to the diverse spectrum of challenges such as infections but
also tissue homeostasis, wound healing, and tolerance as
summarized in Fig. 1.

Besides their role in pathogen defense, the activation of
skin-directed T cells can lead to chronic T cell–mediated
skin diseases, whose characteristics correspond to the spe-
cific effector mechanisms of the different T cell subpopu-
lations. In fact, those diseases may be dominated by a Th/
c1-specific (e.g., vitiligo), Th/c2-specific (e.g., acute stage
of atopic dermatitis), or Th/c17-/Th/c22-specific (e.g., pso-
riasis) pattern. Moreover, the activation of Treg cells is

associated with skin tumors like melanoma, a malignant
condition derived from melanocytes. Finally, T cell re-
sponses may be paralled by non-T cell responses, as in
the case of hidradenitis suppurativa, where T17 cell acti-
vation [54, 55], a relative deficiency in Treg cells [56], and
strong unspecific inflammation [57] have been found.

Since, as described above, the classical division of T cells
into CD4+ helper T cells and CD8+ cytotoxic T cells has
become out of date, the following sections will use the terms
T1, T2, T17, T22, and Treg cells. The role of specialized T
cells in representative skin diseases will be discussed in the
following.
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Common T cell–related skin disorders

T1 cells and vitiligo

Epidemiology, clinical, and histological characteristics

Vitiligo is a chronic disease characterized by the appearance of
pigment-free patches of the skin and rarely of the mucosa. In
Europe, about 0.5–2% of people suffer from vitiligo.
However, the prevalence of vitiligo in, e.g., India and Arabic
countries, is appreciably higher [58, 59]. Both sexes are equal-
ly affected, and a quarter of the cases concern children [60].
Typically, the vitiligo patches are sharply demarcated and dif-
fer in shape and size [58, 61]. However, apart from the depig-
mentation, they are macroscopically very similar to intact
skin. Periorbital, perioral, and acral regions of the body are
often affected. During the course of the disease, the number
and size of the depigmented patches can increase, and patches
can coalesce. As expected from the loss of pigment, the his-
tological examination of vitiligo patches shows lack of mela-
nocytes and melanin-containing keratinocytes in the stratum
basale [61, 62]. During the early stage, a perivascular lym-
phocyte infiltration is observed in the dermis. In the late stage,
though, the lymphocytes are mainly present at the edge of the
patches [62].

Immunopathophysiology of vitiligo

Every tenth cell in the stratum basale of healthy skin is a
melanocyte, and - under physiological conditions - melano-
cytes are not attacked by the immune system. However,
melanocytes can be targeted or even destroyed by T cell–
mediated immune responses initiated by autoimmune
processes or therapeutic intervention. Like in other
autoimmune diseases, genetic predisposition is also present
in individuals with vitiligo. Besides certain HLA genotypes,
patients with vitiligo can show single nucleotide polymor-
phisms (SNPs) within genes that are implicated in T cell
signaling or activation (NLRP1, TICAM1, FOXP3, BACH2,
PTPN22, CD80) or genes associated with cytotoxic T cell
responses (GZMB, IL2RA) [60]. Nonetheless, the role of
genetic predisposition in vitiligo etiology seems to be less
important than that in other chronic T cell–mediated diseases
like psoriasis or atopic dermatitis. In fact, only 1–10% of
vitiligo patients have a positive family history for vitiligo in
contrast to about 30% in the case of psoriasis.

It is generally accepted that the first step in vitiligo patho-
genesis is a slight damage of melanocytes, e.g., by ultraviolet
(UV) radiation or chemical substances. Such damage leads to
an increase of reactive oxygen species (ROS), in particular
when low levels of enzymatic and non-enzymatic antioxidants
are present [63]. In fact, the impairment of the nuclear factor
E2-related factor 2 (Nrf2), a protein important for protection

against oxidative stress, seems to be critical for the increased
sensitivity of vitiligo melanocytes to oxidative stress [64] as
observed in lesional and non-lesional skin of patients. ROS
and respective chemical substances provoke alteration of the
folding machinery of the endoplasmic reticulum, leading to
accumulation of immature proteins and finally to autophagy
or apoptosis [60]. The increase of ROS is associated with the
release of melanocyte-specific antigens and molecules like
heat-shock proteins (HSPs) and self RNA/DNA, which acti-
vate pathogen recognition receptors on macrophages and DCs
[63]. As reported, inducible HSP70 promotes an inflammato-
ry DC phenotype and accelerates disease progression in a
murine model of vitiligo [65].

The described events induce generation of T1 cells in
lymph nodes that are specific for melanocyte antigens
(Fig. 2). The infiltration of such T cells into the skin seems
to depend on the chemokine receptor CXCR3 expressed by
T1 cells and its ligands CXCL9, CXCL10, and CXCL11 pro-
duced by cutaneous tissue cells like keratinocytes [66].
Interestingly, vitiligo mouse models suggest that CXCL9 pro-
motes Tc1 recruitment into the skin but not their effector func-
tion, whereas CXCL10 is required for effector function [67].
In the progressive phase of the disease, the immigrated T1
cells, in particular Tc1 cells, destroy melanocytes through
the production of IFN-γ and TNF-α as well as cytotoxic
molecules like granzyme B and perforin [51] (Fig. 2). In fact,
Tc1 cells isolated from the edges of patches induced apoptosis
in autologous melanocytes in co-cultures in vitro [68].
Furthermore, IFN-γ induces CXCL9 and CXCL10 in
cutaneous tissue cells [69]. In contrast, the Treg cell response
in the skin of patients with vitiligo seems to be limited [70], so
that Treg cells are not able to prevent the cytotoxic IFN-γ-
dominated T1 cell response [71]. Of note, individuals with
vitiligo have a lower risk for developing malignant melanoma
(see below). This observation shows that immune activation
directed against melanocytic antigens can be of benefit in the
setting of carcinogenesis.

Besides IFN-γ, IL-17 expression is also increased in
perilesional skin of vitiligo patients, where T cells appear as
the main source of this cytokine [72]. Since depigmentation is
not a typical finding in psoriasis, a disease with high IL-17
expression in the skin, it is questionable, whether IL-17
significantly contributes to vitiligo pathogenesis.

Immunopathology-based therapy of vitiligo

Treating vitiligo is a challenge, since no systemic thera-
pies are yet available. Understanding the exact pathoge-
netic processes in vitiligo could help in developing suc-
cessful therapeutic strategies (Table 1). The dominant role
of IFN-γ in the depigmentation in mouse models of viti-
ligo [73] suggests that neutralizing this cytokine,
inhibiting its production or signaling pathway, may help
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to stop the disease. More recently, two case reports de-
scribed that patches rapidly repigmented in vitiligo pa-
tients treated with JAK inhibitors like tofacitinib or
ruxolitinib that interfere with IFN-γ signaling [74].
Since cumulating reports show that pathogenic T1 cells
in vitiligo are tissue-resident memory T cells, interven-
tions focused on IFN-γ neutralization or hindrance of
the effect of this cytokine should be periodically repeated
[51]. Besides IFN-γ as cytokine factor, T cell–based cy-
totoxic mechanisms are involved in melanocyte destruc-
tion. Thus, the depletion of T1 cells or the inhibition of
their migration into the skin may result in promising ap-
proaches. The minimization of skin infiltration by T1 cells
might be achieved by inhibiting CXCR3 function, as
demonstrated in experimental mice [67]. Targeting the
CXCR3 chemokine receptor to deplete T1 cells from skin
is another alternative approach, as also recently demon-
strated in mice [75]. Interestingly, this latter approach did
not only prevent depigmentation but also lead to
perifollicular re-pigmentation.

T2 cells and atopic dermatitis

Clinical and histological picture of atopic dermatitis

A more frequent T cell–mediated skin disease than vitiligo is
atopic dermatitis. It usually begins in infancy. Its prevalence is
very high in the Western population, with 15–20% of children
and 3–4% of adults being affected [10]. The clinical manifes-
tation of atopic dermatitis is age- and stage-dependent. While,
in infants, skin lesions occur especially in the face and on the
scalp, at later age, the flexural surfaces of the elbows and
knees, the hands, feet, and the neck are increasingly affected.
Acute lesions present as strongly itchy with red papules, se-
rous exudation, and crusting. Histologically, edemas, vesicu-
lation, and moderate hypogranularity and hyperkeratosis can
be observed in the epidermis. Immune infiltration of the skin
includes T cells, mast cells and eosinophilic granulocytes,
macrophages, and DCs. Chronic lesions show increased col-
lagen deposition in the dermis resulting in skin lichenification.
Microscopically, acanthosis and more macrophage-dominated

Table 1 Pipeline of drugs for systemic treatment of vitiligo

Target(s) Drug name Phase Company Trial ID Study start Status

CD80/CD86 Abatacept 1 Bristol-Myers Squibb NCT02281058 1.2015 Active, not recruiting

PDE4 Apremilast 2 Celgene NCT03036995 3.2017 Active, not recruiting

Jak3 PF-06651600 2b Pfizer NCT03715829 11.2018 Recruiting

Tyk2/Jak1 PF-06700841 2b Pfizer NCT03715829 11.2018 Recruiting

Source: Clinicaltrials.gov. Clinical trials that started after January 2012 are shown
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dermal infiltrations are visible at this stage. In contrast to pso-
riasis, lesions are less clearly demarcated [76]. In addition to
the cutaneous alterations, 80% of patients suffer from allergies
and often develop allergic asthma and rhinitis (extrinsic dis-
ease) [77].

Immunopathophysiology of atopic dermatitis

Atopic dermatitis has a multifactorial nature with a genetic
component and environmental factors being involved
(Fig. 3). A positive family history has been reported in 40–
60% of patients [78, 79]. The strongest genetic association
concerns the gene encoding the skin-barrier molecule filaggrin
(FLG). In fact, 20–30% of patients carry a FLG null mutation
[80]. This matches the fact that the impaired skin barrier is an
essential factor in the pathogenesis and correlates with the
severity of this disease [81]. Atopic dermatitis has also been
linked to variants within the genes encoding the T2 pathway-
associated cytokines/cytokine receptors IL-4, IL-13, IL-4RA,
and IL-31 and associated downstream molecules like STAT6
and GATA3 [82]. A characteristic MHC variant reported in
some patient populations with atopic dermatitis is HLA-
DRB1 [83]. Exogenous triggers of the disease include aller-
gens, microbial antigens/superantigens, mental stress, and
scratching of the skin [76].

T2 cell mediators are crucial for the pathogenesis of atopic
dermatitis [80] (Fig. 3). At the chronic disease stage, the T22
mediator IL-22 is also of relevance [84, 85]. IL-4, IL-13, IL-
31, and IL-22 seem to interfere with keratinocyte terminal
differentiation [86–89]. This may explain the decreased

epidermal expression of filaggrin and other molecules neces-
sary for skin differentiation and barrier function even in pa-
tients without FLG mutation. IL-31 is involved in the patho-
physiology of itching, a characteristic finding patients with
atopic dermatitis suffer from. IL-5 is known to activate eosin-
ophilic granulocytes that are found histologically in skin le-
sions from the patients. IL-4 also promotes production of IgE,
which shows elevated serum levels in the majority of patients
with atopic dermatitis [80]. Chronic lesions also express mod-
erate levels of the T1 cell cytokine IFN-γ, while IL-17 can
hardly be detected [76, 90].

The aforementioned cytokine pattern is also the reason for the
deficient epidermal production of anti-microbial proteins
(AMPs) and antiviral proteins (AVPs) atopic dermatitis patients
show (Fig. 3). In fact, high T2 cytokine/low IL-17 levels result
in lowAMP production by keratinocytes [91–93], while lacking
expression of the T17 cytokine IL-29 is associated with im-
paired keratinocyte AVP expression [94] (see also BCommon
T cell–related disorder^). Low AMP levels in the barrier-
disturbed skin of atopic dermatitis patients predestinate for atyp-
ical cutaneous colonization with Staphylococcus aureus, pene-
tration of microbial pathogens and their immunostimulating
constituents into the skin, and infections with this pathogen
[95–99]. Interestingly, subclinical S. aureus colonization also
occurs in non-lesional skin of patients, correlatingwith disturbed
skin barrier function and disease extent [99, 100]. Atopic der-
matitis patients also show an increased risk of developing skin
infections with viral pathogens, including human papillomavi-
rus, herpes simplex virus (HSV), and molluscum contagiosum
virus [95, 98]. In rare cases, HSV infection may spread and
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cause Ekzema herpeticatum [101]. Importantly, the impaired
skin barrier function also promotes epicutaneous sensitization
to allergens and may explain the high allergy frequency in
affected patients.

Immunopathology-based therapy of atopic dermatitis

Classically, topical corticosteroids and, for more severe dis-
ease, systemic immunosuppressive agents are used. Since
2016, topical phosphodiesterase inhibitors such as crisaborole
[102] (for the treatment of mild to moderate disease) are ap-
proved. More recently, the first biologic for treating atopic
dermatitis, namely dupilumab, was introduced [103]. This an-
tibody targets the IL-4/IL-13 receptor and was approved in
2017 for the treatment of moderate to severe disease
(Table 2). A large number of other biologics for the treatment
of atopic dermatitis are under development (Table 3).

T17 cells, T22 cells, and psoriasis

Clinical and histological picture of psoriasis

With a prevalence of 2–3% in Western countries, psoriasis is
another very common T cell–mediated skin disease [104].
Psoriasis manifests with sharply demarcated, raised, erythema-
tous plaques covered by silvery scales. Lesions preferentially

develop in mechanically stressed areas such as the extensor sides
of the arms and legs, the sacral region, and the head [105].

Microscopically, psoriatic skin lesions show a massively
thickened epidermis. This is the result of a substantial elonga-
tion of the epidermal rete ridges and an increased stratum
corneum (hyperkeratosis). Furthermore, a reduced stratum
granulosum and presence of nuclear remnants in the stratum
corneum (parakeratosis) are typical features. Mechanistically,
these changes are based on excessive proliferation of basal
keratinocytes (TA cells) and an impaired cornification process
of the keratinocytes of the upper epidermal layers [106]. In the
dermis, dilatated blood capillaries greatly extend between epi-
dermal rete ridges toward the skin surface [107]. The massive
immune cell infiltration, which is most prominent in the der-
mis but not restricted to it, predominantly consists of mono-
cytes/macrophages, dendritic cells, and T cells [108]. There
are also accumulations of partially netose-forming neutrophil-
ic granulocytes in the stratum corneum, called Munro’s
microabscesses [109].

Interestingly, inflammation in psoriasis is not restricted to
the skin. More than 20% of patients show involvement of the
joints [110]. In addition, the prevalence of colitis is increased,
and metabolic and cardiovascular alterations lead to a short-
ened life expectancy in the patients [111, 112].

Immunopathophysiology of psoriasis

Both genetic and extern/lifestyle factors are involved in the
development of psoriatic skin alterations (Fig. 4).
Approximately 75% percent of patients report a positive
family history [113]. A great proportion of patients carry the
MHC haplotype HLA-Cw6 [113, 114], which has been cor-
related with certain clinical characteristics and therapeutical
outcome in patients with psoriasis [115]. In addition, proposed
autoantigens in psoriasis like the cathelicidin-derived peptide
LL-37 and the melanocytic protein ADAMTSL5 were dem-
onstrated to have T cell–stimulatory activity in HLA-Cw6-
carrying patients [115]. Furthermore, there are associations
with genes related to the keratinocyte terminal differentiation,
antimicrobial defense, and the T17 cell pathway [116].
Regarding the latter (see also below), psoriasis has been linked
for example to polymorphisms within IL12B, IL23A, IL23R,
and, in some patients with a special psoriasis subtype, pustular
psoriasis, also IL36RN. Moreover, there are associations with
variants in REL, TYK2, RUNX3, STAT3, and TRAF3IP2 [115].
Exogenous triggering factor for psoriasis involves mechanical
skin trauma, streptococcal infections, and certain drugs [115].

The central pathways crucial to psoriasis pathogenesis in-
volve T17 and T22 cells, whose mediators and upstream and
downstream molecules are highly present in the lesions (Fig.
4). In addition to T cells (CD4+ and CD8+), type 3 innate
lymphoid cells play a role as producers of IL-17 and IL-22
[117, 118]. One of the most relevant cytokines promoting

Table 2 Approved biologics for the treatment of atopic dermatitis,
psoriasis, and melanoma

Indication Target Drug name

AD IL-4Rα Dupilumab

Pso, PsA TNF-α Etanercept

Pso, PsA TNF-α Infliximab

Pso, PsA TNF-α Adalimumab

PsA TNF-α Golimumab

Pso, PsA TNF-α Certolizumab-pegol

PsA CD80/CD86 Abatacept

Pso, PsA p40 Ustekinumab

Pso, PsA IL-17 Secukinumab

Pso, PsA IL-17 Ixekizumab

Pso IL-17R Brodalumab

Pso p19 Guselkumab

Pso p19 Tildrakizumab

Melanoma CTLA-4 Ipilimumab

Melanoma PD-1 Pembrolizumab

Melanoma PD-1 Nivolumab

Melanoma IFN-αR IFN-α-2b

Melanoma IL-2R IL-2

AD atopic dermatitis, Pso psoriasis, PsA psoriasis arthritis
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IL-17 and IL-22 expression by immune cells is IL-23. This
heterodimeric cytokine is highly expressed in psoriatic skin.
IL-23 inhibits IL-10 production by T17 cells and instead
induces an inflammatory T17 phenotype [119]. Moreover,
TNF-α, primarily secreted by T17 cells, T22 cells, and
macrophages, as well as the T1 cell mediator IFN-γ are
abundant in the psoriatic skin [120]. In sharp contrast, IL-4
is not found in psoriatic lesions.

Main target cells of IL-17A, IL-17F, and IL-22 in the skin
are keratinocytes, although IL-17 effects were also described
for immune cells and other tissue cells. In keratinocytes,
IL-17 induces the production of selected chemokines (such
as CCL20, which attracts T17 cells, T22 cells, and DCs, as
well as CXCL1, CXCL2, CXCL5, and CXCL8, which all
attract neutrophilic granulocytes) and other cytokines (such

as IL-6, the granulocyte-activating cytokine G-CSF, and
IL-19) in the skin. Presumably, IL-17 alone causes only
moderate cellular responses while mainly synergizing with
TNF-α, and IL-22 [121–127]. Together with IL-22, IL-17
induces the production of AMPs and therefore plays an es-
sential role in the remarkable immune defense of the psori-
atic plaque against extracellular bacteria and fungi [54, 126,
128–130]. In fact, it is a peculiarity of psoriasis patients that
the impairment of the skin barrier function is not associated
with an increased skin infection risk [95, 96]. Apart from its
function in antibacterial defense, IL-22 is the main mediator
of the impaired keratinocyte cornification process in psoria-
sis. IL-22 reduces the expression of molecules like filaggrin
required for the terminal differentiation of keratinocytes
[89]. The consequences of the IL-22-mediated inhibition of

Table 3 Biologics under development for the treatment of atopic dermatitis

Target(s) Drug name Phase Company Trial ID Study
start

Status

IgE Ligelizumab 2 Novartis NCT01552629 1.2012 Completed

IgE Anti-CemX 2 Fountain BioPharma NCT03758716 11.2018 Active, not recruiting

IgE, FcγRIIb XmAb7195 1 Xencor NCT02148744 9.2015 Completed

IL-1α Bermekimab 2 XBiotech NCT03496974 11.2018 Recruiting

IL-5 Mepolizumab 1/2 GlaxoSmithKline NCT03055195 3.2017 Terminated

IL-5RA Benralizumab 2 AstraZeneca NCT03563066 9.2018 Not yet recruiting

IL-12/IL-23
(p40)

Ustekinumab 2 Janssen Pharmaceutical K.K. NCT01945086 9.2013 Completed

IL-13 Tralokinumab 3 LEO Pharma NCT03526861 6.2018 Recruiting

IL-13 Lebrikizumab 2 Dermira NCT03443024 1.2018 Active, not recruiting

IL-17A Secukinumab 2 Novartis NCT02594098 11.2015 Completed

IL-17C MOR106 2 Galapagos NV NCT03568071 4.2018 Recruiting

IL-22 Fezakinumab 2 Pfizer NCT01941537 10.2013 Active, not recruiting

IL-22R ARGX-112 1 LEO Pharma NCT03514511 5.2018 Recruiting

IL-23 Risankizumab 2 Abbvie NCT03706040 12.2018 Recruiting

IL-31 BMS-981164 1 Bristol-Myers Squibb NCT01614756 7.2012 Completed

IL-31RA Nemolizumab 2 Galderma NCT03100344 6.2017 Completed

IL-33 REGN3500 2b Sanofi/Regeneron Pharmaceuticals NCT03738423 11.2018 Recruiting

IL-33 Etokimab 2 AnaptysBio, Inc. NCT03533751 5.2018 Recruiting

OX40 KHK4083 2 Kyowa Hakko Kirin Pharmaceutical
Development, Inc.

NCT03703102 10.2018 Recruiting

OX40 GBR 830 2 Glenmark Pharmaceuticals NCT03568162 5.2018 Recruiting

OX40 KY1005 2 Kymab Limited NCT03754309 12.2018 Recruiting

ST2 MSTT1041A 2 Roche NCT03747575 1.2019 Recruiting

ST2 CNTO 7160 1 Janssen Research & Development, LLC NCT02345928 8.2014 Completed

TSLP Tezepelumab 2b AstraZeneca NCT03809663 1.2019 Not yet recruiting

TSLPR MK-8226 1 Merck Sharp & Dohme Corp. NCT01732510 12.2012 Terminated (business
reasons)

Undisclosed
target

REGN846 1/2 Sanofi/Regeneron Pharmaceuticals NCT01605708 6.2012 Terminated

Undisclosed
target

LY3454738 1 Eli Lilly and Company NCT03750643 11.2018 Recruiting

Source: Clinicaltrials.gov. Clinical trials that started after January 2012 are shown
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the keratinocyte terminal differentiation are reflected by a
marked epidermal thickening and hypogranulosis of
reconstituted three-dimensional human epidermis models
and IL-22-transgenic mice [88]. Apart from the direct effects
of IL-22, this mediator also acts via the induction of IL-20 in
keratinocytes, which, by partially using the same receptor
(IL-22R1), can exert IL-22-like effects [131]. It should be
noted that the activity of IL-22 is regulated by IL-22 binding
protein [132]. In psoriasis patients, the expression of this
natural inhibitor is downregulated in non-lesional skin, and
such downregulation is associated with an increased
sensitivity of the skin to the pathogenetic action of
IL-22 [133]. Increased levels of the T1 cell cytokine
IFN-γ may support the activation of dermal endothelia
to allow infiltration of immune cells from the bloodstream
into the psoriatic lesion [134]. IFN-γ further induces
chemokines attracting T1 cells including CXCR10 [135]
and upregulates the expression of MHC molecules on
both tissue and antigen-presenting immune cells [134].
The pleiotropic and highly inflammatory cytokine
TNF-α induces a wide range of immune cell–attracting
chemokines and contributes to endothelial activation,
two functions necessary for immune cell infiltration
[136]. Many effects of cytokines are enhanced in the pres-
ence of TNF-α [121, 122, 125], arguing for a central role
of this cytokine in skin inflammation.

Another mediator, which can be produced by T17 cells in
psoriasis, is IL-29. IL-29 is able to inhibit the replication of
viruses via the induction of AVPs [137] and seems to be re-
sponsible for the high resistance of psoriatic epidermis toward
viral superinfections [94].

Immunopathology-based therapy of psoriasis

The excellent knowledge about the specific cytokine path-
ways involved in psoriasis pathogenesis has allowed the tre-
mendous success in the development of innovative drugs for
the treatment of moderate to severe psoriasis [108]. These
include therapeutic antibodies that neutralize IL-17 and IL-
23 as well as TNF-α (Table 2). A broad range of further drugs
is under development [138, 139].

Treg cells and melanoma

Clinical and histological picture of melanoma

The worldwide incidence of cutaneous melanoma has been
increasing annually at a more rapid rate compared with any
other type of cancer. In 2012, 232,000 new cases of melanoma
and 55,000 related deaths were registered worldwide, ranking
15th among most common cancers [140]. About 90% of mel-
anoma cases are diagnosed as primary tumors without evi-
dence of metastasis, and their 10-year survival is between 75
and 80% [141]. Metastases, which can develop either via the
lymphatic or the hematogenous route, are the main cause of
death in melanoma patients [142]. Disease is subclassified to
estimate prognosis and determine therapeutic interventions.
This classification considers TNM criteria together with tumor
thickness, ulceration, mitotic figures, and microscopic satel-
lites of the primary tumor.

UV light radiation from sunlight, in particular the UV-B
spectrum, is the main environmental risk factor for melanoma
skin cancer development [143]. Melanoma in chronically sun-

CCR4+

CCR6+

CCR10-

Ag-specific T17 cell
naive T cell

lymph
node

hyperkeratosis, 
parakeratosis

TNF-

M

LC

CCR4+

CCR6+

CCR10+

Ag-specific T22 cell

T22 cell

T17 cell

CCL20
CXCL1
CXCL2
CXCL5
CXCL8

neutrophilic
granulocyte

IL-22

AMPs and AVPs

streptococcal
infec�on,
trauma,

drugs

IFN-

acanthosiskera�nocytes

IL-17

IL-19
IL-20

IL-23

gene�c
predisposi�on

HLA-Cw6
SNPs in IL12B, IL23A, IL23R

DAMPs,
PAMPs,
an�gens

M /Dc

Fig. 4 Immunopathophysiology
of psoriasis

368 Semin Immunopathol (2019) 41:359–377



exposed skin usually manifests in older-aged individuals and
has a high tumor mutational burden related to UV exposure.
The main genetic drivers are mutations in the genes encoding
B-Raf proto-oncogene (BRAF), neurofibromin 1 (NF1),
NRAS, and others. Melanomas associated with intermittently
sun-exposed skin cases arise in younger-aged individuals and
are usually associated with the BRAFV600E mutation and a
lower mutational load [144, 145]. Up to 90% of melanomas
exhibit an aberrant MAPK pathway activation as central step
in melanoma development [146]. Furthermore, SNPs in ge-
netic loci that associate with the risk for developing malignant
melanoma have also been reported in patients. Examples of
such genes are CDKN2A, CDK4, and others. These genetic
findings helped to establish small molecular inhibitors of sig-
naling pathways that promote melanoma.

Immunopathophysiology of melanoma

Melanoma is deemed one of the most immunogenic types of
cancer. In fact, several melanoma-specific antigens have been
identified and large numbers of melanoma-specific antibodies
and functional lymphocytes are present in patients with mel-
anoma [147]. Moreover, spontaneous regression of melanoma
with simultaneous onset of vitiligo has been reported [148]
and metastatic melanoma responds to immune-stimulating
agents, such as IFNs and IL-2 as well as the novel immune
checkpoint inhibitors blocking cytotoxic T lymphocyte-
associated antigen-4 (CTLA-4) and PD-1 [149–151]. The ma-
jor base for the strong immunogenicity of melanoma is its
often very high (UV-driven) tumor mutational burden, which
allows for the creation of neoantigens recognizable as Bnon-
self^ by host immune cells [152, 153]. Accordingly, strong
immune cell infiltration is an established positive prognostic
parameter in advanced melanoma [154, 155]. Despite the im-
munogenicity of melanoma and induction of tumor-specific
immune responses [156], current immunotherapies show lim-
ited efficacy and are restricted to subpopulations of patients
with advanced melanoma. It has been suggested that several
negative factors hinder antitumor immune activities. These
include (i) immune-suppressive cells like Treg cells and
myeloid-derived suppressive cells, (ii) anti-inflammatory cy-
tokines like tumor growth factor (TGF)-β and IL-10, (iii) de-
fective antigen presentation by tumor cells because of antigen
expression loss and antigen processing defects, (iv) immune
inhibitory molecules like CTLA-4 and PD-1, and (v) amino
acid–catabolizing enzymes like arginase and indoleamine-2-3
dioxygenase (IDO) [157].

In both animal models and human beings, Treg cells infil-
trate into the tumor microenvironment, dampening immune
responses to tumor cells [158–160]. Cell-to-cell contact, pro-
duction of immune-suppressive cytokines like IL-10 and
TGF-ß, competing for growth factors with other effector cells,
and modification of APCs are the four main strategies how

Treg cells apply to exert their inhibitory effects [161, 162]. As
most tumor antigens are normal self-antigens, such tumors
could induce tumor-specific Treg cells, suppressing effective
antitumor responses [163, 164]. In animal models of melano-
ma, transient Treg cell depletion induces immune responses
against tumor and improves survival, indicating the impor-
tance of these cells [165]. Wang et al. were the first to isolate
Treg cells that recognize epitopes from the tumor-associated
antigen LAGE-1 from patients with melanoma, providing ev-
idence for the relevance of this mechanism also in the mela-
noma setting [166]. Tumor-specific Treg cells that can recog-
nize a broad range of melanoma-associated antigens and
neoantigens can be detected in the tumors and in the blood
of melanoma patients [167, 168]. Fourcade et al. showed that
the same melanoma-associated antigens can stimulate both Th
and Treg cells [169]. As a consequence, immunotherapeutic
vaccinations with melanoma-associated antigens in patients
with melanoma can result in expansion of both induced and
naturally occurring melanoma-associated Treg cells [170].

Numerous researches have indicated increased numbers of
Treg cells not only in the local tumor microenvironment in-
cluding primary and metastatic lesions but also in peripheral
blood of subjects with metastatic melanoma, as well as in
affected draining lymph nodes [159, 160]. Treg cell accumu-
lation in the tumor microenvironment was reported to be pre-
dictive of reduced survival of melanoma patients [171].
Subsequently, several other retrospective studies demonstrat-
ed the correlation between Treg cell infiltration and prognosis
of melanoma patients [172]. Vice versa, the parameter that
best correlates with favorable clinical outcome and survival
of melanoma patients seems to be the ratio of CD8-positive
effector T cells to Treg cells in the tumor microenvironment
[173]. The chemokine CCL22 is known to mediate CCR4high

Treg cell trafficking into tumors [174]. The CCR4-mediated
Treg cell attraction into melanomas, however, seems to be
caused by the alternative CCR4 ligand CCL2 [175].

Immunosuppressive factors that are locally secreted by
melanomas, such as TGF-ß and IL-10, could promote
both expansion of naturally occurring Treg cells and de
novo generation of induced Treg cells [165]. Likewise,
molecular mechanisms of tumor immunosuppression me-
diated by IDO have a direct anergic effect on effector T
cells and enhance local Treg cell–mediated immunosup-
pression. Moreover, expression of IDO on tumor-
infiltrating APCs stimulates the conversion of convention-
al T cells to Treg cells [176]. Upregulation of IDO expres-
sion in melanoma lymph-node metastases is associated
with an increased number of tumor-infiltrating Treg cells
and consequently shorter patient survival [177].
Interestingly, very recently, it has been reported in an
inducible autochthonous model of melanoma that the ex-
pression of the oncogenic BRAFV600E mutation in mela-
nocytes resulted in nevus formation, CCR4 induction, and
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Treg cell recruitment [178]. This suggests the BRAFV600E

signaling is sufficient to recruit the Treg cells to melano-
mas and might add an additional mechanism for
explaining the therapeutic activity of BRAF inhibition in
patients with metastatic melanoma (see below). The path-
ophysiology of melanoma is depicted in Fig. 5.

Immunopathology-based therapy of melanoma

As mentioned above, the majority of patients with newly di-
agnosed melanoma have early-stage disease, for which surgi-
cal excision represents the treatment of choice and is curative
in the majority of cases [179]. However, approximately 10%
of melanoma cases are diagnosed at an advanced stage and are
unresectable or already metastatic. Due to the known immu-
nogenicity of melanoma, experimental immunotherapy had a
prominent position in the treatment of melanoma for decades.

Collected data from several clinical trials evaluating the
efficacy of recombinant IL-2 therapy in the 1980s showed that
a small fraction of melanoma patients experienced durable
complete responses. Based on these results, in 1998, the
FDA approved IL-2 for the treatment of unresectable melano-
ma [180] (Table 2). IL-2 is a key regulator in supporting pro-
liferation and homeostasis of effector T cells but is also crucial
for the development of Treg cells, therefore simultaneously
leading to increased numbers of Treg cells in melanoma pa-
tients [167, 181]. However, IL-2 was also described to mask
the suppressive function of Treg cells on effector T cell pro-
liferation [182].

Since Treg cell–mediated immunosuppression is generally
deemed one of the main hurdles for cancer immunotherapy,
various approaches for depletion and/or modulation of Treg
cells (cyclophosphamide, denileukin diftitox, anti-CD25 anti-
body (daclizumab), anti-CD25 immunotoxin) have been char-
acterized and tested with different clinical outcome. New such
experimental approaches include an anti-CCR4 antibody for
Treg cell depletion as well as an agonistic antibody against the
glucocorticoid-induced tumor necrosis factor receptor (GITR)
for modulation of Treg cell activity [159, 160, 165].

The main treatment for melanoma patients in the early
stages is surgical resection. For a long period, the only treat-
ments for patients with metastatic melanoma included chemo-
therapy with dacarbazine and some other agents as well as
immunotherapy with high doses of IL-2. In the last 10 years,
MAP kinase pathway–targeted therapies (BRAF and MEK
inhibitors) and immune checkpoint inhibitors blocking
CTLA-4 and PD-1 have revolutionized the management of
advanced melanoma and significantly prolonged patient sur-
vival [149, 151] (Table 2).

In BRAFV600E-mutated melanoma, the combination of
BRAF and MEK inhibitors has led to high response rates
(70%) and rapid response induction and symptom control,
with a significant prolongation of progression-free survival
[183, 184]. Interestingly, it was reported that BRAF inhibition
could promote the immune response to melanoma [185].

CTLA-4 is an inhibitory receptor that is constitutively
expressed by Treg cells. CTLA-4 binds to CD80 and
CD86 on APCs and acts as a key negative regulator of
peripheral T cell proliferation and function. In mice
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models, treatment with monoclonal anti-CTLA-4 antibod-
ies increased the local infiltration of cytotoxic T cells
while dramatically reducing Tregs at the tumor site [173,
186]. The human anti-CTLA-4 antibody ipilimumab was
demonstrated to be effective in a phase III clinical trial
and received FDA approval for treating metastatic mela-
noma in 2011 [187]. Remarkably, meta-analyses demon-
strated the durability of long-term survival in a significant
number of ipilimumab-treated patients [188]. Whether
there is a depletion or reduction of Treg cells in melanoma
microenvironment as mechanism of therapeutic anti-
CTLA-4 antibodies in the patients is still under debate
[189–192]. The PD-1 receptor is expressed on Treg cells
and activated effector lymphocytes. It binds to PD-L1 and
PD-L2, acts as a T cell co-inhibitory molecule, and sup-
presses T cell activation. Nivolumab is a high-affinity
anti-PD-1 monoclonal antibody that inhibits the binding
between the PD-1 receptor and its ligands PD-L1 and PD-
L2. Nivolumab was approved (2014) by the FDA for the
treatment of patients with metastatic melanoma [193].
Pembrolizumab, another anti-PD-1 antibody, was ap-
proved by the FDA in 2015 for the treatment of advanced
melanomas [184]. Interestingly, a very recent paper sug-
gests that PD-1 blockade can decrease the suppressive
function of Tregs in vitro and that the therapeutic benefit
of nivolumab in melanoma patients corresponds to a de-
creased suppressive function of blood Treg cells [194].
Moreover, a quite current paper described significantly
increased responses to anti-PD1 in aged melanoma pa-
tients and correlated this with higher CD8+ effector
/FoxP3+ Treg cell ratios in the tumor microenvironment
in this population [195]. Interestingly, in some patients
with successful anti-tumor response by checkpoint inhib-
itors, vitiligo-like depigmentation can be observed.

Conclusion

Chronic T cell–mediated skin diseases represent a major
health economy problem worldwide. Pathogenetically, these
diseases are based on different mechanisms that are closely
related to effector functions of respective T cell subtypes.
Activity of T1 cells leads to destruction of cells expressing
antigens recognized by these T cells. For example, when re-
spective antigens are carried by melanocytes, the stimulation
of the antigen-specific T1 cells results in pigment-free skin
patches that characterize vitiligo. The activation of T2 cells
leads to IL-4, IL-5, and IL-13 secretion, provoking skin barrier
alteration, immune cell infiltration into skin, and itch as ob-
served in atopic dermatitis. The stimulation of T17 and T22
cells is associated with highly increased production of IL-17,
IL-22, and TNF-α that promote the proliferation of
keratinocytes and alter their terminal differentiation. These

cellular changes result in sharply demarcated, reddish-
colored raised plaques with superficial silvery scaling as ob-
served in psoriasis. In many other immune-mediated skin dis-
eases, the exact phenotype of disease-responsible T cells is
less clear. Examples are diseases such as lichen planus,
hidradenitis suppurativa, or pemphigus. Apart from the dys-
regulated activity of T1, T2, T17, and T22 effector T cells, an
increased activity of Treg cells can be involved in the devel-
opment of skin diseases. An impressive example for this is
skin melanoma, a malignant tumor of melanocytic origin,
which presents as hyper-pigmented maculae or nodules. In
that disease, local Treg cell–mediated immunosuppression is
thought to be responsible for the dampened immune response
(mainly T1) to the tumor cells.

The understanding of the immunopathogenetic mechanisms
involved in skin diseases opens up great opportunities for the
development of targeted therapeutic approaches for the respec-
tive patients. In fact, while, on the one hand, our knowledge of T
cell biology has allowed the development of efficient strategies to
control, e.g., psoriasis, the great success of these strategies in
dermatology has, vice versa, decidedly contributed to the under-
standing of Tcell biology and the pathways they are involved in.
Further studies in immunodermatology are needed to improve
the treatment options for many other inflammatory and
neoplastic skin diseases beyond vitiligo, psoriasis, atopic
dermatitis, and melanoma.
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