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INTRODUCTION
Artificial intelligence (AI) has exciting potential to trans-
form the field of medical imaging. Recent advances in 
computer algorithms, increased availability of computing 
power, and more widespread access to big data are fueling 
this revolution. AI algorithms can be taught to extract 
patterns from large data sets, including data sets containing 
a vast amount of medical images, and are able to meet, 
and even exceed, human- level performance in a variety of 
repetitive well- defined tasks.1–6

Breast imaging is particularly well suited for AI algorithm 
development since the diagnostic question is straightfor-
ward and there is widespread availability of data. Most 
breast imaging exams are binary classification problems 
(e.g. malignant vs benign), and almost all studies have an 
accepted ground truth (e.g. histopathology or negative 
imaging follow- up) that is commonly available for use 
during algorithmic development. Furthermore, there is 
widespread availability of standard imaging data due to 
population- wide screening programs, and the American 
College of Radiology (ACR) Breast Imaging and Reporting 
Data System (BI- RADS) system enforces structured 
reporting and assessments.

To date, retrospective and small reader studies show that 
AI tools increase diagnostic accuracy,7–9 improve breast 
cancer risk assessment,10–12 and predict response to cancer 
therapy,13,14 among other tasks. AI is also being applied to 
improve the image reconstruction process more generally, 
so that high quality images may be obtained with lower 
radiation dose in mammography and digital breast tomo-
synthesis (DBT), and with shorter scan times in MRI.15–17

AI is uniquely poised to help breast imagers at both ends 
of the interpretive spectrum. On the one hand, AI can be 
used to automate simple tasks (e.g. removing completely 
normal exams from the radiology worklist, which relieves 
radiologists to tackle more challenging cases). Computer 
algorithms do not suffer from fatigue or distraction, and 
thus are uniquely suited for basic repetitive tasks that 
humans may find tedious or boring. On the other hand, 
AI has the potential to extend the frontiers of our practice 
of medicine. AI can identify complex patterns in imaging 
data that are not appreciated by the human eye,10 adding 
a wealth of information to enable more sophisticated 
disease modelling and more individualized treatment 
planning. However, it is important to note that almost 
all studies to date have been either retrospective trials or 
small reader studies, which limits the generalizability of 
results. Prospective studies are now needed to more fully 
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ABSTRACT

Millions of breast imaging exams are performed each year in an effort to reduce the morbidity and mortality of breast 
cancer. Breast imaging exams are performed for cancer screening, diagnostic work- up of suspicious findings, evalu-
ating extent of disease in recently diagnosed breast cancer patients, and determining treatment response. Yet, the 
interpretation of breast imaging can be subjective, tedious, time- consuming, and prone to human error. Retrospective 
and small reader studies suggest that deep learning (DL) has great potential to perform medical imaging tasks at or 
above human- level performance, and may be used to automate aspects of the breast cancer screening process, improve 
cancer detection rates, decrease unnecessary callbacks and biopsies, optimize patient risk assessment, and open up 
new possibilities for disease prognostication. Prospective trials are urgently needed to validate these proposed tools, 
paving the way for real- world clinical use. New regulatory frameworks must also be developed to address the unique 
ethical, medicolegal, and quality control issues that DL algorithms present. In this article, we review the basics of DL, 
describe recent DL breast imaging applications including cancer detection and risk prediction, and discuss the chal-
lenges and future directions of artificial intelligence- based systems in the field of breast cancer.
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evaluate the performance of these AI tools, and are prerequisite 
to responsible clinical translation.

In this article, we will review the basics of AI and deep learning, 
describe some AI applications in clinical breast imaging, and 
discuss challenges and future directions.

ARTIFICIAL INTELLIGENCE AND DL
Traditional machine learning, a subfield of AI, was used in 
the 1990s and 2000s to develop computer- aided detection 
(CAD) software for mammography. In initial studies,18 CAD 
improved diagnostic accuracy, it received FDA approval in 
1998, and became widely utilized over the next 18 years.19 
However, more recently, larger studies demonstrated that 
CAD generates large numbers of false positives and does not 
improve diagnostic accuracy, and therefore it has largely fallen 
out of favor.20

Deep learning (DL), a new type of representative machine 
learning, first gained widespread attention in 2012 when AlexNet 
won the ImageNet Large Scale Visual Recognition Challenge by a 
large margin.21 Since 2016, there has been an explosion of effort 
in applying DL to diagnostic radiology, and to breast imaging 
in particular.22,23 DL models not only classify input images as 
positive or negative, but they figure out which imaging features 
are needed to perform this classification, without expert input.24 
This is in contrast to traditional machine learning techniques 
(e.g. CAD), which rely on hand- crafted features (e.g. shape, 
margin) to perform the classification (Figure  1a). This major 
difference explains why new DL algorithms outperform tradi-
tional machine learning techniques (if there are sufficient data 
available).25

Most DL algorithms for medical imaging use convolutional 
neural networks (CNN). CNNs have millions of weights (i.e. 
variables to be optimized) and multiple layers of processing 
designed to extract hierarchical patterns in data. Most DL models 
for medical imaging use a supervised learning technique, which 
means that training is performed using many labeled exam-
ples. Data labeling can be done on the exam level (e.g. a whole 
mammogram exam is labeled as benign or malignant), breast 
level (e.g. the left breast is labeled benign and the right breast 
is labeled malignant), pixel level (e.g. the area of malignancy is 
circled), or somewhere in between. Pixel- level labeling gives the 
most information and reduces training set size requirements, 
although it is costly to generate.

During CNN training, a general purpose learning procedure24 
is used to perform feature selection and classification simulta-
neously and without expert input (Figure  1b). During CNN 
training, large numbers of labeled medical images are fed directly 
to a CNN. The first layer learns small simple features (e.g. location 
and orientation of edges), the next layers learn particular combi-
nations of those simpler features, and the deeper layers learn even 
more complex arrangements of those earlier patterns. The final 
layers use these imaging features or representations to classify 
the image or to detect other patterns of interest (Figure 1b). Once 
a CNN is fully trained, its performance is tested using a held- out 
test set not used during the training. Ideally, CNN performance 
is further validated using a data set from an outside institution 
(i.e. external validation).

DL methods are data- driven and results generally improve 
as the data set size increases. There is no specific formula to 
calculate the data set size needed to train a model for a given 

Figure 1. Schematic illustrating (a) feature- based (human- engineered) machine learning network (e.g. conventional CAD soft-
ware) and (b) end- to- end deep learning network. CAD, computer- aided design.
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task, although training data sets must be large enough and 
diverse enough to encompass the range of phenotypes of the 
categories that they seek to classify. When it is not possible to 
curate a data set of sufficient size to train a CNN from scratch 
(a frequent occurrence in medical imaging), CNN weights 
may be initialized with weights learned for some other task 
(e.g. classifying cats versus dogs). This transfer learning tech-
nique substantially reduces data set size requirements for CNN 
training.24,26

Since DL networks learn complex representations of images 
not appreciated by the human eye, they have the potential to 
identify new unseen patterns in data, transcending our current 
knowledge of disease diagnosis and treatment, although 
this aspect of DL is still at a pilot stage and warrants further 
exploration.

MAMMOGRAPHY AND DIGITAL BREAST 
TOMOSYNTHESIS
Cancer detection and classification studies
Each year, more than 300,000 cases of breast cancer are diag-
nosed in the United States alone. While screening mammog-
raphy decreases breast cancer mortality by 20–35%, it is not a 
perfect tool.27 The diagnostic accuracy of mammography varies 
widely, even among breast imaging experts, with sensitivity and 
specificity ranging from 67 to 99% and 71 to 97%, respectively.28 
DL has the potential to improve these metrics, both increasing 
cancer detection rates and decreasing unnecessary callbacks. 
Several retrospective and reader studies have already shown AI 
model performance at or beyond the level of expert radiolo-
gists9,22,29–31 (see Supplementary Material 1). Reader studies have 
used a combination of fellowship- trained breast imagers, general 
radiologists, and sometimes even trainees, which is an important 
consideration when making claims about the superiority of AI 
tools compared to human readers. Of note, while initial DL 
studies were based on 2D mammography, more recent work has 
focused on DBT,7,29,32,33 which is a more complex technical task 
but which has potential to improve AI performance even further. 
DBT increases the radiologist’s interpretation time by approxi-
mately 50% compared to 2D mammography,34 and so AI tools 
for DBT are being developed not just to find more cancers, but 
with an eye towards clinical efficiency.

In one of the most important AI mammography/DBT studies 
to date, Lotter et al presented a DL model for cancer detection 
that yielded state- of- the- art performance for mammographic 
classification, showing an area under the curve (AUC) of 0.945 
in their retrospective study.29 The DL model outperformed five 
expert breast imagers in a reader study, worked for both 2D 
digital mammography and 3D DBT, and was externally validated 
using imaging data from several national and one international 
site, demonstrating good generalizability (Figure 2). Another key 
retrospective study, from Salim et al, independently evaluated 
performance of three commercial AI systems for mammography 
screening using a single standardized data set.35 One of the three 
AI algorithms outperformed human readers, and combining 
that algorithm with a human reader outperformed two human 
readers.

To pave the way for clinical translation, prospective clinical trials 
are needed. Several such trials are currently recruiting, most of 
which are evaluating performance of the Transpara (ScreenPoint 
Medical) and INSIGHT MMG (Lunit) commercial AI soft-
ware, in different clinical and geographic settings. For example, 
the AITIC trial (NCT04949776) will evaluate if Transpara can 
reduce the workload of a breast screening program by 50% with 
non- inferior cancer detection and recall rate, whereas the Scre-
enTrustCAD trial (NCT04778670) will compare the Lunit soft-
ware to single and double readings by radiologists.

Calcifications
Calcifications, a common finding on mammogram, are conven-
tionally classified as suspicious, probably benign, or benign 
using the ACR BI- RADS lexicon.36 However, more than half of 
calcifications classified as suspicious yield benign pathology,37 
and so there is much interest in developing DL tools to improve 
the classification process and avoid unnecessary biopsies. Some 
groups have demonstrated increases in diagnostic accuracy with 
DL algorithms, although data set sizes are small and larger vali-
dation studies are needed.38–40

AI for mammography workflow optimization
In the coming years, DL seems poised to transcend its role as 
a mammography decision- support tool and instead to serve as 
an independent reader of “ultra- normal” mammograms. Over 
20 million22 screening mammograms are performed in the 
United States each year, and over 99% of them are completely 
normal. If an independent AI reader signed- off on even a frac-
tion of these studies without radiologist input, there could 
be significant cost savings and impacts on workflow. Several 
studies41–43 have investigated this, with results suggesting that 
AI could remove up to 20% of the lowest- likelihood- of- cancer 
screening mammograms from the worklist without missing 
cancers. Larger trials are warranted to validate these promising 
findings. Ethical, medicolegal, and regulatory aspects of stand-
alone AI warrant further consideration prior to clinical trans-
lation. For example, it will be important to develop AI- specific 
quality controls, including a schedule for continuous algorithmic 
assessment and fine- tuning to ensure that AI performance does 
not drift over time.

DL for breast cancer risk assessment
In one of the most significant AI- for- medical- imaging devel-
opments to date, DL has been used in an effort to optimize 
breast cancer screening practices. At present, conventional risk 
assessment models such as the Tyrer–Cuzick model are used 
to determine whether a woman is at high risk of breast cancer, 
a status which warrants supplemental screening with contrast- 
enhanced MRI in addition to standard- of- care annual screening 
mammography. Yala et al and others (see Supplementary Mate-
rial 1), have developed DL models using mammograms10,44,45 
(or MR images12) that outperform the Tyrer–Cuzick model 
(Figure 3), and that have been externally validated on large and 
diverse data sets from the United States, Europe and Asia.10 A 
prospective trial (ScreenTrustMRI, NCT04832594) is currently 
recruiting, which will evaluate use of one commercial AI tool 
and one in- house academic tool, to predict future breast cancer 

www.birpublications.org/doi/suppl/ 10.1259/bjro.20210060/suppl_file/BJRO_SI_Appendix_D2100060_clean.docx
www.birpublications.org/doi/suppl/ 10.1259/bjro.20210060/suppl_file/BJRO_SI_Appendix_D2100060_clean.docx
www.birpublications.org/doi/suppl/ 10.1259/bjro.20210060/suppl_file/BJRO_SI_Appendix_D2100060_clean.docx
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risk based on mammography images, and thereby optimize the 
triage of women to supplemental screening with breast MRI.

Going one step further, Manley et al46 demonstrated that their 
DL breast cancer risk score tool is modifiable, and that chemo-
prevention can decrease risk. DL tools have also been developed 
to automate the assessment of mammographic breast density, 
and have been clinically implemented at both academic and clin-
ical radiology centers.47,48

ULTRASOUND
Breast ultrasound can be used as both a supplemental screening 
modality (where it increases the cancer detection rate over 
mammography alone, particularly in women with dense breasts), 
and as a diagnostic tool in the work- up of mammographic or 
clinical findings.49 Unfortunately, in many cases, ultrasound 
demonstrates low specificity and prompts unnecessary biopsies. 
It also has high interreader variability.50 In an effort to boost the 
diagnostic accuracy of ultrasound, DL methods have been devel-
oped for breast ultrasound lesion segmentation, lesion detection, 

and lesion classification, for both automated and handheld ultra-
sound. Automated breast ultrasound generates thousands of 
images per patient exam, and so DL tools are particularly needed 
for lesion detection and to reduce interpretation time.51 DL- based 
segmentation methods are state of the art, outperforming conven-
tional computerized methods.51–53 DL has also been applied to 
lesion detection and classification,54–62 with several reader studies 
reporting DL models that are equivalent or superior to radiolo-
gists,49,62,63 although in most of these studies, DL models were 
compared against general radiologists without subspecialty 
training in breast imaging, small data set sizes were used, and data 
were from a single institution.58,62 As such, more work is needed 
to demonstrate the generalizability of these models.

DL for breast ultrasound has also been explored as a prognostica-
tion tool. Zhou et al58 and Zheng et al64 used ultrasound images 
of primary breast tumors to predict the presence of axillary node 
metastases, with AUCs up to 0.90. Figure 4 illustrates the use of 
DL to predict axillary nodal metastases using ultrasound images 
of primary breast cancer.

Figure 2. An illustration of multistage deep learning model training and data summary.29 (a) Illustration of model training in 
stages. Stage 1 illustrates patch- level classification. Stage 2 demonstrates an intermediate step where a detection- based model 
was trained on full mammography images to identify bounding boxes and malignancy likelihood scores. Stage 3A re- trains the 
detection- based model using multi- instance learning approach wherein maximum score over all bounding boxes in each full 
mammography image was computed for classification of cancer or no cancer. In Stage 3B, an analogous detection- based model 
was trained for DBT using maximum suspicion projection images. (b) Summary of multi- institution training and testing data sets. 
(c) Illustration of exam definitions used in the study.29 Reprinted by permission from Springer Nature: Nature Medicine,29 copyright 
2021.
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MAGNETIC RESONANCE IMAGING
Breast MRI is the most sensitive tool currently available for breast 
cancer detection,65 and is an indispensible tool in the screening 
of high risk women, in evaluating extent of disease, in assessing 

treatment response, and as a problem solving tool in challenging 
diagnostic situations. However, its use is often limited by high price 
tag and long exam time. High resolution dynamic contrast- enhanced 
MRI is an information- rich imaging modality with different imaging 

Figure 3. A schematic illustration of breast cancer risk- prediction DL model.10 The model input is four standard views of an indi-
vidual mammogram. The image encoder and image aggregator together provide a combined single vector for all mammogram 
views. Standard clinical variables (e.g. age, family history) are incorporated into the DL model, and if any of these clinical variables 
are unavailable, a risk factor predictor module is used to fill in the missing pieces. Finally, the additive hazard layer combines the 
imaging and clinical data to predict breast cancer risk for five consecutive years. Reprinted by permission from The American 
Association for the Advancement of Science: Science Translational Medicine,10 copyright 2021. DL, deep learning.
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sequences (e.g. T1W, T2W, DWI, dynamic pre- and post- contrast 
imaging) reflecting different aspects of the underlying pathophys-
iology (e.g. water content, vascular permeability, etc.). This data- 
richness gives DL real potential not just to automate simple breast 
MR interpretation tasks, but to learn new patterns that uncover new 
connections between imaging and disease, opening new avenues for 
personalized medicine. To date, DL has been applied to breast MR 
image segmentation, lesion detection, risk prediction, and treatment 
response.66

Segmentation, lesion detection and lesion 
classification
Today, DL is considered the state- of- the- art method for 3D segmen-
tation of breast MRI images, including segmentation of the whole 
breast,67,68 fibroglandular tissue (FGT),69,70 and mass lesions71,72 (see 
Supplementary Material 1).

Several groups have harnessed DL for both the detection and clas-
sification of lesions on breast MRI73–81 (see Supplementary Mate-
rial 1 for details). The large size of a 4D breast MRI dataset makes 
en mass model training computationally difficult. Hence, breast 
MRI DL models hinge on imaging pre- processing pipelines that 
distill clinically relevant spatial and temporal information. The most 
popular (and easiest) approach is to collapse a 4D data set into a 2D 

maximum intensity projection (MIP) of the subtraction image (post- 
contrast minus pre- contrast), enabling the use of standard 2D CNN 
architectures for model training.73–76,78,82 Other groups have exper-
imented with different approaches, including: (i) using a “MIP” of 
CNN features,73,74 (ii) using 3D lesion ROIs, not whole images, thus 
reducing data size requirements and enabling use of a 3D CNN,76 (iii) 
incorporating multiparametric information (e.g. T2, DWI),76–78 and 
(iv) fusing DL feature extraction methods with traditional machine 
learning classifiers.74,76,77 Figure 5 depicts a fused architecture inte-
grating DL feature extraction and machine learning classifiers for 
lesion classification from subtraction images of dynamic contrast- 
enhanced (DCE) MRI sequences.74 Several papers show that DL 
methods for breast MRI outperform traditional machine learning 
methods, particularly as training data set sizes increase.25 Of the 
many studies published on DL for breast MRI, only a few include 
reader studies (two showing that DL models performed similarly 
to humans,75,76 and one showing that the DL model was inferior71). 
Of note, readers in these studies are not always radiologists, let alone 
fellowship- trained breast radiologists, and data set sizes are small. 
Additional larger and multicenter reader studies are needed to deter-
mine how DL models for breast MRI compares with human experts. 
In fact, small data set size is a limitation of all breast MRI DL papers to 
date, with the largest studies including only a couple thousand breast 
MRI exams. Breast MRI exams are also notoriously hard to curate, 

Figure 4. 2D visualization of primary breast cancer in ultrasound images, and DL- aided prediction of clinically positive and nega-
tive lymph node metastasis.58 Here, DL enabled accurate prediction of positive lymph node metastasis in 67- year- old females (a, 
b) and negative lymph node metastasis in 46- year- old females (c, d). Reprinted by permission from Radiology,58 copyright Radi-
ological Society of North America 2020. DL, deep learning.

www.birpublications.org/doi/suppl/ 10.1259/bjro.20210060/suppl_file/BJRO_SI_Appendix_D2100060_clean.docx
www.birpublications.org/doi/suppl/ 10.1259/bjro.20210060/suppl_file/BJRO_SI_Appendix_D2100060_clean.docx
www.birpublications.org/doi/suppl/ 10.1259/bjro.20210060/suppl_file/BJRO_SI_Appendix_D2100060_clean.docx
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given the myriad sequences and the variations in protocol parameters 
and naming conventions even within the same institution.

Risk prediction and treatment response
Background parenchymal enhancement (BPE) is a qualitative 
measure of normal breast tissue enhancement after intravenous 
contrast administration. Similar to breast density, BPE is included 
in a radiologist’s breast MRI report both to give information about 
whether the sensitivity for cancer detection is limited by BPE, and 

because BPE is a risk factor for breast cancer.83 Radiologists demon-
strate significant interreader variability in categorizing BPE. DL has 
been applied both to segment84 and to classify BPE on breast MRI,85 
enabling full automation and standardization of this process.

Additionally, in work analogous to that done with mammography, 
DL has also been used to predict 5- year breast cancer risk from the 
breast MRI MIP image directly,12 outperforming the standard- of- 
care Tyrer–Cuzick model.

Figure 5. An illustration of combined DL feature extraction methods with traditional machine learning classifiers for lesion clas-
sification from cropped ROI’s of MIP and 3D RGB of subtraction images of DCE MRI sequences.74 The top layer illustrates the 
construction of the cropped ROI’s from the DCE MRI sequences. MIP and 3D RGB features were integrated with max- pooling and 
then passed to a machine learning classifier. Reprinted by permission from Radiology: Artificial Intelligence,74 copyright Radio-
logical Society of North America 2021. DCE, dynamic contrast- enhanced; DL, deep learning; MIP, maximum intensity projection; 
ROI, region of interest.
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The richness of breast MRI data makes it particularly well- suited for 
more complex DL- based prognostication. To create a virtual biopsy 
tool, DL with breast MRI images has been developed to predict breast 
tumor molecular subtypes using pathology ground truth of luminal 
A, luminal B, HER2+, and basal subtypes.86–88 Other groups have 
used DL to predict Oncotype Dx Recurrence Score using breast MRI 
data.89 DL has also been applied to the prediction of axillary nodal 
status using breast MR images of the primary tumor, with high cross- 
validation accuracy.90–92

Finally, DL techniques to predict patient response to neoadjuvant 
chemotherapy is an area of high interest. The landmark I- SPY 2 trial 
found that combinations of MRI features can predict pathologic treat-
ment response using basic logistic regression analysis with AUCs of 
0.81.93 Several groups are now working to improve predictive power 
using newer machine learning techniques, and with a combination 
of pre- and post- neoadjuvant chemotherapy MRI images.13,14,91,94 
Much of this work is still preliminary, with small data sets from single 
institutions, although over the coming years, larger efforts in this area 
could personalize and optimize cancer therapy.

CHALLENGES AND FUTURE DIRECTIONS
Since 2016, there has been exponential growth in the application 
of DL methods to all aspects of breast imaging. Still, more work is 
needed in several key areas.

First, large multi- institutional prospective trials, conducted by inde-
pendent third parties, are needed to assess whether AI tools will work 
as expected in clinic. Retrospective and small reader studies show 
that AI mammography tools perform at or beyond the level of expert 
radiologists, and several AI decision- support products have already 
gained FDA approval.95 But prior to responsible clinical use, rigorous 
evaluation of these tools in a prospective setting is imperative.

AI mammography tools have been retrospectively validated in a 
few large multi- institutional external validation studies, but similar 
validation work is needed for ultrasound and especially for MRI. AI 
model development for breast MRI has been encouraging, but it is 
important to note that almost all published studies used small data 
sets and were from a single institution without external validation. 
DL breast MRI projects can be especially challenging since the breast 
MRI protocols are so variable across institutions, and even within 
the same institution over time. Still, there is a wealth of informa-
tion within a breast MRI exam, and it remains a promising area of 
inquiry with potential to identify new and better ways to personalize 
the management of breast cancer patients to maximize therapeutic 
benefit and minimize harm.

In the realm of mammography, more technical work is needed to 
optimize AI tools for DBT. Radiologists detect more cancers and have 
fewer callbacks when using DBT compared to 2D mammography, 
and so it follows that AI- enhanced DBT should outperform AI- en-
hanced 2D mammography. But this is not yet the case. Developing 
state- of- the- art AI for DBT is a technically challenging pursuit. DBT 
exam sizes are much larger than 2D mammography, which trans-
lates into markedly increased computational costs during training 
which can pose technical limitations. Additionally, DBT image post- 
processing is even less standardized across vendors than 2D digital 

mammography, with significant variations in both acquisition tech-
nique (i.e. hardware) and in reconstruction technique (i.e. software). 
Available DBT data sets also tend to be smaller. Still, a number of 
recent studies have reported encouraging results, and also have an 
eye towards decreasing interpretation times.

As more AI tools are developed with potential for clinical transla-
tion, it is essential to tackle the associated ethical, medicolegal and 
regulatory issues. This is particularly important for standalone AI 
tools that independently interpret breast imaging exams (i.e. where 
no human radiologist looks at the images).81 On the ethical front, 
there are many unanswered questions. In which circumstances are 
clinicians obligated to inform patients about the use of AI tools in 
their clinical work- up? It might be particularly important in situa-
tions where AI acts as a “black box,” where clinicians act on an AI 
tool output but do not understand how the algorithm arrived at the 
conclusion. Who is liable when the AI tool misses a cancer? How 
much human oversight should be required? Algorithmic biases are 
also an ethical concern. AI models perform better on images that 
resemble images in the training data set, and so ongoing vigilance 
is needed to handle potentially underrepresented subgroups in the 
training data (e.g. racial groups, vendors, etc.). More work is also 
needed to improve the robustness of image normalization tech-
niques, so that DL models can better generalize to data across insti-
tutions with different imaging hardware or imaging post- processing 
software. Finally, it is essential to develop new regulatory frame-
works for rigorous AI quality assessment. This might include a 
regular schedule of AI algorithm quality control testing (similar to 
how imaging hardware undergoes regular quality control testing), 
as well as occasional fine- tuning of the algorithm prevent model 
performance from deteriorating over time.

Finally, one of the most striking aspects of this literature to date is 
the lack of improved algorithm performance when images at multiple 
prior timepoints are used.30 It is well known that the diagnostic accu-
racy of breast imagers markedly improves with the availability of 
prior mammograms, and yet the algorithms developed to date are 
not able to show similar improvements. This is clearly an area ripe for 
technical development.

CONCLUSION
DL tools for breast imaging interpretation are being developed at a 
rapid pace and are likely to transform the clinical landscape of breast 
imaging over the coming years. Notably, DL mammography tools for 
breast cancer detection and breast cancer risk assessment demon-
strate performance at or above human- level, and prospective trials 
are warranted to pave the way for clinical translation. Other work on 
DL for breast imaging opens up new possibilities for disease prog-
nostication and personalized therapies. As DL tools are incorporated 
into clinical practice, however, regulatory oversight is needed to avoid 
algorithmic biases, prevent AI “performance drift”, and to address the 
unique ethical, medicolegal, and quality control issues that DL algo-
rithms present.
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