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ABSTRACT Economic development is marked by dramatic increases in the inci-
dence of microbiome-associated diseases, such as autoimmune diseases and meta-
bolic syndromes, but the lifestyle changes that drive alterations in the human micro-
biome are not known. We measured market integration as a proxy for economically
related lifestyle attributes, such as ownership of specific market goods that index
degree of market integration and components of traditional and nontraditional
(more modern) house structure and infrastructure, and profiled the fecal micro-
biomes of 213 participants from a contiguous, indigenous Ecuadorian popula-
tion. Despite relatively modest differences in lifestyle across the population,
greater economic development correlated with significantly lower within-host di-
versity, higher between-host dissimilarity, and a decrease in the relative abun-
dance of the bacterium Prevotella. These microbiome shifts were most strongly
associated with more modern housing, followed by reduced ownership of tradi-
tional subsistence lifestyle-associated items.

IMPORTANCE Previous research has reported differences in the gut microbiome be-
tween populations residing in wealthy versus poorer countries, leading to the asser-
tion that lifestyle changes associated with economic development promote
changes in the gut microbiome that promote the proliferation of microbiome-
associated diseases. However, a direct relationship between economic develop-
ment and the gut microbiome has not previously been shown. We surveyed the
gut microbiomes of a single indigenous population undergoing economic develop-
ment and found significant associations between features of the gut microbiome
and lifestyle changes associated with economic development. These findings sug-
gest that even the earliest stages of economic development can drive changes in
the gut microbiome, which may provide a warning sign for the development of
microbiome-associated diseases.

KEYWORDS biological anthropology, market integration, microbial ecology,
microbiome

It is increasingly evident that the gut microbiome—the collection of microbes found
in the intestines of animals, including humans—plays a critical role in the develop-

ment of various diseases, including metabolic syndrome and immunoallergic disease (1,
2). Previous studies suggest that people from wealthier nations (e.g., those in Western
Europe and the United States) have gut microbiomes significantly different from people
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from nations undergoing economic development (e.g., Africa, South America, and the
Pacific Islands) (3–8). This observation has led to the hypothesis that economic devel-
opment results in substantial changes to the microbiome, resulting in the increased
prevalence of major health problems associated with economic development, includ-
ing cardiovascular disease, obesity, allergy, and autoimmune disorders (9–12). However,
these assertions are derived from studies comparing the gut microbiomes of disparate
populations (4–7), and thus confound the impact of economic development with other
important factors that influence microbiome composition and diversity, such as eth-
nicity and geographic location (13, 14).

To test the role of economic development on intestinal microbiota diversity without
such confounding factors, we conducted a survey of the fecal microbiome of a single
indigenous population, the Shuar of southeastern Ecuador, and recorded household-
level metrics of “market integration” (i.e., producing for and consuming from a market-
based economy) to measure the level of economic development of the study partici-
pants (15–17). The Shuar are experiencing rapid market integration, but they share a
recent common cultural and genetic history, having spread rapidly from a constrained
geographic area in the last hundred years (Fig. 1). The degree of market integration
varies between individuals, households, and communities but to a much lesser degree
than between the populations studied in previous work. The impact of market inte-
gration on the health and well-being of the Shuar has been extensively studied (18–20).
As a whole, the Shuar have favorable cardiovascular and metabolic health (e.g., analysis
of C-reactive protein levels failed to find a single “high-risk” case [21]), and market
integration is associated with both positive and negative health outcomes (e.g., par-
ticipants in the Upano Valley had higher high-density lipoprotein [HDL] levels, while
those in Cross-Cutucú had higher diastolic blood pressure) (19, 20). However, little is
known regarding how market integration influences the Shuar’s microbiomes.

For our study, samples were provided by participants living in five villages across a
geographic region divided by the Cordillera de Cutucú mountain range in Ecuador
(the number of participants per village can be found in Table S1 in the supplemental
material). Two sample communities in the Upano Valley west of the Cordillera de Cutucú
(UV1 and UV2) are approximately 1 h by truck from the town of Sucúa, a local market
center. The Upano Valley is characterized by tropical low-montane forest, has an elevation
of ~600 to 700 m, mean daytime temperatures of 24°C, and receives ~2,200-mm rainfall
annually (22). Shuar in these communities tend to own more industrially produced items
(e.g., televisions and portable propane stoves), and most reside in homes made from wood
planks or recently introduced cinder block construction (19, 20). Three sample communities
(CC1, CC2, and CC3) in the region east of the Cordillera de Cutucú mountain range (referred
to as “Cross-Cutucú”) are much farther from market centers (1.5 to 3 h by motor canoe to
a road where they might sell produce and an additional 5 to 8 h by bus to Sucúa). The
Cross-Cutucú lies within the upper Amazonian flood plain with a lower elevation of ~200
to 300 m, mean daytime temperatures of 25°C, and ~3,000-mm annual rainfall (22).
Residents of these villages tend to own more subsistence-associated items (e.g., hunting or
fishing equipment), more often live in traditional homes comprised of palm wood and
thatch with dirt floors, and none live in cinderblock houses (19, 20). Climatic seasonality is
mild in both regions.

There is, nevertheless, substantial variation in market integration within each village,
regardless of region (20). For example, some houses in the Upano Valley in Ecuador are
still made using traditional materials, while more recently, houses in the Cross-Cutucú
region have been built using wood planks. We therefore directly quantified the level of
household market integration experienced by participants in this study, rather than
simply using geographic location as a proxy measure of market integration, as previous
studies have done (3–8). To do so, we used three lifestyle or style-of-life (SOL) metrics
(see references 13 and 15 for details). The first metric, SOL-House, is a composite metric
of five codes indicating type of housing construction and infrastructure. The second
metric, SOL-Traditional, is the proportion of important items owned that reflect invest-
ment in a traditional foraging lifestyle. The third, SOL-Market, is the proportion of
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important items owned that reflect degree of investment in manufactured goods
associated with the market economy. The codes and items for these metrics can be
found in Table S2.

To reduce the number of variables in our analysis and to identify latent factors, we
performed exploratory factor analysis, including all individual items used in the SOL
metrics. The factor analysis produced three factors, which we call (in order of variance
explained): house modernity, subsistence items, and power usage (the last indicating
the number of objects owned that require external electrical or petrochemical power,
such as radios, refrigerators, and gasoline engines). The results of the factor analysis and
an explanation of the factor labels can be found in Table S3.

RESULTS

On the basis of previous studies suggesting that market integration is inversely
related to intraindividual microbiome diversity (�-diversity) (3–8), we predicted a

FIG 1 Map of Morona-Santiago province, Ecuador. The ellipse roughly corresponds to the area within which all five study villages reside. The two villages within
the Upano Valley (west of the Cordillera de Cutucú and through which highway 45 runs), UV1 and UV2, have a travel time to the regional market center of
Sucúa between 1 and 2 h (including a 30- to 60-min walk to the main road and a 30- to 60-min car or bus ride). Travel times to Sucúa from three villages east
of the Cordillera de Cutucú vary between 7 and 12 h, based on the time of departure, weather conditions, and river height. Estimates for typical travel times
from each Cross-Cutucú village are as follows: 8.5 to 9.5 h from CC1, 8 to 9 h from CC2, and 10.5 to 11.5 h from CC3. Josie Imrie created this figure for this
paper, and it is used here with permission.
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negative correlation between the phylogenetic diversity (PD) of the gut microbiome
and the factors associated with greater market integration, the house modernity and
power usage factors. Similarly, we expected a positive correlation between PD and the
subsistence item factor. As detailed in Materials and Methods, we performed model
selection starting from a full model that included all three style-of-life factors, partici-
pant age, and the rank travel time from Sucúa, Ecuador, and determined that the
best-fit model included only age, region (Upano Valley in Ecuador versus Cross-Cutucú
in Ecuador), house modernity, and power usage.

Because age followed the expected trends and did not interact with any other
factors (see Table S4 in the supplemental material), we omitted it from the rest of the
analyses. Figure 2A shows the predicted significant negative relationship between PD
and house modernity. That is, participants with homes built from more modern
materials have lower gut microbiome phylogenetic diversity than people with homes
built from more traditional materials. While there was a significant main effect of
region, there was no interaction with the SOL factors. However, we included region in
the subsequent models to determine whether the SOL factors explained variance in
diversity beyond what could be explained by region alone (Fig. 2).

There was no significant relationship between PD and subsistence items or power usage
(Fig. 2B). However, there was a significant interaction between power usage and house
modernity such that as the power usage of participants increases, the strength of relation-
ship between PD and house modernity increases (Fig. 2C). Thus, house modernity and
power usage appear to be separate, but related, measures of market integration that are
significantly associated with the diversity of the human gut microbiome.

Previous studies that compared disparate populations found that those in regions
with higher market integration tend to have greater among-subject variation (�-
diversity) than more traditionally living populations (6, 7). It is hypothesized that this
may be due to either lower levels of exposure to a common pool of environmental
microbes or lower levels of microbial dispersal between individuals (6). We predicted
that greater house modernity and power usage would be associated with greater
dissimilarity among participants’ microbiomes, whereas higher subsistence item scores
would be associated with greater homogeneity of participants’ microbiomes. We
calculated the mean weighted UniFrac (23) distance between the gut microbiomes of
each subject and those of other subjects who experience similar levels of market

FIG 2 Phylogenetic diversity (PD) by significant market integration factors, house modernity (A), power usage (B), and house
modernity and power usage (C). (A) House modernity (factor 1). The black line is the best-fit line from regressing PD by
house modernity (R2 � 0.024; P � 0.013). (B) Power usage (factor 3) (not statistically significant). (C) Interaction between house
modernity and power usage (R2 � 0.037; P � 0.012). The blue line is the predicted relationship (using the full regression model)
between PD and house modernity when power usage is held at zero. The red line is the predicted relationship when power
usage is set at its maximum, and the gradient between the two prediction lines represents predictions for each of 100 steps
between the minimum and maximum values of power usage. n � 213 for all panels.
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integration (see Materials and Methods for details). These analyses confirmed our
hypotheses: house modernity was positively associated with among-subject variation
(i.e., microbiomes were more dissimilar as house modernity increased; Fig. 3A), while
subsistence items were negatively related to among-subject variation (i.e., microbiomes
were more homogeneous as subsistence items increased; Fig. 3B). Alone, power usage
did not have a significant effect on among-subject variation (Fig. 3C). However, as with
within-host diversity, there was a significant interaction between house modernity and
power usage (Fig. 3D), such that as power usage increases, the strength of the
relationship between house modernity and among-subject variation increases.

We analyzed the taxonomic composition of the gut microbiome of each subject via
distance-based redundancy analysis (db-RDA) (Fig. 4A) and permutational analysis of
variance (PERMANOVA) (Table S5). These analyses reveal that house modernity is
significantly associated with gut microbiome composition. We included participant
region in the db-RDA analysis as a “Condition” variable, which means that its variance
is “partialled out” by the analysis before considering the significance of the other
variables.

Finally, a multiple correlation test (� � 0.05, false-discovery rate corrected) of the
relationships among the abundances of all microbiome taxa and the three market
integration factors revealed 32 operational taxonomic units (OTUs) that were negatively
correlated with house modernity and two OTUs that were positively correlated with
house modernity (Fig. 4B). Of these 32 OTUs, 16 were assigned to the genus Prevotella,
and another 10 were assigned to the genus Hallela, a member of the Prevotellaceae
family. Of the two OTUs positively correlated with house modernity, one was assigned
to Bacteroides. These results are consistent with previous studies (3, 4, 7). For example,
Yatsunenko et al. (4) reported that 23 of 73 OTUs that were overrepresented in
Amerindian or Malawian versus U.S. adults were assigned to Prevotella, and De Filippo
et al. (3) found that the intestinal microbiomes of participants from Burkina Faso
harbored a much larger proportion of Prevotella than those of participants from the
United States. Additionally, Yatsunenko et al. (4) reported a negative relationship
between the abundance of Prevotella and Bacteroides in adults, while De Filippo et al.
(3) reported a greater proportion of Bacteroides in microbiomes from U.S. individuals
relative to microbiomes from Burkina Faso individuals.

FIG 3 �-Dispersion by each market integration factor. The term �-dispersion is often used when comparing the �-diversity
of subjects within the same treatment or group. (A) House modernity (n � 212; R2 � 0.014; P � 0.045). (B) Subsistence items
(n � 213; R2 � 0.014; P � 0.046). (C) Power usage (n � 213) (not statistically significant). (D) Interaction between house
modernity and power usage (n � 209; R2 � 0.034, P � 0.018). �-Dispersion was calculated as described in Materials and
Methods. The black lines represent the best-fit regression lines for �-dispersion by each individual factor. The colored lines in
panel D represent the predicted relationship between �-dispersion and house modernity when power usage is held at zero
up to its maximum observed value, divided into 100 steps.
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DISCUSSION

Our results suggest that even within a single ethnicity living in a constrained
geographic region, the early stages of market integration affect the diversity and
composition of the gut microbiome. In particular, the modernity of participants’ homes
consistently predicts gut microbiome attributes. The mechanism by which house
modernity affects the gut microbiome cannot be definitively determined from our
study, but it could plausibly be due to the isolation from environmental microbes
afforded by more modern housing. For example, related work with the Shuar showed
reduced exposure to helminth soil parasites in more modern homes (24). Traditional
housing consists of palm thatch structures with dirt floors, which allow more exposure
to microbes from the “outside” (i.e., those associated with soil and plants) than does
more modern housing (which consists of wood or cinder block structures with plank or
concrete floors). The idea that more modern housing excludes environmental microbes
is consistent with our previous work associating house modernity with reduced expo-
sure to soil-transmitted parasites (24), as well as previous work by other researchers
showing that more modern housing does indeed exclude environmental microbes
from the built environment (25). The intensifying effect of power usage on the
relationship between house modernity and microbiome diversity metrics may be the
result of numerous lifestyle changes that reduce a person’s exposure to environmental
microbes, such as remaining in their homes to use powered devices, employment in
jobs (such as teaching) that are primarily indoors, or having access to a vehicle and a
refrigerator increases the likelihood that food is bought commercially rather than
foraged, fished, or hunted. Ownership of subsistence items, on the other hand, could
be positively correlated with environmental microbe exposure associated with outdoor
activities and nondomesticated animals, such as hunting. Alternatively, subsistence
items and house modernity (and its interaction with power usage) may together be a
proxy for a suite of other lifestyle factors (e.g., dietary changes, health care practices,
etc.) associated with economic development, which could be the actual drivers of the
microbiome differences we observed.

Cardiovascular disease is now the leading cause of death in all nations but those
with the lowest incomes (9). Obesity, already a major public health problem in
wealthier nations, is rapidly increasing in the developing world (9). Allergy and auto-

FIG 4 Intestinal microbiota composition. (A) Distance-based RDA ordination of bacterial community distances overlaid with significant
market integration factor vector, house modernity (n � 213; P � 0.008). CAP in the axes stands for constrained analysis of principal
components and is an alternative term for distance-based redundancy analysis. (B) Statistically significant correlation coefficients for
OTU abundances versus house modernity, organized alphabetically by taxonomic family. Positive and negative correlations are shown.

Stagaman et al.

January/February 2018 Volume 3 Issue 1 e00122-17 msystems.asm.org 6

msystems.asm.org


immune disorders continue to rise in the west (11). The increasing incidence of these
and other microbiome-associated disorders currently experienced by populations in
wealthy nations has been hypothesized to be driven by the loss of microbes essential
to human health (the “hygiene hypothesis” [26] and the “disappearing microbiota
hypothesis” [27]). These hypotheses assert that recent lifestyle changes have either
limited our exposure to or have driven extinct certain members of the microbiome in
economically developed nations. The association between early market integration and
gut microbiome composition and diversity observed in our study demonstrates that
economic development can, indeed, alter the human microbiome, as predicted by
these hypotheses. Furthermore, we show that these changes occur even in the early
stages of market integration. Our results are consistent with the assertion that reduced
exposure to environmental microbes is a driver of microbiome changes in economically
developing countries, although further research is needed to definitively test this
hypothesis. Finally, our results suggest that the microbiome differences we observed
may provide an early warning sign for microbiome-associated disorders in rapidly
developing countries. That is, while there are no strong indications of decreasing health
or well-being in the participating populations, their microbiomes exhibit changes
observed in more economically developed countries where microbiome-associated
diseases are prevalent.

MATERIALS AND METHODS
Quantification of market integration and factor analysis. The three style-of-life (SOL) metrics

were determined as described in previous work (19, 20). In short, researchers conducted structured
interviews, administered mostly in Spanish (or through a bilingual translator for subjects who did
not speak Spanish), to collect a range of demographic and lifestyle information. The ages of the
participants ranged from 1 to 100 years. Dietary data were collected in the form of a food frequency
questionnaire. However, as we did not directly quantify caloric amount and nutritional content of
food consumed by each participant, and we had diet data for only 140 of the 213 participants for
whom we have microbiome data, diet data were excluded from the primary analysis. Analysis of the
diet data we do have produced no significant associations between bacterial PD (see Table S6 in the
supplemental material) or composition (Table S7). The lack of significance for either diet or SOL
factors in these models is most likely due to the reduction in power of reducing our sample size by
73 samples (a reduction of ~35%). Ethnographic observations and pilot testing over the course of
a decade led to the selection of items in the house, traditional, and market style-of-life metrics. The
final SOL-Traditional scale contained six items reflecting investment in a foraging lifestyle, while the
SOL-Market scale included 12 items reflecting investment in a market economy. Individual scores
were calculated as the fraction of list items owned (range, 0 to 1). The SOL-House metric included
five household measures as indices of household permanence, access to infrastructure, market
participation, and pathogen risk. We conducted an exploratory factor analysis on the two item-based
metrics (SOL-Traditional and SOL-Market), along with the five components of the SOL-House metric
(type or presence of wall, floor, bathroom, water, and electricity in a participant’s home) using the
factanal function from the basic R stats package (28). Starting with fitting a single factor, we
increased the number of fitted factors until either we reached the maximum allowed by the method
(three for seven input variables) or until the P value of the analysis was less than 0.05. This analysis
resulted in three market integration factors that were similar to the style-of-life metrics except that
the electricity type (from SOL-House) loaded most strongly on the third factor with SOL-Market.
Biplots from the factor analysis can be found in Fig. S1, and all associated metadata can be found
in Table S8.

Stool collection and DNA extraction. Three hundred stool samples were collected as described
previously (18). Briefly, participants were given a prepacked plastic bag containing an empty stool
container and clean implements with which to collect the stool sample and instructed on the
collection technique. Participants returned the containers, and samples were preserved in RNAlater
(Thermo Fisher Scientific, Waltham, MA, USA) within an hour of sample collection. Preserved samples
were stored in a portable freezer at �20°C over the course of data collection and then shipped to
the lab on dry ice, where it was stored at �80°C until analysis. DNA was extracted from the samples
using the blood and stool kit (Qiagen, Hilden, Germany) in accordance with the kit protocol. No
human genetic data were gathered as part of this project, and the bacterial data gathered were
purged of all sequences that aligned to the human genome (including mitochondrial genome)
before archiving. Genetic material resulting from this research will never be used for human DNA
research or commercial cell line patenting.

Ethics statement. Informed verbal consent was obtained from adult participants. For participants
under 15 years old (the local age of consent), parental verbal consent and child assent were
obtained. Individuals were informed that they could choose not to participate, to participate only in
individual portions of the study, or to participate in the full study. The study and consent procedures
were approved by the Institutional Review Board (IRB) of the University of Oregon, and a central
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Shuar governing organization authorized research in member villages. The precise locations of the
villages in Ecuador were omitted from Fig. 1 to protect the anonymity of the participants.

Illumina library preparation and 16S rRNA gene sequence analysis. We characterized the
intestinal microbial communities of fecal samples via Illumina (San Diego, CA) sequencing of 16S rRNA
gene amplicons. To prepare amplicons for Illumina sequencing, we used a single-step PCR method to
add dual indices and adapter sequences to the V4 region of the bacterial 16S rRNA gene (no human
sequences were specifically targeted) and generate paired-end 150-nucleotide reads on the Illumina
HiSeq 2000 platform.

The 16S rRNA gene Illumina reads were processed using methods implemented by FLASH (29), the
FASTX Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/), and the USEARCH pipeline (30). The processing
pipeline can be found at http://www.github.com/kstagaman/Process_16S. Operational taxonomic units
(OTUs) were defined using 97% sequence similarity. Any amplicons that matched the human genome
were removed from the analysis with bowtie (31) prior to OTU clustering. Read assembly, quality control,
and OTU table building were done on the University of Oregon ACISS cluster, and all subsequent data
processing and diversity analyses were done in R (28).

Intestinal microbiota diversity analyses. Samples were not included in the analysis if they had
fewer than 20,000 total reads or were from individuals lacking complete SOL metric data. After quality
control, the distribution of sequences per samples was 20,843 to 2,610,907 (median, 168,951). OTU
abundances of the remaining 213 samples were variance stabilized using phyloseq (32) and DESeq2 (33)
as recommended (34). (A parallel analysis was conducted by rarefying all samples to 20,843 sequences
and did not change the interpretation of the results.) We measured phylogenetic diversity using Faith’s
PD (35), which takes into account taxon abundances as well as their phylogenetic relationship, as
implemented in the picante package (36), and chose the best linear model using the anova function from
the base R stats package (28). We used the distance function from the phyloseq package to calculate
weighted UniFrac distances (23) between microbiomes. When comparing the �-diversity of subjects
within the same treatment or group, the term �-dispersion is often used. We calculated �-dispersion as
the mean weighted UniFrac community distance between each participant and other participants within
5% of the same factor score (thus comparing similarly market-integrated participants; analyses using
between 2.5 and 10% of factor scores resulted in qualitatively similar results). Using the same distance
matrix, we generated a distance-based redundancy analysis (db-RDA) ordination using the cap scale
function and measured individual factor R-squared values via permutational analysis of variance (PER-
MANOVA) using the adonis function, both from the vegan package (37). Other distance metrics were
used and produced qualitatively similar results. We conducted a multiple correlation test on the OTU
table and the market integration factors using the corr.test function from the psych package (38), which
uses the base cor function to find correlations and then applies a t test to the individual correlations
using the formula. The function then applies a correction to the P values using the base function p.adjust,
for which we chose the “BY” variant of the false-discovery rate (39). Diversity data visualization was done
with the ggplot2 (40), ggfortify (41), and ggbiplot (42) packages.

Data availability. Sequences were deposited under BioProject accession number PRJNA362944.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00122-17.
FIG S1, PDF file, 0.02 MB.
TABLE S1, XLSX file, 0.02 MB.
TABLE S2, XLSX file, 0.04 MB.
TABLE S3, XLSX file, 0.04 MB.
TABLE S4, XLSX file, 0.04 MB.
TABLE S5, XLSX file, 0.04 MB.
TABLE S6, XLSX file, 0.04 MB.
TABLE S7, XLSX file, 0.04 MB.
TABLE S8, XLSX file, 0.04 MB.
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