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Abstract: Owing to formidable advances in the electronics industry, efficient heat removal in electronic
devices has been an urgent issue. For thermal management, electrically insulating materials that
have higher thermal conductivities are desired. Recently, nanocelluloses (NCs) and related materials
have been intensely studied because they possess outstanding properties and can be produced
from renewable resources. This article gives an overview of NCs and related materials potentially
applicable in thermal management. Thermal conduction in dielectric materials arises from phonons
propagation. We discuss the behavior of phonons in NCs as well.
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1. Introduction

After solid-state devices appeared and they replaced electron vacuum tubes, miniaturization
has been the hallmark of microelectronics industry [1]. In the current era, there are over a billion
transistors in a typical integrated circuit. The electronic components generate a significant amount of
thermal energy. In around 2010, power dissipated from the micro-processors reached 100 W·cm−2, an
order of magnitude higher than usual hot plates [2]. Shrinking the size and enhancing the computing
capability of circuit devices have been achieved at the cost of increasing power generation in a smaller
volume of space. With the rapid increase in power density in modern electronics, efficient heat removal
has become an emerging demand for electronic products [3]. If the heat is not dissipated properly,
it may lead to a malfunction or shortening of machine life. Since there has been an intense demand
from public and industry for portable, flexible and high-performance electronic devices, the trend of
shrinking size and escalating density will surely continue.

Heat transfer can occur through radiation, convection or conduction. Heat removal (passive
cooling) in electronics is typically governed by conduction. The effectiveness of a heat spreading
material is related to its thermal conductivity [4]. Thus, the key point of the thermal management is to
use electrically insulating materials that have higher thermal conductivities [5]. Watts per meter-kelvin
(W·m−1

·K−1) is the commonly used unit for thermal conductivity in the related disciplines. As the
heat spreading materials, polymer-based composite materials containing inorganic fillers have been
studied quite actively [6–11]. In the composite materials, inorganic fillers are often dispersed in matrix
polymers. Organic polymers have significant advantages such as mechanical flexibility, light weight,
good processability, high electrical resistivity and affordability. However, their thermal conductivity is
generally low, on the order of 0.1–1.0 W·m−1

·K−1 [12]. The organic polymers are usually regarded as
thermally insulating materials. The studies on the binary composite materials aim to compensate the
inferior thermal conductivity of the polymers via inorganic fillers addition.
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Heat conduction in metals is dominated by free electrons. In dielectric materials, heat conduction
arises from lattice vibrations. By analogy with the photons of the electromagnetic field, the quanta of
the lattice vibrational field are referred to as “phonons” [13–15]. In the vicinity of electronic components,
metals are not suitable for heat dissipation because of concerns about short-circuiting. Accordingly, the
subject of the present review settles on phonon-driven heat transfer.

Cellulose is the most abundant polysaccharide in nature. Cellulosic materials that have at least
one dimension less than 100 nm are referred to generally as nanocelluloses (NCs). NCs are bio-based
nanomaterials that are continuously photosynthesized and accumulated in plants. Due to their
abundance, biodegradability and renewability, the novel forms of cellulose have been generating much
activity in the materials science field [16–22]. NCs can be mainly divided into three classes. Herein, we
have used the terms CNF, CNC and BNC. Cellulose nanofibers (CNFs), that possess heterogeneous
network structures with widths less than 100 nm, can be prepared from wood pulp by mechanical
disintegration treatments [23]. Since the mechanical processes are expensive, chemical or enzymatic
pretreatments are often carried out to facilitate fibers separation. As shown in Figure 1, cellulose
is a linear chain of ringed glucose molecules and has a flat ribbon-like conformation [24]. Within
source fibrils, there are regions where the cellulose chains are arranged in a highly ordered (crystalline)
structure and regions that are disordered (amorphous like). Since the amorphous regions are susceptible
to acids, they can be removed by acid hydrolysis. Eventual residues of the acid treatments are known
as cellulose nanocrystals (CNCs). CNCs consist of rod-like cellulose crystals with widths and lengths
of 5–70 nm and between 100 nm and several micrometers, respectively. Bacterial nanocelluloses (BNCs)
are formed by aerobic bacteria. BNCs are formed as polymers by biotechnological processes from
low molecular-weight carbon sources. Very recently, NCs and nanocomposites containing NCs have
garnered attention as potential heat spreading materials [25]. It has been accepted that heat transfer
at the nanoscale can differ entirely from that at the macroscale [26]. By leverage from the specificity,
NCs and related materials would be applicable in the thermal management of electronic devices. This
review aims to provide an overview of NCs and related nanocomposites potentially applicable in
thermal management. The authors attempted to review the theory that lies behind the thermally
conductive nanomaterials as well.
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2. Heat Conduction in Nanocelluloses

Recent theoretical and experimental research on nanomaterials has revealed interesting heat
transfer phenomena at the nanoscale. As stated above, heat is mainly carried by phonons in dielectric
materials. Thermal conductivity due to phonons (κ) can be roughly estimated by the following equation:

κ = (Cp ν l)/3

where Cp is the specific heat capacity, ν is the phonon group velocity, and l is the mean free path
of phonons in the material. The mean free path of phonons expresses how far phonons can travel
before they are scattered by lattice imperfections, electrons, and other phonons. In bulky materials,
internal scattering dominates heat conduction. As the size (characteristic length) shrinks, however,
phonon scattering at the structure boundaries or interfaces is enhanced. In nonmetallic systems, the
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mean free paths at room temperature are from 1 to 100 nm. In nanostructures, their characteristic
lengths are smaller or comparable to the intrinsic phonon mean free paths. Such an effect reduces the
effective mean free path of phonons and the phenomenon is referred to as “classical size effect” [27,28].
As a typical instance of the classical size effect, we can adduce silicon nanowires. Silicon nanowires
display a thermal conductivity which is much lower than that of bulk silicon. The enhanced boundary
phonon scattering at the nanowire surfaces would be the main reason that leads to the lower thermal
conductivity [29–32].

As for organic polymers, there exist papers reporting increased thermal conductivity ascribed to
nano-sized structures. Recent experiments show that polymers can be eminent thermal conductors
when the polymer chains are straight and aligned in crystalline fiber forms. Ultra-drawn polyethylene
nanofibers were found to have thermal conductivity up to 100 W·m−1

·K−1 [33–36] and the value is
three orders of magnitude greater than that of their amorphous counterpart. Organic polymer chains
exhibit another unique property. In polymer chains, thermal conductivity decreases when they transfer
from one-dimensional chains to a three-dimensional crystal. The tendency is entirely opposite to
the aforementioned classical size effect. That is caused by inter-chain interactions, which work as
scattering sources for phonon transport [37]. Anharmonic interactions between chains can lead to
increased phonon-phonon scattering, which lowers the thermal conductivity of individual chains. The
effect is similar to a phenomenon found in graphene sheets [38]. It has been known that once graphene
sheets are stacked in graphite structure, interlayer interactions quench the thermal conductivity of
this system.

Preceding studies on papers and woods have reported that thermal conductivity of usual cellulosic
fibers is in the range of 0.1–0.4 W·m−1

·K−1 [39,40]. That is coherent with the knowledge that thermal
conductivity of organic polymers is generally low. However, in 2007, it was reported that a CNF
film impregnated with an epoxy resin has thermal conductivity greater than that of neat epoxy
resin [41]. Subsequently, NCs have appeared promising as the heat spreading materials. There are
several polymorphs of crystalline cellulose (I, II and III) [42,43]. Cellulose I is the crystalline cellulose
that is naturally produced by various organisms and it is often referred to as “native” or “natural”
cellulose. Celluloses II and III can be produced via artificial treatments from cellulose I. The native
celluloses are composed of two different allomorphs, cellulose Iα (triclinic) and Iβ (monoclinic) [44].
The celluloses from higher plants such as woods are dominant in Iβ. Crystallographic studies by
Nishiyama and coworkers revealed that cellulose Iβ possesses more compact crystalline structure and
is thermodynamically more stable than cellulose Iα [45,46]. Polymers with more compact and less
perturbed configurations should be desirable for phonon travelling [47]. Since the heat-spreading
materials are utilized under harsh environments for long durations, more stable materials should be
employed. Accordingly, cellulose Iβ would be more significant for the present subject.

Figure 2 gives schemas of the cellulose Iβ structure observed along two directions. Cellulose
sheets composed of the flat ribbon-like chains are stacked in parallel. Because of technical difficulties,
direct thermal conductivity measurement of cellulose Iβ single crystals has not been reported to date.
However, a prediction by molecular dynamics (MD) simulations was reported recently [48]. According
to the MD simulations, the thermal conductivity in the chain direction was predicted to be around
5.7 W·m−1

·K−1 at 300 K. When compared with the ultra-drawn polyethylene nanofibers, the value
is not very high. But it is significantly higher than those of usual organic polymers. The thermal
conductivity values in other directions are predicted to be less than 1 W·m−1

·K−1. In the transverse
direction, the cellulose sheets are stabilized by a network of hydrogen bonds [49,50]. In the stacking
direction, the inter-sheet stability can be attributed to out-of-plane van der Waals interactions between
the backbone ring structures [51]. The weak bondings or interactions would result in a lower thermal
conductivity along the two directions. Thus, the inherent heat transfer capability of cellulose Iβ relies
on phonons traveling along the chain direction in its crystal structure.
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Figure 2. Cellulose Iβ structure viewed along [001] (a) and [010] (b) directions. The schemas
were produced based on the crystallographic parameters given in Nishiyama et al. [45], utilizing a
visualization program VESTA 3 [52]. Carbon, oxygen and hydrogen atoms are colored black, red and
white, respectively.

Considering the aforementioned discussion, the superior thermal conductivity of NCs should
stem chiefly from two factors: diminished amorphous regions and fewer frequency of inter-chain
interactions. The two major factors are summarized in Figure 3. During the production process of
NCs, the amorphous regions are removed by acid hydrolysis (Figure 3a). In amorphous polymers,
random curvilinear polymer chains lead to structural scattering and phonons cannot propagate far [12].
In polymeric bodies composed of crystalline and amorphous regions, the higher degree/fraction of
crystallinity leads to superior thermal conductivity [53,54]. The geometrical dimensions with larger
specific surface area would increase ratio of polymer chains free from the inter-chain interactions
(Figure 3b). As is stated above, inter-chain interactions work as scattering sources for phonon transport.
In the isolated cellulose chains, the mean free path of phonons would become longer than that of
bulky cellulose materials. The phonon scattering inhibition mechanisms described in Figure 3 should
contribute to enhanced thermal conductivity of NCs.
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(a) Diminished amorphous regions; (b) Fewer frequency of inter-chain interactions.
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3. Thermally Conductive Materials Containing Nanocelluloses

During the last decade, papers proposing novel heat-dissipation materials containing NCs have
drastically increased in number. The related works published in scientific archival journals are
summarized and assorted in Table 1. They are mainly divided into three classes based on the roles NCs
are assuming; neat NCs as heat-dissipation materials; NCs as thermally conductive fillers; and NCs
as scaffolds to maintain composite bodies. The three classes are illustrated in Figure 4. This section
focuses on describing the features of the proposed heat dissipation materials.

Table 1. NC-related heat dissipation materials proposed so far.

Class NCs
Utilized Matrix Polymer Inorganic Crystals

Incorporated

Thermal
Conductivity
(W·m−1·K−1)

References

Neat NCs
CNF 2.5 [55]

BNC 2.1 [56]

Fillers

CNF Epoxy resin 1.1 [41]

CNC Polypropylene 0.4 [57]

CNF Acrylic resin 2.5 [58]

CNC Poly(vinyl alcohol) 3.5 [59]

Scaffolds

CNF h-BN nanosheet 145 [66]

CNF h-BN nanosheet 23 [82]

CNF h-BN nanosheet 7 [83]

CNF Epoxy resin h-BN nanosheet 3.1 [84]

CNF BNNT 21 [91]

CNF Graphene 12.6 [95–97]

CNF Al2O3, Graphene 8.3 [99]

CNF ND 11 [104]

CNF DND 4.8 [105,106]

CNF DND, Al2O3, h-BN 6.2 [107]

CNF AlN 5.1 [111,112]

h-BN = hexagonal boron nitride, BNNT = boron nitride nanotube, ND = nanodiamond, DND = nanodiamond
produced by detonation.

Nanomaterials 2020, 10, 448 5 of 13 

 

3. Thermally Conductive Materials Containing Nanocelluloses 

During the last decade, papers proposing novel heat-dissipation materials containing NCs have 

drastically increased in number. The related works published in scientific archival journals are 

summarized and assorted in Table 1. They are mainly divided into three classes based on the roles 

NCs are assuming; neat NCs as heat-dissipation materials; NCs as thermally conductive fillers; and 

NCs as scaffolds to maintain composite bodies. The three classes are illustrated in Figure 4. This 

section focuses on describing the features of the proposed heat dissipation materials. 

Table 1. NC-related heat dissipation materials proposed so far. 

Class 
NCs 

utilized 
Matrix polymer 

Inorganic crystals 

incorporated 

Thermal 

conductivity 

(W·m−1·K−1) 

References 

Neat 

NCs 

CNF   2.5 55 

BNC   2.1 56 

Fillers 

CNF Epoxy resin  1.1 41 

CNC Polypropylene  0.4 57 

CNF Acrylic resin  2.5 58 

CNC 
Poly(vinyl 

alcohol) 
 3.5 59 

Scaffolds 

CNF  h-BN nanosheet 145 66 

CNF  h-BN nanosheet 23 82 

CNF  h-BN nanosheet 7 83 

CNF Epoxy resin h-BN nanosheet 3.1 84 

CNF  BNNT 21 91 

CNF  Graphene 12.6 95, 96, 97 

CNF  Al2O3, Graphene 8.3 99 

CNF  ND 11 104 

CNF  DND 4.8 105, 106 

CNF  DND, Al2O3, h-BN 6.2 107 

CNF  AlN 5.1 111, 112 

h-BN = hexagonal boron nitride, BNNT = boron nitride nanotube, ND = nanodiamond, DND = 

nanodiamond produced by detonation 

The thermal conductivity values given are the highest reported in the reference papers. 

Thermal conductivity values vary depending on many factors such as solids loading, filler sizes, 

filler alignment, and so on. Comparing the given values naively is not very meaningful. 

 

Figure 4. The roles NCs are assuming in the heat-dissipation materials. (a) Neat NCs as heat 

dissipation materials; (b) NCs as thermally conductive fillers; (c) NCs as scaffolds to maintain 

composite bodies. 

Figure 4. The roles NCs are assuming in the heat-dissipation materials. (a) Neat NCs as heat dissipation
materials; (b) NCs as thermally conductive fillers; (c) NCs as scaffolds to maintain composite bodies.

The thermal conductivity values given are the highest reported in the reference papers. Thermal
conductivity values vary depending on many factors such as solids loading, filler sizes, filler alignment,
and so on. Comparing the given values naively is not very meaningful.



Nanomaterials 2020, 10, 448 6 of 13

3.1. Neat Nanocelluloses

In 2015, Uetani and coworkers reported thermal conductivity measurements of non-woven sheets
composed of various CNFs [55]. Among the evaluated specimens, in-plane thermal conductivity of a
CNF sheet with the highest crystallinity reached 2.5 W·m−1

·K−1. In 2017, the identical group reported
an attempt to align cellulose chains in BNC hydrogels by drawing [56]. The BNC sheets exhibited
anisotropy of thermal conductivity between the drawn and transverse directions. It was clarified that
CNFs possess superior thermal conductivity ascribable to the cellulose chains and CNFs have been
proved applicable for heat-spreading materials. Furthermore, directional control of the cellulose chains
might lead to readily available heat guides.

3.2. Nanocelluloses as Heat-Conducting Fillers

As described in Section 2, Shimazaki and coworkers fabricated a CNF film embedded in an epoxy
resin and evaluated its thermal conductivity [41]. The thermal conductivity value was 1.1 W·m−1

·K−1,
which is about 7 times higher than that of the pure epoxy resin. Following this, several groups have
reported their attempts to utilize NCs as thermally conductive fillers [57–59]. The main purpose of
employing matrix polymers would be to obtain optically transparent nanocomposites. Transparent
polymeric composites functionalized by crystalline nanofillers are potentially useful in electronic
and optical apparatuses [60]. Optical losses due to light scattering in composites are related to filler
size and difference in refractive index between the fillers and the matrices [61,62]. The refractive
index of cellulose is 1.5–1.6 in the optical wavelength range and is similar to those of transparent
polymers [63]. When well-dispersed NCs are impregnated with transparent polymers, thermally
conductive and optically transparent nanocomposites would become available. Actually, simultaneous
pursuit of optical transparency and superior thermal conductivity has been reported in the preceding
papers [41,58]. Chowdhury et al. emphasize another positive effect arising from the matrix polymers;
filling up voids in the pristine NC materials with the polymers would reduce interfacial thermal
resistance inside the system [59].

In composite materials, the phonon transports are hampered by scattering at filler–matrix interfaces.
Thus, the thermal conductivity of polymers filled with NCs cannot surpass the intrinsic value of NCs
(5.7 W·m−1

·K−1). Added extra values such as optical transparency and a lightweight property might
become the main indices for practical use.

3.3. Nanocelluloses as Composite Scaffolds

Owing to their high aspect ratio and extensive hydrogen bondings, films consist of an
interconnected and entangled CNF network structure have an ability to sustain mechanical stress [64,65].
The films have remnant porosity from the gaps within the CNF network. Many attempts to enhance
thermal conductivity by embedding inorganic crystallites in the pores have been reported. In the
scheme, CNFs retain outer shapes and mechanical flexibility of the composite materials without
impairing thermal conductivity of the inorganic crystallites heavily. To the authors’ knowledge, that
can hardly be achieved with other organic polymers.

In 2014, Zhu and coworkers reported about the effect of hexagonal boron nitride (h-BN) nanosheets
incorporated in CNF sheets [66]. The achieved thermal conductivity value was 145 W·m−1

·K−1 for
50 mass% h-BN nanosheets. h-BN is a BN polymorph with a layered structure analogous to graphite.
h-BN possesses wide band gap and can be treated as an electrical insulator [67,68]. Since h-BN boasts
high thermal conductivity along the basal plane (400 W·m−1

·K−1), it has been intensely studied as
thermally conductive fillers [69–72]. High anisotropy in the crystal structure allows us to exfoliate
h-BN crystallites and the resultant h-BN nanosheets also have drawn attention in the materials science
discipline [73–77]. Even after exfoliation, h-BN nanosheets should retain the thermal conductivity along
the basal plane. It has been accepted that the use of nanosheets should result in composite thermal
conductivity that is either superior to that with particulate fillers or needs smaller solids loading to



Nanomaterials 2020, 10, 448 7 of 13

achieve the same performance [78–81]. When the nanosheet fillers are employed, frequency of filler-filler
contact is increased and delocalized thermal conductive pathways form. More environmentally-aware
works aiming similar scheme have been published recently. A method to prepare h-BN nanosheet/CNF
composite films without utilizing organic solvents was reported [82]. A soy-derived protein was
employed for surface modification of h-BN nanosheets to obtain h-BN nanosheets/CNF composites [83].
A work reported by Chen et al. should correspond to a derivative of the methodology. They attempted
to fill up pores left in the h-BN nanosheets/CNF composite materials by epoxy impregnation [84].

The structural similarity between graphitic carbon and h-BN invoked studies on BN nanotubes
(BNNTs) [85,86]. The thermal conductivity of BNNTs has been estimated to be several hundred
W·m−1

·K−1 [87,88] and thermal conductivity improvements of polymers via BNNT addition have
been reported [89,90]. In 2017, Zeng et al. reported thermally conductive films composed of BNNTs
and CNFs [91]. Nonetheless, it should be stated that BNNTs might be cytotoxic and must be utilized
cautiously [92]. Long and fiber-shaped inorganic nanomaterials show acute cytotoxicity even though
their low aspect ratio counterparts are harmless.

Graphene, a form of carbon that consists of a single layer of atoms arranged in a honeycomb
lattice, exhibits quite high thermal conductivity (5000 W·m−1

·K−1) [93]. It is possible to enhance the
thermal conductivity of polymers by adding small quantity of graphene [94]. Song and coworkers
have prepared CNF-based films containing graphene or graphene derivatives (graphene oxide/reduced
graphene oxide), which possess superior thermal conductivity [95–97]. But it is obvious that graphene
is highly electrically conductive. Electron mobility in graphene can exceed 15,000 cm2

·V−1
·s−1 at room

temperature [98]. When electrically conductive fillers are employed, the electrical insulation property
of the composite bodies should be considered. Guo et al. proposed a method to ensure electrical
insulation of composites containing graphene fillers [99]. They arranged nano-sized Al2O3 particles
between graphene fillers in ternary composites comprising of graphene, Al2O3 and CNF to avoid
formation of electrical conduction paths. The resultant composites could be regarded as insulators.

Diamond is electrically insulating and boasts high thermal conductivity (2000 W·m−1
·K−1).

Nanodiamond (ND) is known as a member of the nanocarbons and has become a subject of active
research [100–102]. Although NDs are not free from the classical size effect, NDs should inherit the
superior property of bulk diamond to a degree [103]. In 2017, Song et al. reported that addition of ND
particles to CNF films enhances thermal conductivity of the films efficiently [104]. Among the variety
of NDs, ND materials prepared by detonation synthesis are distinguished from others by a moderate
production cost and commercial availability. Sato and coworkers have prepared thermally conductive
nanocomposites of CNF and detonation-produced ND, aiming prompt industrial applications [105,106].
Successively, Tominaga et al. reported their attempt to refine the CNF/ND composites by adding other
inorganic fillers such as h-BN and α-Al2O3 [107].

Aluminum nitride (AlN) is known as a high thermal conductivity non-metallic solid [108]. Its
intrinsic thermal conductivity has been estimated to be around 320 W·m−1

·K−1 [109,110]. Very recently,
attempts to prepare thermally conductive composites of CNF and nano-sized AlN particles have been
reported [111,112]. Although AlN ceramics (sintered bodies) have assumed various significant roles in
industries, AlN fine particles are difficult to handle [113]. The surface of AlN particles is chemically
unstable. In the presence of moisture, AlN particles decompose forming aluminum hydroxide and
ammonia [114,115]. Proper and efficient methods to protect the AlN particles’ surface should be
employed, or the decomposition reaction of AlN fillers will cause device failures.

4. Conclusions and Perspectives

In this review, we have presented an overview of NCs as heat-spreading materials. Neat NCs can
propagate thermal energy relatively well. Within the thermally conductive nanocomposites, NCs can
fulfill roles both of the fillers and the continuous phases. Versatility would be a noteworthy feature
of NCs. NC-based materials are also desirable from a sustainable development perspective. In the
near term, process refinements would lower the production cost of NCs [116]. As a new class of
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NCs, ultrathin films of cellulose have been emerging [117]. The ultrathin films would be available for
optoelectronic devices, sensors, and so on. NCs and the related materials are surely prime candidates
applicable in the thermal management of electronic devices.

As far as the higher thermal conductivity remains paramount, combining NCs with inorganic fillers
should be the most promising scheme. Indeed, as can be seen in Table 1, the inorganic filler-bearing
specimens tend to exhibit superior thermal conductivity. Meanwhile, a high filler content leads to
undesirable weight gain, cost rise and poor processability. Favorable materials should be developed
for use considering their mechanical properties, optical properties, safety to living bodies, and so on.

As for NCs and related materials, theoretical works, that are essential for understanding nanoscale
heat transfer, are scarce. Knowledge accumulated in the phonon engineering discipline might be of
help [118]. Additional theoretical and experimental data should pave the way for applications of the
NC-based materials in the electronics industry.
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88. Stewart, D.A.; Savić, I.; Mingo, N. First-Principles Calculation of the Isotope Effect on Boron Nitride Nanotube
Thermal Conductivity. Nano Lett. 2009, 9, 81–84. [CrossRef] [PubMed]

89. Zhi, C.; Bando, Y.; Terao, T.; Tang, C.; Kuwahara, H.; Golberg, D. Towards Thermoconductive, Electrically
Insulating Polymeric Composites with Boron Nitride Nanotubes as Fillers. Adv. Funct. Mater. 2009, 19,
1857–1862. [CrossRef]

90. Huang, X.; Zhi, C.; Jiang, P.; Golberg, D.; Bando, Y.; Tanaka, T. Polyhedral Oligosilsesquioxane-Modified
Boron Nitride Nanotube Based Epoxy Nanocomposites: An Ideal Dielectric Material with High Thermal
Conductivity. Adv. Funct. Mater. 2013, 23, 1824–1831. [CrossRef]

91. Zeng, X.; Sun, J.; Yao, Y.; Sun, R.; Xu, J.; Wong, C. A Combination of Boron Nitride Nanotubes and Cellulose
Nanofibers for the Preparation of a Nanocomposite with High Thermal Conductivity. ACS Nano 2017, 11,
5167–5178. [CrossRef]

92. Horváth, L.; Magrez, A.; Golberg, D.; Zhi, C.; Bando, Y.; Smajda, R.; Horváth, E.; Forró, L.; Schwaller, B.
In Vitro Investigation of the Cellular Toxicity of Boron Nitride Nanotubes. ACS Nano 2011, 5, 3800–3810.
[CrossRef]

93. Balandin, A.A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10,
569–581. [CrossRef]

94. Shahil, K.M.F.; Balandin, A.A. Graphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal
Interface Materials. Nano Lett. 2012, 12, 861–867. [CrossRef]

95. Song, N.; Jiao, D.; Ding, P.; Cui, S.; Tang, S.; Shi, L. Anisotropic thermally conductive flexible films based on
nanofibrillated cellulose and aligned graphene nanosheets. J. Mater. Chem. C 2016, 4, 305–314. [CrossRef]

96. Song, N.; Cui, S.; Jiao, D.; Hou, X.; Ding, P.; Shi, L. Layered nanofibrillated cellulose hybrid films as flexible
lateral heat spreaders: The effect of graphene defect. Carbon 2017, 115, 338–346. [CrossRef]

97. Song, N.; Jiao, D.; Cui, S.; Hou, X.; Ding, P.; Shi, L. Highly Anisotropic Thermal Conductivity of Layer-by-Layer
Assembled Nanofibrillated Cellulose/Graphene Nanosheets Hybrid Films for Thermal Management. ACS
Appl. Mater. Interfaces 2017, 9, 2924–2932. [CrossRef] [PubMed]

98. Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [CrossRef] [PubMed]
99. Guo, S.; Zheng, R.; Jiang, J.; Yu, J.; Dai, K.; Yan, C. Enhanced thermal conductivity and retained electrical

insulation of heat spreader by incorporating alumina-deposited graphene filler in nano-fibrillated cellulose.
Compos. Part. B-Eng. 2019, 178, 107489. [CrossRef]
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114. Kocjan, A.; Krnel, K.; Kosmač, T. The influence of temperature and time on the AlN powder hydrolysis
reaction products. J. Eur. Ceram. Soc. 2008, 28, 1003–1008. [CrossRef]
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