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The goal of this numerical simulation is to visualize the electroosmotic flow of immiscible fluids 
through a porous medium in vertical annular microtubes. The inner region (Region I) is filled 
with an electrically conducting hybrid nanofluid while an electrically conducting Jeffrey fluid 
is flowing in the second region (Region II). The chosen nanofluid is kerosene-based and the 
nanoparticles (𝐹𝑒3𝑂4-𝑇 𝑖𝑂2) are of a spherical shape. A strong zeta potential is taken into account 
and the electroosmotic velocity in the two layers is considered too. The annular microtubes are 
subjected to an external magnetic field and an electric field. The linked nonlinear governing 
equations with initial, interface and boundary conditions are solved using the finite difference 
method. The wall zeta potential and EDL thickness on the electric potential distribution, the 
velocity profile, the volumetric flow rate and the heat transfer are investigated versus the 
parameters under consideration. Graphs have been used to describe the numerical results of 
numerous emerging factors. It has been noticed that the temperature is the least for the clear 
fluid than the that of the non-clear one. Due to the fact that oil-based nanofluids are utilized to 
improve the stability and thermophysical characteristics of nanofluids when they are subjected to 
high temperatures, the proposed study presents a mathematical assessment that is sought to be 
useful in oil-based nanoflows’ applications.

1. Introduction

In the recent century, microfluidics have been an important tool due to its several applications for microfluidic devices, including 
drug delivery and other areas of medicine [1–4]. The pressure-driven technique has been widely employed for microscale mechanical 
pumping in a variety of engineering applications [5–7]. As the length scale of micro-fluidic devices has decreased, various features 
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Nomenclature

𝐵0 Magnetic field component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
𝐸0 Electric field component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v∕m
𝐸 Electric field parameter
𝐸𝑐 Eckert number
𝐺𝑟 Grashof number
𝐻𝑎 Hartmann number
𝑝 Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

m2
𝑃𝑟 Prandtl number
𝑞′ Electroosmotic velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m∕s
𝑄′(𝑡′) Instantaneous volume flow rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3∕s
𝑟 Radial direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
𝑅1,2 Inner and outer radii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
𝑇 Fluid temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
𝑡′ The time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
𝑇1&𝑇2 Inner and outer tubes temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
𝑣𝑠 Helmholtz-Smoluchowski velocity[m∕s]
𝛼𝑓 Thermal conductivity for fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W∕(m K)
𝛼𝑅 Thermal conductivity ratio
𝛼ℎ𝑛𝑓 Thermal conductivity of the hybrid nano-fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W∕(m K)
𝛽ℎ𝑛𝑓 The thermal expansion coefficient of the hybrid nanofluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1∕K
𝜉1, 𝜉2 Surface electric charge for the inner and outer walls respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C m−2

𝜃 Dimensionless temperature
𝜅 Debye-Hückle parameter
𝜆 Porosity parameter
𝜆1 Permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

𝜇𝑅 Viscosity ratio
𝜇ℎ𝑛𝑓 Viscosity of the hybrid nano-fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−1 s−1

𝜌ℎ𝑛𝑓 Hybrid nanofluid density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg∕m3

𝜚𝑖 Charge density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C m−2

𝜎ℎ𝑛𝑓 Electrical conductivity of the hybrid nanofluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg−1 m−3 s3 A2

𝜑𝐹𝑒3𝑂4
Magnetite volume fraction

𝜑𝑇 𝑖𝑂2
Titanium oxide volume fraction

𝜓 ′
𝑖

Potential distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

have appeared in the micro-fluidic flow exclusively driven by the pressure actuation mechanism, such as the dispersion of biomedical 
and the waste of energy [8]. The electro-osmotic flow (EOF) demonstrates a unique and superior ability to control liquid flows. It has 
been pointed out that this occurrence has some connection to the electric double layer (EDL), which is produced as a consequence 
of the ionized interaction with the charged wall in order to produce the charged precipitate. It is known that the electric field 
changes water structure in C-S-H nanopore and weakens the hydrophilicity and chloride ions adsorption [9]. Taking into account 
the application of the external electric field, the mobile ions in the EDL have a tendency to migrate and generate a fluid body force, 
which enables a bulk liquid to move through a viscous effect. Numerous experimental, theoretical and numerical studies on the 
EOF for different kinds of fluids have been published in the literature [10–27]. Modern technology has increased interest in flow 
and heat transfer research, which encompass heat exchangers, fluid transport, chemical processing equipment, and micro-electronic 
cooling. Many researchers with diverse hypotheses studied the problem of fluid flow and heat transfer [28–35]. Those investigations 
are single-fluid models. Most petroleum, plasma, magneto fluid, etc. issues require multifluid flow. Adding a second immiscible 
fluid phase to a fluid flow model complicates interactions between transport processes and the conditions at the interfaces between 
phases. A modest number of studies have been done on the movement of immiscible fluids. Vajravelu [36] conducted research on the 
unsteady flow that occurs when two immiscible conducting fluids are sandwiched between two permeable beds. Hibara et al. [37]
investigated a microchip with a multilayer system in which the connecting medium and liquids were placed parallel to the lateral 
wall. Packham and Shail [38] looked at the stratified flow of two non-homogeneous liquids in a horizontal pipe. There are many 
papers in the literature discussed the idea of immiscible fluids [39–43]. In a wide range of engineering applications, including heat 
exchangers, fuel cells and similar devices, fluids play a critical role in accelerating the speed of heat transfer. In the process of heat 
transmission, normal fluids have an exceptionally poor thermal conductivity. Therefore, we need unconventional fluids with a high 
thermal conductivity so that we can solve this issue. Nanofluids are the name given to this particular kind of fluid. Choi [44] was the 
first to demonstrate a viable use for nanofluids. Nanofluids have a higher thermal conductivity than conventional fluids due to the 
inclusion of metal nanometer-sized particles, which is an important factor in raising thermal conductivity for that fluid movement 
2

and heat transfer that have been the primary focus of most researches, whether they have utilized regular fluid or nanofluid. Recently, 
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Fig. 1. Geometrical configuration.

there is a new class of nanofluids which is a hybrid nanofluid. This class consists of dual distinct nanoparticle suspension in the base 
fluid. Kerosene is used much as a base fluid in most hybrid nanofluid [45–47]. Dogonchi and Ganji [48] explored buoyant flow 
and heat transmission of MHD nanofluid on a stretched surface and they concluded that when the radiation parameter is raised, the 
temperature and velocity of the fluid fall, which indicate a direct correlation between a drop in nanofluid volume percentage and 
an increase in the coefficient of skin friction. Entropy production on non-Newtonian Eyring-Powell nanofluids has been discussed by 
Bhatti et al. [49]. They found that the more suction leads the higher velocity. Additionally, their findings reveal that thermophoresis 
parameters and Brownian motion considerably enhance the temperature profile. Recently, there are many papers in the literature 
discussed hybrid nanofluid [50,51].

Motivated by the above literature, it has been noticed that the analysis of the unsteady electroosmotic flow of immiscible fluids 
has not been given full consideration. In this article, we are going to investigate the unsteady electroosmotic flow of immiscible fluids 
in a vertical annulus. The high zeta potential is taken into consideration. The finite difference method is used to solve the coupled 
nonlinear governing equations. The numerical outcomes of several emerging parameters have been discussed through graphs.

2. Problem formulation

Let us consider an asymmetric immiscible electrolyte solution flow through a porous medium in vertical annular microtubes 
(Fig. 1) whose inner and outer radii are 𝑟′ = 𝑅1 and 𝑟′ = 𝑅2, respectively. The zeta potentials (𝜉1&𝜉2) represent a surface electric 
charge for the inner and outer walls respectively. The inner region (I) (𝑅1 ≤ 𝑟′ ≤ 𝛿′) filled with an electrically conducting hybrid 
nanofluid (𝐹𝑒3𝑂4-TiO2∕ kerosene) while an electrically conducting Jeffrey fluid is flowing in the region (II) (𝛿′ ≤ 𝑟′ ≤𝑅2). Moreover, 
the inner tube is preserved at temperature 𝑇0, while the outer one is preserved at temperature 𝑇1.

2.1. Mathematical model assumptions

The following assumptions can be used to simplify the general governing equations presented in the current manuscript:

• The fluid physical qualities are unaffected by the temperature, ion concentration, or local electric field.
• Impermeable and flat interface between the fluids and ideally polarizable to electric charges.
• The annular microtubes is subjected to an external magnetic field B = (𝐵0, 0, 0) and electric field E = (0, 0, 𝐸0).
• The electroosmotic velocity in the two layers is considered to be in the form q′ = (0, 0, 𝑣′(𝑟′, 𝑡′)) consequently the continuity 
3

equation is equally satisfied.
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• The continuity of velocity, shear stress, temperature, and heat flux at the interface between the two fluid layers is considered.
• Gravitational force is taken into account and no overlap exists between the electric double layers.
• The Poisson equation combining between 𝜓 ′ and 𝜚′

𝑖
, can be expressed as:

𝑑2𝜓 ′
𝑖

𝑑𝑟′ 2
+ 1

𝑟′

𝑑𝜓 ′
𝑖

𝑑𝑟′
=

−𝜚′
𝑖

𝜀
, (1)

where

−2𝑒𝑧0𝑛0 sinh(
𝑒𝑧0𝜓

′
𝑖

𝑘𝑐𝑇𝑐
) = 𝜚′

𝑖
(2)

where 𝑖 = 1, 2, stands for the two layers.

2.2. Governing equations

The governing equations will be ([19], [20] and [42]):
Region-I-Hybrid nanofluid

𝜌ℎ𝑛𝑓

𝜕𝑣′1
𝜕𝑡′

= − 𝜕𝑝′

𝜕𝑥′
+ 𝜇ℎ𝑛𝑓

[ 1
𝑟′

𝜕

𝜕𝑟′
(𝑟′

𝜕𝑣′1
𝜕𝑟′

)
]
− 𝜎ℎ𝑛𝑓𝐵

2
0𝑣

′
1 −

𝜇ℎ𝑛𝑓

𝜆1
𝑣′1 +𝐸𝑥𝜚

′
1 + (𝜌𝛽)ℎ𝑛𝑓 𝑔(𝑇 ′

1 − 𝑇0), (3)

(𝜌𝑐𝑝)ℎ𝑛𝑓
𝜕𝑇 ′

1
𝜕𝑡′

= 𝛼ℎ𝑛𝑓

{ 𝜕2𝑇 ′
1

𝜕𝑟′ 2
+ 1

𝑟′

𝜕𝑇 ′
1

𝜕𝑟′

}
+ 𝜇ℎ𝑛𝑓

( 𝜕𝑣′1
𝜕𝑟′

)2 + 𝜇ℎ𝑛𝑓

𝜆1
𝑣′ 21 + 𝜎ℎ𝑛𝑓𝐵

2
0𝑣

′ 2
1 + 𝜎ℎ𝑛𝑓𝐸

2
𝑥
, (4)

Region-II-Jeffrey fluid

𝜌𝑓

𝜕𝑣′2
𝜕𝑡′

= − 𝜕𝑝′

𝜕𝑥′
+

𝜇𝑓

1 + 𝜒

[ 1
𝑟′

𝜕

𝜕𝑟′
(𝑟′

𝜕𝑣′2
𝜕𝑟′

)
]
− 𝜎𝑓𝐵

2
0𝑣

′
2 −

𝜇𝑓

𝜆1
𝑣′2 +𝐸𝑥𝜚

′
2 + (𝜌𝛽)𝑓 𝑔(𝑇 ′

2 − 𝑇0), (5)

(𝜌𝑐𝑝)𝑓
𝜕𝑇 ′

2
𝜕𝑡′

= 𝛼𝑓

{ 𝜕2𝑇 ′
2

𝜕𝑟′ 2
+ 1

𝑟′

𝜕𝑇 ′
2

𝜕𝑟′

}
+

𝜇𝑓

1 + 𝜒

( 𝜕𝑣′2
𝜕𝑟′

)2 + 𝜇𝑓

𝜆1
𝑣′ 22 + 𝜎𝑓𝐵

2
0𝑣

′ 2
2 + 𝜎𝑓𝐸

2
𝑥
, (6)

where 𝜒 is Jeffrey model parameter (the ratio of relaxation to retardation times), 𝜆1 is the permeability parameter, 𝜇ℎ𝑛𝑓 and 𝛼ℎ𝑛𝑓
are the viscosity and thermal conductivity of the hybrid nanofluid.
The hybrid nanofluid density is designated by:

𝜌ℎ𝑛𝑓 = 𝜑𝐹𝑒3𝑂4
𝜌𝐹𝑒3𝑂4

+𝜑𝑇 𝑖𝑂2
𝜌𝑇 𝑖𝑂2

+ (1 −𝜑)𝜌𝑘𝑒𝑟𝑜𝑠𝑒𝑛𝑒, (7)

where, 𝜑𝐹𝑒3𝑂4
and 𝜑𝑇 𝑖𝑂2

are Magnetite and Titanium oxide volume fraction respectively, 𝜑 = 𝜑𝐹𝑒3𝑂4
+ 𝜑𝑇 𝑖𝑂2

. The viscosity of the 
hybrid nanofluid is

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1 −𝜑)2.5
. (8)

The effective electrical conductivity:

𝜎ℎ𝑛𝑓

𝜎𝑓
=

[
1 +

3
(
𝜎𝑛𝑝 − 1

)
𝜑[(

𝜎𝑛𝑝 + 2
)
−
(
𝜎𝑛𝑝 − 1

)
𝜑

]], (9)

where 𝜎𝑛𝑝 =
𝜑𝐹𝑒3𝑂4 𝜎𝐹𝑒3𝑂4 +𝜑𝑇 𝑖𝑂2 𝜎𝑇 𝑖𝑂2

𝜎𝑓
.

The heat capacitance:

(𝜌𝑐𝑝)ℎ𝑛𝑓 = 𝜑𝐹𝑒3𝑂4
𝜌𝐹𝑒3𝑂4

(𝑐𝑝)𝐹𝑒3𝑂4
+𝜑𝑇 𝑖𝑂2

𝜌𝑇 𝑖𝑂2
(𝑐𝑝)𝑇 𝑖𝑂2

+ (1 −𝜑)(𝜌𝑐𝑝)𝑘𝑒𝑟𝑜𝑠𝑒𝑛𝑒, (10)

the thermal expansion coefficient takes the following form:

(𝜌𝛽)ℎ𝑛𝑓 = (𝜑𝜌𝛽)𝐹𝑒3𝑂4
+ (𝜑𝜌𝛽)𝑇 𝑖𝑂2

+ (1 −𝜑)(𝜌𝛽)𝑘𝑒𝑟𝑜𝑠𝑒𝑛𝑒. (11)

For low dense mixtures of (𝐹𝑒3𝑂4-TiO2∕ kerosene) with spherical particles, the effective thermal conductivity according to Maxwell 
model is represented by:

𝛼ℎ𝑛𝑓

𝛼𝑘𝑒𝑟𝑜𝑠𝑒𝑛𝑒
=

(𝛼ℎ𝑝 + 2𝛼𝑘𝑒𝑟𝑜𝑠𝑒𝑛𝑒) − 2𝜙(𝛼𝑘𝑒𝑟𝑜𝑠𝑒𝑛𝑒 − 𝛼ℎ𝑝)
(𝛼ℎ𝑝 + 2𝛼𝑘𝑒𝑟𝑜𝑠𝑒𝑛𝑒) + 𝜙(𝛼𝑘𝑒𝑟𝑜𝑠𝑒𝑛𝑒 − 𝛼ℎ𝑝)

, (12)

where

𝛼ℎ𝑝 =
𝜑𝐹𝑒3𝑂4

𝛼𝐹𝑒3𝑂4
+𝜑𝑇 𝑖𝑂2

𝛼𝑇 𝑖𝑂2

𝜑
,

4

the thermo-physical characteristic of the hybrid nanofluid is shown in Table 1.
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Table 1

Thermo-physical characteristics of the nanoparticles 𝐹𝑒3𝑂4 , 𝑇 𝑖𝑂2 and the base fluid 
kerosene ([46,47]).

Physical properties Kerosene 𝐹𝑒3𝑂4 𝑇 𝑖𝑂2

𝐶𝑝 [ J
kgK

] 2090 670 686.2

𝜌 [ kg
m3 ] 783 5810 4250

𝛼 [ W
mK

] 0.145 6 8.9538

𝛽 [ 1
K

] 99 ∗ 10−5 1.3 ∗ 10−5 0.84 ∗ 10−5

𝜎 [ 1
Ωm

] 6 ∗ 10−10 25000 0.24 ∗ 107

Consider the initial, interface and boundary conditions in following form:

𝑣′1 = 𝑣′2 = 0, 𝑇 ′
1 = 𝑇 ′

2 = 𝑇0, at 𝑡′ = 0,

𝜓 ′
1 = 𝜉′1, 𝑣

′
1 = 0, 𝑇 ′

1 = 𝑇0, at 𝑡′ > 0, 𝑟′ =𝑅1,

𝜓 ′
2 = 𝜉′2, 𝑣

′
2 = 0, 𝑇 ′

2 = 𝑇1, at 𝑡′ > 0, 𝑟′ =𝑅2,⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑣′1 = 𝑣′2, 𝑇
′
1 = 𝑇 ′

2 , 𝜓
′
1 = 𝜓 ′

2

𝜇ℎ𝑛𝑓

𝜕𝑣′1
𝜕𝑟′

=
𝜇𝑓

1 + 𝜒

𝜕𝑣′2
𝜕𝑟′

𝑑𝜓 ′
1

𝑑𝑟′
=

𝑑𝜓 ′
2

𝑑𝑟′
, 𝛼ℎ𝑛𝑓

𝜕𝑇 ′
1

𝜕𝑟′
= 𝛼𝑓

𝜕𝑇 ′
2

𝜕𝑟′
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭
at 𝑟′ = 𝛿′.

(13)

The volumetric flow rate is defined by:

𝑄′(𝑡′) = 2𝜋

𝛿′

∫
𝑅1

𝑟′𝑣′1𝑑𝑟
′ + 2𝜋

𝑅2

∫
𝛿′

𝑟′𝑣′2𝑑𝑟
′. (14)

Introducing the non-dimensional variables as follows:

𝑟 = 𝑟′

𝑅2
, 𝛿 = 𝛿′

𝑅2
, 𝑡 =

𝜇1

𝜌𝑓𝑅
2
2

𝑡′, 𝑣 = 𝑣′

𝑣𝑠
, 𝐹 = −

𝑅2
2

𝜇1𝑣𝑠

𝜕𝑝′

𝜕𝑧′

𝜅 =𝑅2𝜅
′, (𝜓(𝑖), 𝜉(𝑖)) =

1
𝜓𝑧

(𝜓 ′
(𝑖), 𝜉

′
(𝑖)), 𝜌

(𝑖)
𝑒

=
𝑅2
2𝜌

′ (𝑖)
𝑒

𝜓𝑧𝜀1
, 𝜃 =

𝑇 ′ − 𝑇0
𝑇1 − 𝑇0

,

(15)

where 𝜓𝑧 =
𝑘𝑐𝑇𝑐

𝑒𝑧0
, 𝜅′ 2 =

(
2𝑒2𝑧2𝑛0
𝜀𝑘𝑐𝑇

)
, 𝑣𝑠 = − 𝜀𝜓𝑧𝐸𝑥

𝜇1
is the Helmholtz-Smoluchowski velocity, 𝜅 is the Debye-Hückle parameter or elec-

trokinetic parameter. Using Eq. (15) in Eqs. (1)–(14), the non-dimensional governing equations with the corresponding boundary 
conditions will be:
Region-I-Hybrid nanofluid

𝑑2𝜓1
𝑑𝑟2

+ 1
𝑟

𝑑𝜓1
𝑑𝑟

= 𝜅2 sinh(𝜓1), (16)

𝜌𝑅
𝜕𝑣1
𝜕𝑡

= 𝐹 + 𝜇𝑅

[ 1
𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑣1
𝜕𝑟

)
]
− 𝜎𝑅𝐻𝑎2𝑣1 −

𝜇𝑅

𝜆
𝑣1 + 𝜅2 sinh(𝜓1) + (𝜌𝛽)𝑅𝐺𝑟𝜃1, (17)

𝑃𝑟(𝜌𝑐𝑝)𝑅
𝜕𝜃1
𝜕𝑡

= 𝛼𝑅

{ 𝜕2𝜃1
𝜕𝑟2

+ 1
𝑟

𝜕𝜃1
𝜕𝑟

}
+ 𝑃𝑟𝜇𝑅𝐸𝑐

[( 𝜕𝑣1
𝜕𝑟

)2 + 1
𝜆
𝑣21

]
+ 𝜎𝑅𝑃𝑟𝐸𝑐

[
𝐻𝑎2𝑣21 +𝐸2

]
, (18)

Region-II-Jeffrey fluid

𝑑2𝜓2
𝑑𝑟2

+ 1
𝑟

𝑑𝜓2
𝑑𝑟

= 𝜅2 sinh(𝜓2), (19)

𝜕𝑣2
𝜕𝑡

= 𝐹 + 1
1 + 𝜒

[1
𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑣2
𝜕𝑟

)
]
−𝐻𝑎2𝑣2 −

1
𝜆
𝑣2 + 𝜅2 sinh(𝜓2) +𝐺𝑟𝜃2, (20)

𝑃𝑟
𝜕𝜃2
𝜕𝑡

=
{ 𝜕2𝜃2

𝜕𝑟2
+ 1

𝑟

𝜕𝜃2
𝜕𝑟

}
+ 𝑃𝑟𝐸𝑐

[ 1
1 + 𝜒

( 𝜕𝑣2
𝜕𝑟

)2 + 1
𝜆
𝑣22

]
+ 𝑃𝑟𝐸𝑐

[
𝐻𝑎2𝑣22 +𝐸2

]
, (21)
5

the instantaneous volume flow rate will be defined by:
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𝑄(𝑡) = 2𝜋

𝛿

∫
𝑅1
𝑅2

𝑟𝑣1𝑑𝑟+ 2𝜋

1

∫
𝛿

𝑟𝑣2𝑑𝑟. (22)

The non-dimensional boundary and initial conditions become:

𝑣1 = 𝑣2 = 𝜃1 = 𝜃2 = 0, at 𝑡 = 0,

𝜓1 = 𝜉1, 𝑣1 = 0, 𝜃1 = 0, at 𝑡 > 0, 𝑟 =
𝑅1
𝑅2

,

𝜓2 = 𝜉2, 𝑣2 = 0, 𝜃2 = 1, at 𝑡 > 0, 𝑟 = 1,⎧⎪⎪⎨⎪⎪⎩

𝑣1 = 𝑣2, 𝜃1 = 𝜃2, 𝜓1 = 𝜓2

𝜇𝑅
𝜕𝑣1
𝜕𝑟

= 1
1 + 𝜒

𝜕𝑣2
𝜕𝑟

𝑑𝜓1
𝑑𝑟

=
𝑑𝜓2
𝑑𝑟

, 𝛼𝑅
𝜕𝜃1
𝜕𝑟

=
𝜕𝜃2
𝜕𝑟

,

⎫⎪⎪⎬⎪⎪⎭
at 𝑟 = 𝛿,

(23)

where the Non-dimensional variables are defined as 𝐻𝑎 = 𝑅2𝐵0

√
𝜎𝑓

𝜇𝑓
is Hartmann number, 𝜆 = 𝜆′1

𝑅2
2

is porosity parameter, 𝐸 =

𝑅2𝐸𝑧

𝑣𝑠

√
𝜎𝑓

𝜇𝑓
is electric field parameter, Grashof number is 𝐺𝑟 = 𝑔(𝜌𝛽)𝑓 𝑅2

2(𝑇1−𝑇0)
𝜇𝑓 𝑣𝑠

, 𝑃𝑟 =
(𝐶𝑝𝜇)𝑓
𝛼𝑓

is Prandtl number of the fluid, Eckert 

number is 𝐸𝑐 =
𝑣2𝑠

(𝐶𝑝)𝑓 (𝑇1−𝑇0)
, 𝜇𝑅 = 𝜇ℎ𝑛𝑓

𝜇𝑓
is the viscosity ratio, 𝛼𝑅 = 𝛼ℎ𝑛𝑓

𝛼𝑓
is the thermal conductivity ratio.

3. Numerical solution

In this part, the finite difference approach is suggested to solve the Eqs. (16)–(22). Firstly, let

𝑟𝑖 =Δ𝑟 ∗ 𝑖, 𝑡𝑗 =Δ𝑡 ∗ 𝑗 where 𝑖 = 0,1,2, ...,𝑁𝑟 and 𝑗 = 0,1,2, ...,𝑁𝑡 (24)

where 𝑁𝑟 and 𝑁𝑡 are positive integers, Δ𝑟 = (𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑚𝑒𝑛𝑡𝐷𝑜𝑚𝑎𝑖𝑛)∕𝑁𝑟 and Δ𝑡 = (𝑇 𝑖𝑚𝑒𝐷𝑜𝑚𝑎𝑖𝑛)∕𝑁𝑡 are the space and time steps, 
respectively. The numerical solution 𝑣1,2(𝑟, 𝑡), 𝜃1,2(𝑟, 𝑡), 𝜓1,2(𝑟) at the mesh point (𝑟𝑖, 𝑡𝑗 ) is denoted by 𝑣1,2(𝑖, 𝑗), 𝜃1,2(𝑖, 𝑗), 𝜓1,2(𝑖). On using 
Eq. (24) with the finite difference approximations we get:
Region-I-Hybrid nanofluid

𝜓1(𝑖− 1) +𝜓1(𝑖+ 1) − 2𝜓1(𝑖)
(Δ𝑟)2

+ 1
Δ𝑟 ∗ 𝑖+ 𝑟0

𝜓1(𝑖+ 1) −𝜓1(𝑖− 1)
2 ∗ Δ𝑟

= 𝜅2 sinh(𝜓1(𝑖)), (25)

𝜌𝑅(𝑣1(𝑖, 𝑗) − 𝑣1(𝑖, 𝑗 − 1))
Δ𝑡

= 𝐹 +
𝜇𝑅(𝑣1(𝑖− 1, 𝑗) + 𝑣1(𝑖+ 1, 𝑗) − 2𝑣1(𝑖, 𝑗))

Δ𝑟2
+

𝜇𝑅

Δ𝑟 ∗ 𝑖+ 𝑟0
𝑣1(𝑖+ 1, 𝑗) − 𝑣1(𝑖− 1, 𝑗)

2 ∗ Δ𝑟
−𝐻𝑎2(𝜎𝑅)𝑣1(𝑖, 𝑗) −

𝜇𝑅

𝜆1
𝑣1(𝑖, 𝑗) + 𝜅2 sinh(𝜓1(𝑖, 𝑗)) + (𝜌𝛽)𝑅𝐺𝑟𝜃1(𝑖, 𝑗)

(26)

𝑃𝑟(𝜌𝑐𝑝)𝑅
𝜃1(𝑖, 𝑗) − 𝜃1(𝑖, 𝑗 − 1)

Δ𝑡
= 𝛼𝑟

[ 𝜃1(𝑖− 1, 𝑗) + 𝜃1(𝑖+ 1, 𝑗) − 2𝜃1(𝑖, 𝑗)
Δ𝑟2

+ 1
(Δ𝑟 ∗ 𝑖+ 𝑟0)

𝜃1(𝑖+ 1, 𝑗) − 𝜃1(𝑖− 1, 𝑗)
(2Δ𝑟)

]
+ 𝑃𝑟𝐸𝑟𝜇𝑅

[(𝑣1(𝑖+ 1, 𝑗) − 𝑣1(𝑖− 1, 𝑗)
2Δ𝑟

)2
+

𝑣1(𝑖, 𝑗)2

𝜆1

]
+

𝜎𝑟𝑃𝑟𝐸𝑟

[
𝐸2 +𝐻𝑎2(𝑣1(𝑖, 𝑗))2

] (27)

Region-II-Jeffrey fluid

𝜓2(𝑖− 1) +𝜓2(𝑖+ 1) − 2𝜓2(𝑖)
(Δ𝑟)2

+ 1
Δ𝑟 ∗ 𝑖+ 𝑟0

𝜓2(𝑖+ 1) −𝜓2(𝑖− 1)
2 ∗ Δ𝑟

= 𝜅2 sinh(𝜓2(𝑖)), (28)

(𝑣2(𝑖, 𝑗) − 𝑣2(𝑖, 𝑗 − 1))
dt

= 𝐹 + 1
1 + 𝜒

[ (𝑣2(𝑖− 1, 𝑗) + 𝑣1(𝑖+ 1, 𝑗) − 2𝑣2(𝑖, 𝑗))
Δ𝑟2

+

1
Δ𝑟 ∗ 𝑖+ 𝑟0

𝑣2(𝑖+ 1, 𝑗) − 𝑣2(𝑖− 1, 𝑗)
2 ∗ Δ𝑟

]
−𝐻𝑎2𝑣2(𝑖, 𝑗) −

1
𝜆1

𝑣2(𝑖, 𝑗) + 𝜅2 sinh(𝜓1(𝑖, 𝑗)) +𝐺𝑟𝜃1(𝑖, 𝑗)
(29)

𝑃𝑟
𝜃2(𝑖, 𝑗) − 𝜃2(𝑖, 𝑗 − 1)

dt
= (

𝜃2(𝑖− 1, 𝑗) + 𝜃2(𝑖+ 1, 𝑗) − 2𝜃2(𝑖, 𝑗)
Δ𝑟2

+ 1
(Δ𝑟 ∗ 𝑖+ 𝑟0)

𝜃2(𝑖+ 1, 𝑗) − 𝜃2(𝑖− 1, 𝑗)
(2Δ𝑟)

) + 𝑃𝑟𝐸𝑟

[(𝑣1(𝑖+ 1, 𝑗) − 𝑣1(𝑖− 1, 𝑗)
2Δ𝑟

)2
+

𝑣1(𝑖, 𝑗)2

𝜆1

]
+

𝑃𝑟𝐸𝑟

[
𝐸2 +𝐻𝑎2(𝑣1(𝑖, 𝑗))2

] (30)
6

The boundary and initial conditions Eq. (23) can be discredited as:
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Fig. 2. Grid independence test for different mesh sizes for the velocity and heat transfer at 𝜅 = 10, 𝜑 = 6%, 𝐹 = −2, 𝐻𝑎 = 2, 𝐸𝑐 = 0.002, 𝜆 = 2, 𝐺𝑟 = 5, 𝑃𝑟 = 6.2, 𝐸 = 1, 
𝜒 = 0, 𝜉1 = 1, 𝜉2 = 1, 𝑡 = 1.

𝑣1(𝑖,0) = 𝑣2(𝑖,0) = 𝜃1(𝑖,0) = 𝜃2(𝑖,0) = 0, at 𝑡 = 0,

𝜓1(𝑟) = 𝜉1, 𝑣1(𝑟, j) = 0, 𝜃1(𝑟, j) = 0, at 𝑡 > 0, 𝑟 =
𝑅1
𝑅2

,

𝜓2(1) = 𝜉2, 𝑣2(1, j) = 0, 𝜃2(1, j) = 1, at 𝑡 > 0, 𝑟 = 1,⎧⎪⎪⎨⎪⎪⎩

𝑣1(𝛿, 𝑗) = 𝑣2(𝛿, 𝑗), 𝜃1(𝛿, 𝑗) = 𝜃2(𝛿, 𝑗), 𝜓1(𝛿) = 𝜓2(𝛿)

𝜇𝑅

[
𝑣1(𝛿, 𝑗) − 𝑣1(𝛿 − 1, 𝑗)

]
= 1

1 + 𝜒

[
𝑣2(𝛿 + 1, 𝑗) − 𝑣2(𝛿, 𝑗))

]
𝜓1(𝛿) −𝜓1(𝛿 − 1) = 𝜓2(𝛿 + 1) −𝜓2(𝛿), 𝛼𝑅

[
𝜃1(𝛿, 𝑗) − 𝜃1(𝛿 − 1, 𝑗)

]
= 𝜃2(𝛿 + 1, 𝑗) − 𝜃2(𝛿, 𝑗))

⎫⎪⎪⎬⎪⎪⎭
at 𝑟 = 𝛿.

(31)

Finally, the nonlinear algebraic equations (Eqs. (25)–(31)) are solved at each iterative step to get numerical results of 
𝑣1,2(𝑖, 𝑗), 𝜃1,2(𝑖, 𝑗), 𝜓1,2(𝑖).

4. Graphical results and discussion

The aim of this section is to investigate the influences of the pertinent parameters on the wall zeta potential and EDL thickness on 
the electric potential distribution, velocity distribution and heat transfer. The numerical solution is derived for the unsteady flow of 
the immiscible fluid in the vertical annulus with electroosmosis to serve that purpose. The comparisons of behaviors of the physical 
variables are set between region I that represents the hybrid nanofluid and region II that represents the Jeffrey fluid model. First 
of all, the grid independence test should be essentially presented in order to ensure that simulation results are not affected by the 
grid size. To achieve that, Fig. 2 is plotted to discuss the variations in the grid independence test with various mesh sizes for the 
velocity and heat transfer for different values of the other parameters in interest. It is seen from the velocity profile in Fig. 2a that 
flow accelerates in the hybrid nanofluid region whereas it has a sharp decrease after a moderate increase in the non-Newtonian fluid 
region. It is also seen that the flow tends to have a parabolic shape in the non-Newtonian region. Based on the grid independence 
test for the model presented in Fig. 2b, it is seen that the heat transfer is almost negligible for the hybrid nanofluid comparing to the 
Jeffrey fluid which is seen to be increasing steadily with an increase in the mesh size. For both the velocity and heat transfer and on 
the basis of the grid independence test, it is shown that the mesh element of the given size or less has an incremental effect and is 
not affecting the results. Hence, the mesh element of the shown size in Fig. 2 is considered for the ongoing analysis.

4.1. Wall zeta potential and EDL thickness on the electric potential distribution

Fig. 3 presents the variations of the electric potential distribution for various values of 𝜅 with varying zeta potentials. It is 
elucidated in Fig. 3a that 𝜅 has a decreasing effect on the electric potential profile for both hybrid nanofluid and non-Newtonian 
fluid with symmetric zeta potentials (𝜉1 = 1 and 𝜉2 = 1). It is also observed that the electric potential decreases progressively with 
𝑟 for the hybrid nanofluid while an opposite behavior is shown for the Jeffrey fluid. A different behavior is shown in Fig. 3b for 
the electric potential distribution with asymmetric zeta potentials (𝜉1 = −1 and 𝜉2 = 1). A curve exhibiting a plateau between the 
steeply ascending sections (regions I and II) is observed. It is shown that 𝜅 acts as an enhancing factor for the electric potential in the 
hybrid nanofluid region, whereas it acts as a decaying factor for the electric potential in the Jeffrey fluid region. It is seen that the 
asymmetry of zeta potentials allows the presence of a non-uniform velocity profile which confirms with the results found by Medina 
7

et al. [11].
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Fig. 3. The electric potential distribution for different values of 𝜅 at 𝜉1 = 1, 𝜉2 = 1 (Panel (a)) and 𝜉1 = −1, 𝜉2 = 1 (Panel (b)).

Fig. 4. The velocity for different values of 𝜑 at 𝜅 = 20, 𝐹 = −2, 𝐻𝑎 = 2, 𝐸𝑐 = 0.002, 𝜆 = 2, 𝐺𝑟 = 2, 𝑃𝑟 = 6.2, 𝐸 = 1, 𝜒 = 0.8, 𝜉1 = 1, 𝜉2 = 1.

4.2. Velocity

The velocity characteristics are illustrated in Figs. 4–9 for various values of the parameters under consideration in the hybrid 
8

nanofluid and Jeffrey fluid region for 𝑡 = 1. Fig. 4 demonstrates the effect of the volume fraction 𝜑 on the velocity profile with 
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Fig. 5. The velocity for different values of 𝜅 and 𝜉1 at 𝜑 = 6%, 𝐹 = −2, 𝐻𝑎 = 2, 𝐸𝑐 = 0.002, 𝜆 = 2, 𝐺𝑟 = 5, 𝑃𝑟 = 6.2, 𝐸 = 1, 𝜒 = 0, 𝜉2 = 1.

Fig. 6. The velocity for different values of 𝜒 at 𝜅 = 30, 𝜑 = 6%, 𝐹 = −2, 𝐻𝑎 = 2, 𝐸𝑐 = 0.002, 𝜆 = 2, 𝐺𝑟 = 5, 𝑃𝑟 = 6.2, 𝐸 = 1, 𝜉1 = 1, 𝜉2 = 1.

varying values of the other parameters for clear and non-clear fluid. It is observed that 𝜑 causes the fluid to decelerate for the hybrid 
nanofluid region and for the Jeffrey flow region. It is also shown that the velocity profile attains higher values for the clear fluid 
than that the non-clear fluid in both fluid regions. Fig. 5 elucidates the variations of velocity for different values of 𝜅 with varying 
𝑟 for asymmetric zeta potentials. It is noticed that the flow shows an anti-symmetry behavior that contains maximum and minimum 
when zeta potentials are not equal. The non-monotony in the velocity distribution across the annulus is seen to be attributed with 
the asymmetric zeta potentials for both the hybrid nanofluid and Jeffrey flow regions. Fig. 6 is plotted to observe the variations of 
the velocity profile, that is plotted versus 𝑟, with various values of the Jeffrey fluid parameter, 𝜒 . It is seen that the flow accelerates 
with an increase in 𝜒 for various values of the pertinent parameters. The reason behind this phenomenon is that the elastic materials 
exhibit an instantaneous deformation. Fig. 7 (a,b) gives a thorough description to the behavior of flow with Grashof number across 
the annulus for the symmetric case when 𝜉1 = 𝜉2 = 1. It is obvious that the flow profile increases uniformly with time through the 
annulus reaching a plateau in all regions and for both hybrid and Jeffrey fluids. Fig. 8 demonstrates the impact of the porosity 
parameter 𝜆 on the velocity distribution where it is noticed that the flow is enhanced greatly with an increase 𝜆. This is due to the 
resistance of the medium to the flow. Inversely, it is seen from Fig. 9 that the flow decelerates in both regions with an increase in the 
Hartmann number 𝐻𝑎 for the symmetric case. The declining trend in the velocity distribution is explained due to the dominating 
role of the retarding force in the flow field.

4.3. Heat transfer

The behavior of heat transfer 𝜃 across the vertical annulus for sundry values of the parameters of interest is demonstrated 
graphically through Figs. 10–14 for the symmetric case where 𝜉1 = 1 and 𝜉2 = 1. It is seen in Fig. 10 that 𝜑 has a decreasing effect on 
9

the heat transfer especially in the hybrid fluid region than that of the non-Newtonian region. It is also noticed that the temperature 
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Fig. 7. The velocity (Panel (a)) and the flow rate (Panel (b)) versus time for different values of 𝐺𝑟 at 𝜅 = 30, 𝜑 = 6%, 𝐹 = −2, 𝐻𝑎 = 2, 𝐸𝑐 = 0.002, 𝜆 = 2, 𝜒 = 1, 𝑃𝑟 = 6.2, 
𝐸 = 1, 𝜉1 = 1, 𝜉2 = 1.

Fig. 8. The velocity for different values of 𝜆 at 𝜅 = 30, 𝜑 = 6%, 𝐹 = −2, 𝐻𝑎 = 2, 𝐸𝑐 = 0.002, 𝜒 = 0.5, 𝐺𝑟 = 5, 𝑃𝑟 = 6.2, 𝐸 = 1, 𝜉1 = 1, 𝜉2 = 1.

is the least for the clear fluid than the non-clear one in both regions. Fig. 11 describes the behavior of 𝜃 that is plotted versus 𝑟
for various values of 𝜒 where it is seen that 𝜃 increases progressively with increasing 𝜒 . It is noticed from Figs. 10 and 11 that 𝜃
10

is generally higher in the hybrid nanofluid region for various values of 𝜑 and 𝜒 . Figs. 12 and 13 depict the behavior of 𝜃, that is 
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Fig. 9. The velocity for different values of 𝐻𝑎 at 𝜅 = 30, 𝜑 = 6%, 𝐹 = −2, 𝜆 = 2, 𝐸𝑐 = 0.002, 𝜒 = 0.5, 𝐺𝑟 = 5, 𝑃𝑟 = 6.2, 𝐸 = 1, 𝜉1 = 1, 𝜉2 = 1.

Fig. 10. The heat transfer for different values of 𝜑 at 𝜅 = 20, 𝐹 = −2, 𝐻𝑎 = 2, 𝜆 = 2, 𝐸𝑐 = 0.2, 𝜒 = 0.2, 𝐺𝑟 = 2, 𝑃𝑟 = 6.2, 𝐸 = 1, 𝜉1 = 1, 𝜉2 = 1.
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Fig. 11. The heat transfer for different values of 𝜒 at 𝜅 = 20, 𝐹 = −2, 𝐻𝑎 = 2, 𝜆 = 2, 𝐸𝑐 = 0.2, 𝜑 = 6%, 𝐺𝑟 = 2, 𝑃𝑟 = 6.2, 𝐸 = 1, 𝜉1 = 1, 𝜉2 = 1.
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Fig. 12. The heat transfer for different values of 𝐻𝑎 at 𝜅 = 20, 𝐹 = −2, 𝜒 = 0.5, 𝜆 = 2, 𝐸𝑐 = 1, 𝜑 = 6%, 𝐺𝑟 = 2, 𝑃𝑟 = 6.2, 𝐸 = 1, 𝜉1 = 1, 𝜉2 = 1.

Fig. 13. The heat transfer for different values of 𝜅 at 𝐻𝑎 = 2, 𝐹 = −2, 𝜒 = 0.5, 𝜆 = 2, 𝐸𝑐 = 0.5, 𝜑 = 6%, 𝐺𝑟 = 2, 𝑃𝑟 = 6.2, 𝐸 = 1, 𝜉1 = 1, 𝜉2 = 1.
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Fig. 14. The heat transfer versus time 𝑡 for different values of 𝐸𝑐 at 𝐻𝑎 = 2, 𝐹 = −2, 𝜒 = 0.5, 𝜆 = 2, 𝜅 = 20, 𝜑 = 6%, 𝐺𝑟 = 2, 𝑃𝑟 = 0.2, 𝐸 = 1, 𝜉1 = 1, 𝜉2 = 1.
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Fig. 15. Comparisons of numerical solution and analytical solution [52] for different values of 𝐻𝑎 at 𝐹 = 1, 𝜅 = 10, 𝜉2 = 1.

plotted along 𝑟, with varying 𝜅 and 𝐻𝑎, respectively, for different values of parameters of interest. It is evident that there is a gradual 
enhancement in the temperature profile till it reaches the maximum value in the Jeffrey flow region. It is noticed that both 𝜅 and 𝐻𝑎

have an increasing effect on 𝜃 except for the small hybrid nanofluid region of 0.1 ≤ 𝑟 ≤ 0.23 with Ha where 𝜃 is seen to be reduced 
before an incremental effect of 𝐻𝑎 on it in the same region. Fig. 14 elucidates the behavior of 𝜃, that is plotted versus 𝑡, with Eckert 
number 𝐸𝑐 for various values of the pertinent parameters. It is observed that the temperature profile is highly dependent on 𝐸𝑐

which is seen to be steeply enhancing 𝜃 with an increase in time.

4.4. Validation of results

To validate our results, we prepared Fig. 15 to represent a comparison between the analytical solution [52] for electroosmotic 
clear fluid in a single zone and the numerical solution. The figure shows that the current results are very accurate.

5. Conclusion and final remarks

The unsteady electroosmotic flow of immiscible fluids in a vertical annulus will be investigated in this study. The strong zeta 
potential is taken into account. The linked nonlinear governing equations are solved using the finite difference method. Graphs have 
been used to describe the numerical results of numerous emergent factors. The most important findings found are as follows:

• The asymmetry of zeta potentials allows the presence of a non-uniform velocity profile which confirms with the results found 
by Medina et al. [11].

• The nonmonotonic distribution across the annulus is seen to be attributed with the asymmetric zeta potentials for both the 
hybrid nanoflow and Jeffrey flow regions.

• The flow decelerates with an increase in the Jeffrey parameter unlike the impact of the porosity parameter on it.
• The flow profile increases uniformly with time through the annulus reaching a plateau in all regions and for both hybrid and 

Jeffrey fluids.
• There is a gradual enhancement in the temperature profile till it reaches the maximum value in the Jeffrey flow region.
• The flow decelerates in both regions with an increase in the Hartmann number for the symmetric case.
• The temperature is the least for the clear fluid than the non-clear one in both regions.
• The temperature profile is seen to be steeply enhanced with an increase in time.
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