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d ANN-PSO modeling of SDBS
removal from greywater in rural areas via Fe2O3-
coated volcanic rocks†

Xiaoying Feng, Yuankun Liu, * Xing Li and Hongrun Liu

Decontamination and reuse of greywater in rural areas has attracted increasing attention. Typical

contaminants in grey water are SDBS, which has a stubborn molecular structure. In this study, Fe2O3-

coated volcanic rocks (Fe2O3-VR) prepared from FeCl3 solution by a heating evaporation method can

reach 95% removal of SDBS, which is 80% higher than before. The effect of contact time, pH, initial

concentration, FeCl3 solution concentration, adsorbent dosage and calcination temperature on the

removal rate was researched and modeled by response methodology (RSM) and artificial neural network

(ANN). Based on the univariate test, the Box-Behnken design method was used to establish the data

sample, which represented a quadratic polynomial model with p-value <0.001, R2 ¼ 0.9872, while the

ANN model has the better performance with R2 ¼ 0.9961. The weights of the BP-ANN model were

further analyzed using the Garson equation, and the results showed that the validity ranking of the

variables was as follows: contact time (37.31%) > calcination temperature (29.43%) > dosage (24.44%) >

initial concentration (17.18%) > FeCl3 solution concentration (17.18%) > pH (11.56%). Genetic algorithm

(GA) and particle swarm optimization (PSO) were selected to optimize the process parameters. The

results showed that ANN-PSO methodology presented a satisfactory alternative and the predicted

removal efficiency was 99.9982% with relative error ¼ 0.2230. The optimum level of contact time, pH,

initial SDBS concentration, FeCl3 solution concentration, adsorbent dosage and calcination temperature

is 136.45 min, 5.64, 22.4 mg L�1, 0.3 mol L�1, 83.21 g L�1, 274.02 �C, respectively. Moreover, Fe2O3-VR

was characterized via instrumental analyses (SEM-EDS, FTIR, XRD, BET).
1. Introduction

Water is a vital resource for life on Earth and is closely related to
human health and a sustainable development concept.1 SDG 6
aims to ensure that water and sanitation are accessible and
sustainably managed for all.2 At present, the water pollution
situation is still critical, with many children dying every day
from contaminated water and a lot of people still without access
to safe drinking water and lacking sanitation facilities.3 In
recent years, freshwater resources are facing continuous
depletion accompanied by the expansion of intensive urbani-
zation, population growth, and frequent economic activities.
Therefore, domestic wastewater treatment and reuse are
becoming an important eld of research, especially in rural
areas. According to investigation, 80% of people lacking clean
water and 70% of people lacking sanitation lived in rural areas
in 2017.4 In this case, greywater treatment has received a lot of
attention as a worthymethod for wastewater recycling and reuse
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in recent years.5 Greywater refers to wastewater produced by
households, including effluents from laundries, baths and
showers but excluding the toilet wastewater (black water). This
kind of wastewater represents 50%–80% of domestic waste-
water, which has a relatively content of contaminant.6

Greywater contains a lot of surfactants. It is mainly due to the
widespread use of detergents.7 On a whole, ionic surfactants
account for the largest proportion of all surfactants used all over
the world. Approximately 60% of surfactants produced are
linear alkylbenzene sulfonates (LAS).8 The most common is
SDBS, which is known for stubborn molecular structure.
Excessive use of SDBS can be harmful to human beings and the
ecological environment. For example, it can cause blistering
and toxicity in water, which makes the water quality bad, affects
the survival of aquatic organisms and hinders the self-
purication of water bodies. In addition, it may stay in the
environment for a length of time because of its difficult
biodegradability. The concentration range of LAS in household
greywater is 1–10 mg L�1, and many environmental regulators
authorities limit anionic surfactants to 0.5 mg L�1. Therefore,
surfactant removal treatment of wastewater in advance of reuse
is essential.
RSC Adv., 2022, 12, 6265–6278 | 6265
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In response to large molecules like SDBS, such as organic
dyes, both adsorption9–12 and composite photodegradation
methods13–15 have been investigated. The same approaches have
also been applied in SDBS removal research. In general,
adsorption is the foremost separation method because of its
feasibility, low cost, and simplicity of operation. Many adsor-
bents including activated carbon,16 zeolites,17 chitosan,18 mes-
oporous silica nanoparticles19 and y ash based geopolymer20

have been used for SDBS removal from wastewater. In recent
years, volcanic rocks (VR) have also been widely used in effluent
disposal. Which is due to the superior performance of VR such
as high porosity and low cost. However, since VR has a minus
charged surface,21 the adsorption capacity of SDBS is not very
good. Intriguingly, the adsorption properties of SDBS can be
improved by surface modication.22 In this study, a method of
VR modication using ferric chloride solution was proposed
and its employment in the removal of SDBS from greywater was
investigated.

During the adsorption process, removal efficiency is a key
indicator, which is affected by many parameters. Due to the
difficulty in analyzing the inuence degree of each parameter
on the removal efficiency under laboratory operating condi-
tions, a mathematical model is needed.23 Presently, RSM and
ANN are chosen as powerful tools for modeling and optimiza-
tion of wastewater treatment. RSM as a statistical method is
widely used for evaluating the individual and interaction effects
of input variables.24 The optimal results of RSM are obtained
through tting the function relation between each factor in the
global scope by regression. Box–Behnken design (BBD) was
selected for this study because this option needs only 3 levels,
while central composite design (CCD) requires 5 levels. It has
the important advantage of taking into account experimental
random errors and the simplicity of calculations with the
resulting model.25

ANN is an articial intelligence (AI) technique which is based
on the bionic principle.26 In addition to input layer and output
layer, neural network structure also includes hidden layer, the
number of which is usually determined by trial and error
method. By adjusting or training neural networks, a specic
input can produce a specic target output.27 ANN has been
widely used in complex systems because of its exceptional
ability in simulating nonlinear changes between the variables
and response by iterative training process. ANN compares the
response of input data set to target values and corrects the
deviated response through modication of internal weights.28

ANN has a higher predictive power compared with RSM, which
is only applied to quadratic estimation. However, it has the
drawback that the solution cannot guarantee the global optimal
solution.29 Therefore, appropriate optimization methods such
as GA and PSO can be applied to overcome the demerits of ANN
by optimizing the local optimum.30

In the present study, Fe2O3-coated volcanic rocks (Fe2O3-
VR) were prepared by heating evaporation method. The
purpose of this paper is to examine the removal rate of SDBS
on Fe2O3-VR. The collected experimental data were modeled
by RSM and ANN methods. The RSM with BBD was used to
obtain a mathematical model to predict the efficiency of SDBS
6266 | RSC Adv., 2022, 12, 6265–6278
removal and the correlation between SDBS removal and ve
input variables namely, contact time, pH, initial concentra-
tion, FeCl3 solution concentration, adsorbent dosage, and
calcination temperature. GA and PSO were selected to opti-
mize the operating conditions to determine the maximum
SDBS removal efficiency. In contrast, PSO is better than GA in
predicting SDBS removal efficiency. Moreover, Fe2O3-VR was
characterized via instrumental analyses (SEM-EDS, FTIR, XRD,
BET). The adsorption isotherm and kinetics of the process
were also studied.
2. Materials and methods
2.1 Materials

Volcanic rocks were purchased from Chifeng Xindi Basalt Co.,
Ltd., Inner Mongolia, which has its own mine. Aqueous solu-
tions were prepared by DI water. All chemicals used were
analytically pure (Text S1).
2.2 Preparation of Fe2O3-coated volcanic rocks (Fe2O3-VR)

The preparation of Fe-coated volcanic rocks was illustrated in
Text S2.†
2.3 Characterization

The characterization of Fe2O3-coated volcanic rocks (Fe2O3-VR)
was described in Text S3.†
2.4 Batch adsorption experiments

The experiments were carried out in 250 ml conical asks,
which was shaken in a constant-temperature shaker (Guohua
Electric Appliance Co. Ltd., THZ-82, Changzhou, China) at
150 rpm for 3 h. Batch experiments were carried out to examine
the effect of contact time (5–180 min), initial SDBS concentra-
tion (10–90 mg L�1), pH (2–10), FeCl3 solution concentration
(0.05–0.3 mol L�1), adsorbent dosage (10–110 g L�1) and calci-
nation temperature (200–600 �C) on the removal rate of SDBS.
Adjusted the pH with 0.1 mol L�1 HCl or 0.1 mol L�1 NaOH. The
samples extracted during the experiment were ltered through
0.45 mm poly tetra uoroethylene (PTFE) lter (Anpel Co. Ltd.,
Shanghai, China) to remove suspensions. Anionic surfactants
were determined by methylene blue spectrophotometry.
Experiments were carried out at room temperature. The
adsorption capacity and removal efficiency were expressed as
follows:

q ¼
�
C0 � Ct

m

�
� V (1)

RE ¼
�
1� Ct

C0

�
� 100% (2)

where R, qt (mg g�1) are the removal rate and adsorption
amount of SDBS, respectively. C0 (mg L�1) and Ct (mg L�1) are
the concentrations at time 0 and t, respectively. V (L) is the
volume of the solution, and m (g) is the mass of adsorbent.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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2.5 Experimental design

2.5.1 Response surface methodology. The adsorption
process is inuenced by a variety of factors, but to varying
degrees, and is sensitive to a few factors. RSM is a statistical
method based on the experimental design to quantify each
variable and obtain a simple mathematical model to describe
the unknown relationship between variables.31 The method
qualitatively compares the sensitivities between multiple vari-
ables and determines the optimal value of each variable,
resulting in a second-order polynomial. In the present work, the
experiment design of BBD-RSM was completed by using Design-
Expert 10 soware, so as to examine the effect of different
variables on SDBS removal efficiency and obtain an accurate
model to forecast the removal efficiency. The obtained
quadratic model is shown in the following equation:

Y ¼ a0 + a1A + a2B � a3C + a4D + a5E + a6F

+ a12AB � a13AC + a14AD + a15AE + a16AF

� a23BC � a24BD + a25BE + a26BF � a34CD

+ a35CE + a36CF � a45DE + a46DF � a56EF

� a11A
2 � a22B

2 � a33C
2 � a44D

2 � a55E
2 + a66F

2 (3)

where Y expresses the removal efficiency of SDBS; a0 represents
a constant offset term; ai and aij indicate the estimated coeffi-
cients; A, B, C, D denote independent variables.

In this study, six factors (contact time, pH, initial concen-
tration, FeCl3 solution concentration, adsorbent dosage and
calcination temperature) were considered in experiments with
three coded levels (�1, 0, +1). The variables and the levels in this
study are shown in Table S2.†

2.5.2 BP-ANN modeling. In the present study, a three-layer
backpropagation ANN was applied. Its hidden layer neuron
function is S type function, which is a nonlinear mapping
relationship between input and output by adjusting the
network power threshold. BP-ANN was composed of input
layers, hidden layers (neurons), and output layer, which was
shown in Fig. 1.

There were 54 sets of experiments, 80% of which were used
for training, 10% for testing, and 10% for validation sets.
Fig. 1 The ANN structure.

© 2022 The Author(s). Published by the Royal Society of Chemistry
Therefore, it contains 44, 5 and 5 samples for training,
testing and validation subsets, respectively. Pay attention to
monitor the error of validation data throughout the training
process to avoid over-tting.32

Normalization is helpful to accelerate the convergence of the
training network to avoid overow of values due to too large or
too small weights. Therefore, the input and output parameters
were normalized to 0–1 by the following equation:

Xi ¼ X � Xmin

Xmax � Xmin

(4)

where Xi stands for normalized values, and X, Xmin, and Xmax are
the original, minimum, and maximum values of variables,
respectively.24 The number of hidden layer neurons is used as
a design factor of the model since their substantial impact on
the performance of the network. It was determined by mean
square error (MSE) and correlation coefficient (R2) among 1–15
neurons. Each topology is repeated ten times to avoid
randomness and coincidence. MSE and R2 can be dened as
follows:

MSE ¼ 1

n

X
i¼1

n
���yi;pred � yi;exp

���2 (5)

R2 ¼ 1�
X
i¼1

n

 �
yi;pred � yi;exp

�2�
yavg;exp � yi;exp

�2
!

(6)

where n is the number of data points, yi,pred and yi,exp are the
predicted and experimental values of responses, respectively,
and yavg, exp is the average experimental values.

2.5.3 Genetic algorithms. Genetic algorithm (GA) searches
for optimal solutions by simulating natural genetic mecha-
nisms and biological evolution. GA can be applied to various
optimization problems because of its adaptability, at the same
time, it can be used to search the entire solution space to obtain
the optimal condition.33 The optimization efficiency and results
are not affected by the initial structure, and the crossover and
mutation operations avoid the GA from falling into local
extrema. In this study, the initial population was 50 individuals,
which were created by the uniform creation function and
RSC Adv., 2022, 12, 6265–6278 | 6267
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evaluated by the tness values obtained from the ANN model.
Then low tness chromosomes were eliminated, and the rest
were subjected to select, cross and mutate until a suitable result
is obtained.34 This procedure was carried out for 300
generations.

2.5.4 Particle swarm optimization (PSO). Amongst the
different articial intelligent techniques, PSO is an optimization
algorithm inspired by birds' behavior.35 Each solution is called
a particle, which has a major part in the optimization problems.
In the PSO, it treats the position of each particle location as an
objective function, and then by calculating the objective function
value of each particle, the personal optimal value and the global
optimal value so far are selected. PSO is performed iteratively.
The optimal position of each particle and the optimal position of
the population are stored and updated in each iteration, so the
essence of the PSO algorithm is to use the motion experience
during the iteration to optimize the solution.36 Currently, there
exists a great practical application of PSO.
Fig. 2 (a) FTIR spectrum of VR and Fe2O3-VR, (b) XRD patterns of VR an
distribution.

Table 1 Elemental composition (by wt%) of VR and Fe2O3-VR

Elements C O Na Mg Al Si Ca Fe

VR 2.22 45.92 3.73 2.47 7.07 21.03 8.67 8.90
Fe2O3-VR 6.83 33.17 0.33 1.80 1.13 13.94 5.02 37.78

6268 | RSC Adv., 2022, 12, 6265–6278
3. Results and discussion
3.1 Characterization of VR and Fe2O3-VR

3.1.1 SEM-EDX analysis. The FE-SEM and EDX images are
shown in Fig. S1 and S2.† The SEM images of VR showed
ordered silica crystals and micropores or roughness with small
slits at its surface. From Fig. S1a and b,† the surface of VR was
smooth, and aer being modied with FeCl3 the surface of VR
became rough and formed a porous network, which means
a homogeneous distribution of Fe2O3 nanoparticles success-
fully coated. The elemental composition obtained from the EDX
analysis is shown in Table 1. It indicated that the Si and O as
major elements of both materials and the iron content
increased a lot in particular aer modication. Aer coating,
the content of O was signicantly reduced and the content of Fe
was observed to increase from 8.90% to 37.78%, which repre-
sents that the Fe2O3 was successfully added to the VR.

3.1.2 FTIR analysis. The FTIR image of the VR and Fe2O3-
VR is shown in Fig. 2(a). The broad peak around 3450 cm�1 is
contributed to the extension vibration of H2O molecules
(moisture) in the lattice and –OH groups. The bands located at
2981 cm�1 and 2896 cm�1 were ascribed to the stretching
vibration of C–H.37 Because of the symmetric stretching vibra-
tion of Si–O–Si, the absorption band at 1056 cm�1 can be
assigned to the characteristic peak of (SiO4)

2� groups.
d Fe2O3-VR, (c) N2 adsorption–desorption isotherms and (d) pore size

© 2022 The Author(s). Published by the Royal Society of Chemistry



Table 2 Characteristics of porous structure of VR and Fe2O3-VR

Samples SBET (m2 g�1) VT (nm) Dp (cm3 g�1)

VR 7.084 7.21 0.029
Fe2O3-VR 29.374 8.01 0.119

Fig. 3 VSM pattern of VR and Fe2O3-VR.

Fig. 4 (a) Effects of contact time on adsorption efficiency (Rt) and capacit
pseudo first order, (c) pseudo second order and (d) intra particle diffusio
0.25 mol L�1, Fe2O3-VR load: 50 g L�1, initial SDBS concentration: 8 mg

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Combined with the energy spectrum, it can be seen that SiO2 is
the pillar structure of volcanic rock, while SDBS has adsorption
behavior on SiO2.38 The Si–O–Al stretching vibration was regis-
tered at around 785 cm�1 for VR and Fe2O3-VR and showed that
the Si–O–Al framework remained undistorted aer modica-
tion.39 Moreover, a new peak at 642 cm�1 was distributed to the
Fe–O group of Fe2O3 aer modication, indicating that Fe2O3

was attached to the VR.
3.1.3 X-ray diffraction analysis. Fig. 2(b) shows the XRD

image of the VR and Fe2O3-VR adsorbents. The two samples
exhibited similar morphologies, indicating that the modica-
tion process did not signicantly affect the structural frame-
work of the samples. While the presents of crystalline phases in
the VR and Fe2O3-VR samples can be determined by the peaks at
2q ¼ 23.1�, 23.8�, 25.9�, 29.1�, 29.8�, 30.9�, 32.8�, and 35.6�. The
crystal structure is mainly composed of pyroxene (CaMg(SiO3)2,
JCPDS 75-1577) and SiO2 (JCPDS 83-1830). Aer modication,
the peak of hematite (Fe2O3, JCPDS 73-0603) became sharper,
indicating that Fe2O3 was absorbed onto the VR. On the whole,
the crystallization degree of Fe2O3-VR is much lower than that of
VR. The original regular crystal structure of VR was likely broken
due to the addition of metals in the modication process.
According to the study of Lenoble et al.,40 the lower the degree of
crystallization of minerals, the more conducive to adsorption,
y (Qt) of Fe2O3-VR and VR towards SDBS; fitting plots of Fe2O3-VR of (b)
n kinetic models (reaction parameters: FeCl3 solution concentration:
L�1, pH ¼ 7).

RSC Adv., 2022, 12, 6265–6278 | 6269
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which results in an increase in the removal rate of SDBS aer
modication.

3.1.4 BET surface area. N2 adsorption–desorption
isotherms are shown in Fig. 2(c). According to the International
Union of Pure and Applied Chemistry (IUPAC) classication, the
physisorption isotherms of VR and Fe2O3-VR are classied as
Type IV with H3 shaped hysteresis loops. This indicated the
presence of mesoporous structures and slit-shaped pores in the
VR and Fe2O3-VR. The pore volume of the Fe2O3-VR increased,
Table 3 Parameters of the kinetics of SDBS adsorption on Fe2O3-VR

Kinetic models Parameters

Pseudo-rst-order Qe (mg g�1) 0.036
k1 (min�1) 0.022
R2 0.8805

Pseudo-second-order Qe (mg g�1) 0.153
k2 (min�1) 1.813
R2 0.9999

Intra-particle diffusion kp1 (mg g�1 min�0.5) 0.018
D1 0.053
R1

2 0.8318
kp2 (mg g�1 min�0.5) 0.002
D1 0.13
R1

2 0.8263

Fig. 5 Fitting plots of (a) Freundlich, (b) Langmuir, (c) Temkin and (d) Du
Fe2O3-VR (reaction parameters: FeCl3 solution concentration: 0.25 mol L
7, contact time: 180 min).

6270 | RSC Adv., 2022, 12, 6265–6278
which was most likely due to the increase of the mesopores
volume. Due to the comparatively high molecular weight of
SDBS (349 gmol�1), the migration rate of SDBS to VR particles is
slow,41 while more mesopores are more favorable for the
adsorption of SDBS on Fe2O3-VR. Meanwhile, the adsorption
capacity of these two adsorbents quickly increased when the
absolute pressure (P/P0) was >0.80, which might be a reason for
multilayer adsorption.42

Fig. 2(d) showed that the pore diameter ranges from 0–
140 nm. The pore structure of VR and Fe2O3-VR are listed in
Table 2. The specic surface area, pore volume and average pore
radius of the VR were 7.084 m2 g�1, 7.88 m3 g�1 and 19.6 nm,
while the Fe2O3-VR were 29.374 m2 g�1, 3.23 m3 g�1 and
21.76 nm. Compared with previous values, the specic surface
area is much larger. This is because of the removal of
substances clogging the pores of the VR and adhesion of Fe2O3

particles on the surface of VR.
3.1.5 VSM analysis. The hysteresis lines demonstrated that

VR was not magnetic material. There was no signicant
hysteresis in the curves, indicating that they were paramagnetic
materials, and the remanence and coercivity were almost zero.
Moreover, the saturation magnetization strength of Fe2O3-VR
was 4.98 emu g�1, which might be due to the small number of
Fe3O4 produced during the modication process (Fig. 3).
binin–Radushkevich isotherm models for the adsorption of SDBS onto
�1, Fe2O3-VR load: 50 g L�1, initial SDBS concentration: 8 mg L�1, pH¼

© 2022 The Author(s). Published by the Royal Society of Chemistry



Table 4 Parameters of the isotherm of SDBS adsorption on Fe2O3-VR

Isotherm models Parameters

Langmuir Qmax (mg g�1) 1.908
KL 0.138
R2 0.9763

Freundlich KF 0.202
1/n 0.715
R2 0.9878

Temkin AT �1.264
BT 3.333
R2 0.9027

Dubinin–Radushkevich Qmax (mg g�1) 0.6698
E (kJ mol�1) 2.0978
R2 0.8154

Paper RSC Advances
3.2 Adsorption kinetics and isotherm

3.2.1 Adsorption kinetics. The adsorption rate can be
determined by adsorption kinetics. Fig. 4(a) shows the trend of
removal efficiency and adsorption capacity with the time of
Fe2O3-VR and VR towards SDBS.

Aer modication, the removal efficiency of SDBS increased
by more than 80% and can reach 95%. In the rst 60 min, the
Table 5 Analysis of variance for the response surface quadratic model

Source Sum of squares
Degree of
freedom

Model 19 523.36 27.00
A-contact time 6571.34 1.00
B-pH 527.91 1.00
C-initial concentration 522.11 1.00
D-FeCl3 solution concentration 739.70 1.00
E-adsorbent dosage 4675.20 1.00
F-calcination temperature 33.09 1.00
AB 6.85 1.00
AC 9.16 1.00
AD 32.92 1.00
AE 81.22 1.00
AF 2.08 1.00
BC 6.00 1.00
BD 1.05 1.00
BE 7.10 1.00
BF 5.07 1.00
CD 0.00 1.00
CE 50.35 1.00
CF 1.83 1.00
DE 4.25 1.00
DF 0.23 1.00
EF 1.80 1.00
A2 3006.18 1.00
B2 668.27 1.00
C2 110.15 1.00
D2 90.40 1.00
E2 1461.26 1.00
F2 79.06 1.00
Residual 253.61 26.00
Lack of t 237.82 21.00
Pure error 15.78 5.00
Cor total 19 776.97 53.00

© 2022 The Author(s). Published by the Royal Society of Chemistry
adsorption efficiency and capacity of Fe2O3-VR for SDBS
increased rapidly. Then the adsorption rate gradually slowed
down and reached equilibrium at 180 min. A great number of
active loci and larger driving power might be the reason for
rapid adsorption in the beginning.43

The tting parameters and errors of the adsorption kinetic
models were shown in Table 3. It can be revealed from the R2

value that the adsorption kinetics behavior was tted to
a pseudo-second-order model (0.9999) more favorably
compared to the pseudo-rst-order model (0.8805) and intra-
particle diffusion model (0.8263), which suggested that the
adsorption was linked to chemical processes.

3.2.2 Adsorption isotherm. The tted adsorption isotherm
models used are shown in Fig. 5. The tting parameters of the
adsorption isotherm models were presented in Table 4. The
correlation coefficient of the Freundlich, Langmuir, Temkin, and
Dubinin–Radushkevich model were 0.9878, 0.9763, 0.9027 and
0.8154, respectively, illustrating that the adsorption was more
consistent with the Freundlich model. Thus, the adsorption
behavior of SDBS on Fe2O3-VR was conrmed for multilayer
adsorption.44 At the same time, 1/n¼ 0.715 < 1 in the Freundlich
model, which revealed that the adsorption process of Fe2O3-VR
for SDBS was spontaneous.45 In addition, in the Langmuir
Mean square F value P value

723.09 74.13 <0.0001 Signicant
6571.34 673.70 <0.0001
527.91 54.12 <0.0001
522.11 53.53 <0.0001
739.70 75.84 <0.0001
4675.20 479.31 <0.0001
33.09 3.39 0.0769
6.85 0.70 0.4098
9.16 0.94 0.3415
32.92 3.37 0.0777
81.22 8.33 0.0078
2.08 0.21 0.6480
6.00 0.62 0.4398
1.05 0.11 0.7453
7.10 0.73 0.4013
5.07 0.52 0.4773
0.00 0.00 0.9937
50.35 5.16 0.0316
1.83 0.19 0.6685
4.25 0.44 0.5151
0.23 0.02 0.8779
1.80 0.18 0.6714
3006.18 308.20 <0.0001
668.27 68.51 <0.0001
110.15 11.29 0.0024
90.40 9.27 0.0053
1461.26 149.81 <0.0001
79.06 8.11 0.0085
9.75
11.32 3.59 0.0804 Not signicant
3.16

RSC Adv., 2022, 12, 6265–6278 | 6271



Fig. 6 RSM diagnostic plots for (a) Predicted vs. actual (R2 ¼ 0.9872)
(b) normal plot of residuals.
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model, the value of KL was between 0 and 1 indicating that the
adsorption is favorable. In the D–R model, E <8 kJ mol�1, indi-
cating that the adsorption process was physical adsorption.46

3.3 RSM modeling and optimization

In this paper, the BBD method was performed to examine the
adsorption conditions of SDBS. The experiment was tted
according to the second-order model of polynomial regression
analysis. A quadratic regression model was established by
taking contact time (A), pH of the solution (B), SDBS initial
FeCl3 solution concentration (D), adsorbent dosage (E), as well
as calcination temperature (F) as independent parameters, and
SDBS removal rate Y as response value. The experimental
results obtained according to the design of BBD-RSM were
shown in Table S2.† The quadratic model equation obtained
was shown in eqn (7).

Y ¼ 87.33 + 16.55A + 4.69B � 4.66C + 5.55D + 13.96E

+ 1.17F + 0.93AB � 1.07AC + 1.43AD + 3.19AE

+ 0.51AF � 0.87BC � 0.36BD + 0.67BE + 0.80BF

� 0.0087CD + 2.51CE + 0.34CF � 0.73DE + 0.17DF

� 0.47 EF � 17.10A2 � 8.06B2 � 3.27C2 � 2.96D2

� 11.92 E2 + 2.77F2 (7)

3.3.1 Analysis of variance. The results of the ANOVA anal-
ysis are demonstrated in Table 5. It was used to assess the
signicance and the degree of inuence of the independent
variables. The model's F-value of 74.13 and p-values less than
0.05 illustrated that the model is credible and ts well
throughout the regression region.47 These parameters were
regarded as remarkable if the p-value was below 0.05. At this
point, A, B, C, D, E, AE, CE, A2, B2, C2, D2 and E2 are the signif-
icant parameters.

The contact time was found to have the greatest effect on the
model and the second was the adsorbent dosage. Furthermore,
as shown in Fig. 6(a), the R2 (0.9872) of the quadratic model was
close to the adjusted R2 (0.9739) which illustrated a sufficient
correlation between the input and output values.48 The experi-
mental model Adeq precision ¼ 32.06 >4, indicating that the
model is reliable and has enough signals to respond to the
design. It is preferable to use C.V.% rather than the standard
deviation when comparing model changes since it is a dimen-
sionless number. When the C.V.% value is below 10%, the
predicted value is close to the actual value (Table 6).

3.3.2 Response surface plots. Response surface plots can
express the relative impact of any single variable while the
remaining variables remain constant.49 The effects of contact
time and adsorbent dosage on the adsorption of SDBS on Fe2O3-
VR are illustrated in Fig. 7(a). With a xed amount of adsorbent,
the removal rate of SDBS increased with increasing of contact
time, and the trend slowed down reaching a certain value,
indicating that the contribution of the contact time to the SDBS
removal efficiency gradually tends to be saturated. It was in
accordance with the kinetic results. In addition, when the
contact time was constant, the removal rate increased and then
slightly decreased with increasing of adsorbent dosage. The
6272 | RSC Adv., 2022, 12, 6265–6278
increase of adsorbent dosage will lead to the mutual masking of
adsorption sites so that the adsorption capacity per unit mass of
adsorbent will be reduced.50 In addition, excessive adsorbents
may reduce the migration ability of sulfonate from the liquid
phase to the solid surface of volcanic rocks and hinder the
adsorption process. The research showed that in response
surface analysis if the contour shape is elliptic, it indicates
signicant interaction between the factors, while the opposite is
true for a circle.51 As can be seen intuitively from the contour
plot, the interaction between the two factors is relatively signif-
icant. There is an optimal SDBS removal area, that is, the area
with a contact time of 120–180 min and adsorbent dosage of 70–
90 g L�1, with SDBS removal efficiency of over 90% .

The interaction of SDBS initial concentration and dosage on
SDBS removal efficiency was displayed in Fig. 7(b). It demon-
strates that the removal percentage of SDBS increased with
decreasing SDBS initial concentration and increasing adsorbent
dosage. The decrease in SDBS removal rate with increasing
initial concentration can be assigned to the limited number of
adsorption sites, and excessive SDBS concentrations will inevi-
tably lead to overcrowding of adsorption sites and adsorption
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 7 2D contour and 3D RSM plots of (a) contact time and adsorbent dosage and (b) SDBS initial concentration and adsorbent dosage.

Table 6 Fit statistics of ANOVA

Std. dev. Mean C.V.% R2 Adj R2 Pred R2 Adeq precision

3.1232 69.3156 4.5057 0.9872 0.9739 0.9360 32.065
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barriers.37 It can be intuitively seen from the contour plot that
the interaction between SDBS initial concentration and adsor-
bent dosage is relatively signicant and it indicated that there
was an optimal SDBS removal area, that is, the area with a SDBS
initial concentration of 10–50 mg L�1 and adsorbent dosage of
70–90 g L�1, and the SDBS removal efficiency is above 90%. In
addition, it can also be observed that adsorbent dosage has
a greater inuence on SDBS removal efficiency than SDBS initial
concentration.

3.3.3 Optimization of RSM. Fig. 8 shows the optimal
conditions based on RSM, which were contact time of 180 min,
pH 6.62, SDBS initial concentration of 22.04 mg L�1, FeCl3
solution concentration of 0.26 mol L�1, the adsorbent dosage of
76.46 g L�1 and calcination temperature of 233.43 �C. The
maximum removal efficiency of SDBS was 97.5222%. The
experiment was conducted under these optimal conditions and
the predicted optimal values were veried. An experimental
value of 96.6839% was obtained, in general agreement with the
predicted removal rate (97.5222%). The consensual nature of
© 2022 The Author(s). Published by the Royal Society of Chemistry
the model and the low error reect the applicability of the
model.52
3.4 Articial neural network (ANN) modelling

3.4.1 Evaluation of model. During the training process,
a different number of neurons were tested as shown in Fig. 9. It
can be seen that in the trainlm algorithm, the optimal result
according to the minimummean square error was 13. Thus, the
developed network topology was designated as 6�13�1 (six
input neurons, thirteen hidden neurons and one output
neuron).

The variation of the mean square error of the system with
iteration number is displayed in Fig. 8(b). It can be seen that the
lowest MSE (2.9952) of the system appeared in the sixth epoch
iteration, and then the system stops training. The MSE is small
and satisfactory showing that the training network ts perfectly.
The ANN regression plot, shown in Fig. 10, indicates the R2

values for training, validation, testing and overall data, evalu-
ating the relationship among the experimental and predicted
values. It can be observed that the R2 values for the training,
validation, test and all data lie approximately around the 45�

line with R2 values of 0.99956, 0.9898, 0.9905 and 0.99605,
respectively. Accordingly, the neural network output network
response could nicely illustrate the adsorption process of SDBS.
RSC Adv., 2022, 12, 6265–6278 | 6273



Fig. 8 The desirability effect for SDBS removal efficiency.

Fig. 9 (a) MSE plot for different numbers of neurons in the hidden
layer (1–15) for the response of SDBS removal efficiency; (b) ANN
performance validation plot.
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3.4.2 Sensitivity analysis. Garson algorithm is used to
analyze the sensitivity of the ANN for getting the connection
weight of input-hidden layers and hidden-output layer.53 The
equation below is proposed by Garson for this type of analysis:

Qik ¼

PL
j¼1

���wijvjk
���,PN

r¼1

���wrjvjk
���

PN
i¼1

PL
j¼1

���wijvjk
���,PN

r¼1

���wrjvjk
��� (8)

where, N, L, andM are the number of neurons in the input layer,
hidden layer, and output layer, respectively. w, v are the
connection weights between the input layer and the hidden
layer, and hidden layer and the output layer, respectively.

The weights and biases of BP-ANN in input-hidden layers (wi

and bi) and hidden-output layer (wj and bj) are shown in Table 7.
Garson equation calculated that the contact time contributed
most to the decontamination of SDBS (37.31%), followed by
calcination temperature (29.43%), dosage (24.44%), initial
concentration (17.18%) and ferric chloride solution concentra-
tion (17.18%), and nally pH (11.56%).

This result is slightly different from the result of RSM. They
agreed that contact time was the most important factor for the
output variable. The difference is that the ANN model and RSM
model consider the inuence of calcination temperature and
dosage as the second place respectively. In addition, sensitivity
analysis of the ANN model can specify the degree of inuence,
while the quadratic equation of the RSM model can reect
whether factors are positively correlated.
3.5 Optimization using GA and PSO

3.5.1 Genetic algorithm (GA). GA method was employed to
optimize the input space of the optimal network to maximize
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 10 Regression plot of experimental data and BP-ANN model
simulated values.

Fig. 11 Fitness plot of GA optimization.
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the SDBS adsorbed in the adsorption procedure. As shown in
Fig. 11, the optimal tness graph obtained by the GA aer 230
iterations revealed that the results gradually converge to the
optimal solution. The maximum removal efficiency was
99.9984% under the optimal conditions of contact time ¼
132.1 min, pH ¼ 7.33, initial SDBS concentration ¼
18.21 mg L�1, FeCl3 solution concentration ¼ 0.28 mol L�1,
adsorbent dosage ¼ 70.02 g L�1 and calcination temperature ¼
246.53 �C. The results were veried by batch experiments under
the optimal conditions specied by GA. The results of running
GA with multiple randomly selected initial populations showed
that the variables values and output values changed very
slightly, indicating that GA was able to determine the global
largest with a high degree of precision.34
Table 7 The weights and biases of BP-ANN in input-hidden layers (wi a

Number of neurons

wi

Contact time pH Initial concent-ration
Fe
co

1 �0.8746 �0.7059 1.9034 �
2 �1.1790 �0.0953 �0.0762 �
3 0.6080 �0.7628 1.2893 �
4 �1.7079 0.7471 1.3665
5 2.2512 1.1521 �0.1281
6 1.7788 �0.1742 �0.0716
7 0.5371 0.0497 �1.0785 �
8 �0.1316 0.0852 �0.3324
9 �0.6774 �0.0363 �1.0028 �
10 1.8483 �0.0440 0.0586
11 0.6510 �0.3107 0.2250
12 �0.9453 0.2847 �0.2166
13 0.9899 0.8325 �0.5516 �

© 2022 The Author(s). Published by the Royal Society of Chemistry
3.5.2 Particle swarm optimization (PSO). In PSO, led by the
optimal individual of the population, the whole population
continuously approaches the global optimal solution, thus
obtaining the optimal solution to the problem. It has fewer
parameters and faster convergence and can be used to solve
complex optimization problems. Up to now, it has been widely
used in practical engineering elds. As shown in Fig. 12, aer 25
iterations of PSO evaluation, the optimal conditions were
selected and a better SDBS removal efficiency was obtained. The
optimized process conditions are as follows: contact time is
136.45 min, the pH of the solution is 5.64, initial SDBS
concentration is 22.4 mg L�1, FeCl3 solution concentration is
0.3 mol L�1, the adsorbent dosage is 83.21 g L�1 and calcination
temperature ¼ 274.02 �C. In this condition, the ANN prediction
of the maximum SDBS removal efficiency is 99.9982%. Simi-
larly, by running the program several times for verication, just
like GA, the results showed very slight variation.

3.6 Comparison of RSM, ANN-GA and ANN-PSO

In this paper, the Fe2O3-VR adsorption process of SDBS was
modeled by RSM and ANN, and GA and PSO were used to
nd bi) and hidden-output layer (wj and bj)

bi wj bj
Cl3 solution
ncent-ration

Adsorbent
dosage

Calcination
temperature

0.6521 0.0072 �0.8489 1.9458 �0.1810 �0.7695
1.4168 1.6262 0.6759 1.3499 0.2760
0.3339 1.1133 �1.4350 �1.7378 �0.1347
0.2297 �0.6280 �0.5845 1.4138 0.1242
0.2033 �0.5303 �1.1627 �0.2676 �0.0032
0.7942 1.4090 0.6207 0.4744 0.0508
1.4464 0.0998 1.5756 �0.0401 �0.0955
0.8385 1.0518 0.3142 0.6922 0.4866
1.5152 0.5608 0.5675 �1.0833 0.0195
0.2031 �0.8218 0.3839 1.1136 0.7388
0.3435 0.3045 3.2857 1.5042 �0.2783
0.3838 �2.2577 �0.4675 �1.3644 �0.2648
0.8284 0.2522 �0.8640 2.4056 0.3081
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Fig. 12 Fitness plot of PSO optimization.
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optimize. RMSE and AAD can be applied to evaluate the
behavior of both models, which are as follows:

RMSE ¼
 
1

n

Xn
i¼1

�
yi;pred � yi;exp

�2!1=2

(9)

AAD ¼
�����1n
Xn
i¼1

 
yi;pred � yi;exp

yi;exp

!������ 100 (10)

where the meaning of each element is the same as eqn (5) and
(6). The prediction ability of ANN and RSM is compared
through R2, MSE, RMSE and AAD, as presented in Table 8. The
results showed that both RSM and ANN had statistically
signicant correlations. The R2 value of RSM with SDBS
removed was 0.9872, while the ANN was 0.9961. In addition,
the MSE, RMSE and AAD values of ANN were smaller compared
to RSM, indicating that the prediction results of ANN were
closer to the experimental values with less error bias. Accord-
ingly, ANN has better predictive power compared to RSM,
which may be owing to the general approximation capability of
Table 8 The optimized process parameters for SDBS removal by Fe2O3

Variables

BBD-RSM

Predicted
parameters

Experimental
parameters

Contact time (min) 180 180
pH 6.62 6.6
Initial concentration (mg L�1) 22.04 22.04
FeCl3 solution concentration (mol
L�1)

0.26 0.26

Adsorbent dosage (g L�1) 76.46 76.4
Calcination temperature (�C) 233.43 230
Removal efficiency (%) 97.5222 96.6839
R2 0.9872
Mean square error (MSE) 4.6964
Root mean square error (RMSE) 2.1671
Average absolute deviation (AAD%) 1.5908
Relative error (%) 0.8383
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ANN for any form of nonlinearity present in nonlinear complex
systems.54

Moreover, compared to ANN-GA, the relative error of veri-
cation experiments by ANN-PSO (0.2330) was lower. So ANN-
PSO was more approximate to the real situation and improved
SDBS removal efficiency. Therefore, it can be inferred that ANN-
PSO is a satisfactorily performing method. Finally, because of
the excellent results obtained from this study, RSM, ANN-GA or
ANN-PSO methods can be applied in the modeling real-scale
greywater treatment systems.
3.7 Proposed mechanism of adsorption

The specic surface area of Fe2O3-VR increased substantially,
providing a considerable amount of active sites for the
adsorption of SDBS. The adsorption behavior of SDBS on Fe2O3-
VR was dominated by physical adsorption, accompanied by
chemisorption.55 Fe2O3-VR has a positive surface charge over
a wide pH range. The signicant improvement of SDBS removal
by Fe2O3-VR is due to the electrostatic gravitational force
between the adsorbent surface and SDBS molecules. Other
driving factors such as dispersion forces, hydrogen bonding,
etc.may also operate in the adsorption process. The mechanism
of electrostatic action of SDBS on Fe2O3-VR is schematically
shown in Fig. 13.
3.8 Regeneration of Fe2O3-VR

In general, apart from the removal efficiency, the regeneration
and reuse of the material is also an important point. Aer
adsorption, Fe2O3-VR were collected and regenerated by ultra-
sonic treatment for 10 min. Aerward, they were washed three
times with deionized water and dried at 100 �C. The regenerated
adsorbent was reused to perform adsorption tests at 25 �C and
pH ¼ 7, and the removal efficiency of SDBS was recorded by
repeating 5 cycles. The result was shown in Fig. 14. There was
only a 12% decrease in removal efficiency aer 5 cycles, which
might be due to the loss of adsorbent during regeneration. It
-VR using different approaches

ANN-GA ANN-PSO

Predicted
parameters

Experimental
parameters

Predicted
parameters

Experimental
parameters

132.1 132 136.45 136
7.33 7.3 5.64 5.6
18.21 18.21 22.4 22.4
0.28 0.28 0.3 0.3

70.02 70 83.21 83.2
246.53 240 274.02 270
99.9984 99.3547 99.9982 99.7652

0.9961
2.1311
1.4598
0.5464

0.6437 0.2330

© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 13 Electrostatic action mechanism diagram of Fe2O3-VR.

Fig. 14 Regeneration of Fe2O3-VR.
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demonstrated the economy and applicability of Fe2O3-VR in the
adsorption of SDBS.
4. Conclusion

The adsorption process of Fe2O3-coated volcanic rocks (Fe2O3-
VR) for the removal of SDBS from greywater in rural areas was
studied, which was suitable for the pseudo-second-order kinetic
model and Freundlich isotherm model. Fe2O3-VR was prepared
using FeCl3 solution, which mainly removed SDBS by electro-
static gravitation force, and the removal rate of SDBS reached
95%. It also has good regeneration and recycling performance,
and the removal rate was reduced by only 12% aer 5 cycles. In
this work, RSM and ANN were studied to forecast the removal
efficiency of SDBS by altering the parameters: contact time, pH,
initial SDBS concentration, FeCl3 solution concentration,
adsorbent dosage and calcination temperature. According to 4
statistical error metrics, the ANN model has better prediction
and accuracy compared to the RSM model. In the ANN, the best
network structure of 6-13-1 was utilized and the results of
© 2022 The Author(s). Published by the Royal Society of Chemistry
sensitivity analysis showed that the factors of SDBS removal
efficiency were in the order of: contact time (37.31%) > calci-
nation temperature (29.43%) > dosage (24.44%) > initial
concentration (17.18%) > FeCl3 solution concentration (17.18%)
> pH (11.56%). The adsorption efficiency was 99.9984% and
99.9982% by optimization with GA and PSO, respectively. But
the experimental results showed that ANN-PSO is a satisfactorily
performing method. The optimum level of contact time, pH,
initial SDBS concentration, FeCl3 solution concentration,
adsorbent dosage and calcination temperature is 136.45 min,
5.64, 22.4 mg L�1, 0.3 mol L�1, 83.21 g L�1, 274.02 �C, respec-
tively. The proposed method is effective for optimizing the
process parameters of SDBS removal from greywater in rural
areas by Fe2O3-VR. In future research, this method can be widely
used in the parameter optimization of the greywater treatment
process, not only in rural areas with a great possibility.
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