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Abstract: Although pruritus may sometimes be a consequential situation to neoplasms, it more
frequently emerges after commencing chemotherapy. In this review, we present our analysis of
the chemotherapy treatments that most often induce skin changes and itching. After discussing
conventional chemotherapies capable of inducing pruritus, we present our evaluation of new drugs
such as immunological checkpoint inhibitors (ICIs), tyrosine kinase inhibitors, and monoclonal
antibodies. Although ICIs and targeted therapy are thought to damage tumor cells, these therapies
can modify homeostatic events of the epidermis and dermis, causing the occurrence of cutaneous
toxicities in treated subjects. In the face of greater efficacy, greater skin toxicity has been reported for
most of these drugs. A remarkable aspect of some reports is the presence of a probable correlation
between cutaneous toxicity and treatment effectiveness in tumor patients who were treated with
novel drugs such as nivolumab or pembrolizumab. Findings from these experiments demonstrate
that the occurrence of any grade of skin side effects can be considered as a predictor of a better
outcome. In the near future, studies on the relationship between the onset of skin alterations and
outcomes could open new perspectives on the treatment of neoplasms through specific target therapy.

Keywords: pruritus; cancer; skin; adverse drug reaction; chemotherapy; immunological checkpoint
inhibitors; target therapy; tyrosine kinase inhibitors; monoclonal antibodies

1. Introduction
1.1. General Considerations on Pruritus

Pruritus is an unlikable sensation that provokes a wish to scratch, in response to
mechanical, chemical, or thermal motivations. This condition is due to several systemic or
dermatological diseases or neurologic and autoimmune pathologies. As far the mechanisms
of pruritus mediation and modulation, pruritus is stimulated and regulated by different
exogenous or endogenous pruritogens and their receptors. Pruritus is classified into four
diverse clinical groups. These are systemic, neuropathic, psychogenic, and pruritocep-
tive [1]. The molecular systems implicated in pruritus sensation are extremely complicated
and remain indefinable in most of these conditions, as an enormous quantity of recep-
tors, mediators, and controllers responsible for pruritus have been detected [2]. The most
well-recognized distinction between forms of pruritus is that of histaminergic and non-
histaminergic pruritus [3]. Acute itch is controlled through both pathways [4–6]. In contrast,
chronic itch is essentially regulated by the non-histaminergic pathway [6]. The histaminer-
gic system stimulates the transient receptor potential vanilloid 1 (TRPV1) channel while
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the nonhistaminergic system stimulates TRPV1 or transient receptor potential ankyrin 1
(TRPA1) [7]. In both systems, histaminergic and nonhistaminergic, TRPV1/TRPA1 stimu-
lates NaV1.7, and successively, NaV1.7 regulates action potentials in neurons [8,9].

The greater part of itch receptors are components of the class A G protein-coupled
receptors (GPCR). GPCRs are the principal group of membrane receptors discovered in
eukaryotes. To date, about 35% of all drugs affect diverse classes of GPCRs [10,11].

1.2. Cancer and Pruritus

Pruritus is often a non-specific symptom of a manifest or occult neoplasm. Although
this is most frequently reported with hematological malignancies, it is also described with
several types of solid cancers such as those deriving from the liver, gastrointestinal system,
and breast. In reports of subjects with non-specific generalized pruritus, the underlying
neoplasm was reported to be the origin of itch in about 10% of subjects [12]. The relationship
between cancer and pruritus has yet to be clarified; however, several mediators have been
proposed to have a function. Recent findings suggest that the T-cell alterations present
in Hodgkin’s lymphoma patients participate in the onset of pruritus correlated with this
neoplasm and the cytokines interleukin (IL)-6, IL-8, and IL-31 may also have a part in
chronic itch [13].

Nevertheless, although pruritus may sometimes be a consequential situation to the
neoplasms, it more frequently emerges after commencing chemotherapy. Tumor treatment
is distinguished by a great occurrence of side effects, and serious unfavorable events
may alter patients’ quality of life (QOL) [14]. In a recent report, findings from more
than a thousand subjects treated with about five thousand chemotherapy cycles were
examined. Remarkably, among the side effects considerably associated with a reduced
EuroQol 5 Dimension 5 Level (EQ-5D-5L) utility value were pruritus, and dry skin [15];
however, the effect of chemotherapy-induced pruritus on the neoplastic subject may be
even more significant. One study stated that about 20–30% of subjects experiencing anti-
tumor chemotherapy suffer from pruritus [16], and in these subjects, pruritus could modify
not only the QoL but also the effects of anti-tumor treatment, as grave pruritus caused by
chemotherapy would necessitate dosage adjustment or even suspension of the anti-tumor
drugs [16–18].

As far as the mechanisms by which chemotherapy can induce pruritus, several hy-
potheses have been formulated. Unspecific cytotoxic actions on the skin provoked by the
drugs or by their metabolites are the most frequent occurrences and can be detected in up
to 30% of all tumor subjects, irrespective of the nature of primary cancer, but reliant on the
schedule and the protocol of chemotherapy. Moreover, personal pathologic elements such
as comorbidities, concomitant drugs, cutaneous alterations, pharmacogenetics, and genetic
predisposition seem to be relevant [19]. Furthermore, the discharge of cytostatics or their
derivatives by eccrine sweat can provoke both direct deleterious actions owed to accretion
in the stratum corneum, and inflammatory events due to the reduction of the antioxidative
ability of the skin [20]. Moreover, alterations of growth and differentiation of interfollicular
keratinocytes and epidermal stem cells can be detected [21].

The pathogenesis of drug-caused pruritus changes depending upon the causal agent.
Pruritus may be consequent to drug-provoked skin lesions, but several other possible
mechanisms have been proposed, comprising phototoxicity, xerosis of the skin, or accumu-
lations of drugs or their metabolites in the skin. However, often, the primary mechanism is
not identified [22] (Table 1).
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Table 1. Possible mechanisms and characteristics of antineoplastic drug-induced pruritus.

Drug Mechanisms Characteristics Ref.

Paclitaxel Skin lesions Acute pruritus [23–26]

Nab-paclitaxel Skin lesions induced by albumin constituents [24,25,27–29]

Chlorambucil Delayed reaction [30]

Cytarabine
Immune reactions
Epithelial toxicity

Changes in keratinocyte activities
[31–36]

Imatinib Inhibition of PDGF receptor on dermal mast cells
Release of Il-33 and IL-31

[37]
[38]

Epidermal Growth Factor
Receptor inhibitors

Alteration of epidermal homeostasis
Effect on keratinocyte apoptosis
Increased release of chemokines

Acute pruritus
[39,40]
[41,42]
[43–45]

Erlotinib
Increase of mast cells

Changes in keratinocyte activities
Release of IL-1, TNF, IL-8

Acute pruritus
[46]
[39]

[47,48]

Lapatinib Unidentified mechanism Acute pruritus [49]

Immune checkpoint
inhibitors Release of inflammatory cytokine (IL6, IL-10) Acute pruritus [50]

Anti-PD1 Release of perforin1, granzyme B, CXCL9, CXCL10, CXCL11 [51]

Pembrolizumab Chronic pruritus [52]

For instance, an increase of mast cells in the lesional skin of subjects treated with
erlotinib might be responsible for the onset of pruritus; inhibition of degranulation of mast
cells by aprepitant might explain the antipruritic action of the NK1R antagonist in these
subjects [46]. Moreover, the dermatologic reactions could be due to the Epidermal Growth
Factor Receptor (EGFR) inhibition in epidermal and follicular keratinocytes, able to induce
modifications in keratinocyte growth, differentiation, migration, and attachment [39].
Subsequently, inflammatory cells delivery of chemoattractant factors that result in leukocyte
recruitment and the release of enzymes and levels of interleukin-1, tumor necrosis factor-
alfa, and IL-8 cytokines may lead to pruritus [47,48].

A similar mechanism could also be envisaged as regards the onset of pruritus after
administration of immune checkpoint inhibitors, able to cause an increase of immune
cytokines that may cause skin toxicities.

However, other mechanisms could be hypothesized for other drugs, and the occur-
rence of pruritus after paclitaxel administration appears to be secondary to skin lesions or
to other unknown effects [23–26].

Finally, several drugs such as lapatinib are reported to cause chronic pruritus by
unidentified mechanisms. In this group of drug-induced pruritus, therapy is very difficult,
including the decision to interrupt or change the drug prescription. According to general
experience, interruption for at least 6 weeks is necessary to prove that chronic pruritus is
due to the suspect drug [53].

In any case, the normal course of drug-caused itch is determined by the drug ad-
ministered. Drug-caused pruritus may be acute with a duration of only some days or
chronic, lasting for weeks or months. It may commence with the first dispensation or may
be deferred in time. For instance, a diagnosis of a deferred hypersensitivity reaction to
chlorambucil was described [30].

For some substances, a clear time-relation has been reported and stoppage of the
drug causes cessation of pruritus. Itch generally persists less than 6 weeks in this group,
satisfying the definition of acute pruritus. In other cases, pruritus persists longer due to
the different primary mechanisms. For example, in some forms of drug-caused pruritus,
neuronal storing of the drug provokes pruritus, which gradually decreases after degrada-
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tion of the drug. This can be grouped as chronic pruritus since it persists for more than
6 weeks.

In general, pruritic drug reactions due to the novel class of antineoplastic substances
such as epidermal growth factor receptor inhibitors cause acute pruritus [54], although
after pembrolizumab it may continue for numerous months after the suspension of therapy.

Many other cases of chemotherapy-provoked itch fall into the acute pruritus group.
For example, as for paclitaxel, itch begins after one to three cycles, with onset 1–14 days
after paclitaxel administration. Generally, duration of pruritus is 3–14 days [24,25].

Similarly, after lapatinib administration, skin collateral effects tended to be recognized
early after administration and the median duration was 29 days, while subjects with
Policytemia Vera (PV) experienced cutaneous side effects during the first month of pegIFN-
alfa treatment in a clinical experiment [49]. Finally, most of the skin toxicity from BRAF-i
therapy occurs between weeks 8 and 36 of the treatment [55].

In this review, we present our analysis of the chemotherapy treatments that most
often induce skin changes and itching. After having briefly mentioned conventional
chemotherapies capable of inducing itching, we discuss new drugs such as immunological
checkpoint inhibitors and drugs used in so-called targeted therapy such as tyrosine kinase
inhibitors and monoclonal antibodies.

2. Conventional Chemotherapy and Pruritus

Breast tumors are the most frequent neoplasm malignancy found in women. Several
drugs implicated in the therapy of breast cancer can cause pruritus and skin alterations
have been a permanent problem in the therapy of this tumor. Some of the most employed
antitumor treatments, e.g., taxanes, pegylated liposomal doxorubicin, and capecitabine,
provoke relevant skin alterations. The gravity and severity of these dermatologic toxicities
are mainly responsible for initially employing minor dosages, e.g., for capecitabine [56].

However, some new formulations utilized to cure breast tumors can also provoke pru-
ritus. Nanotechnology is a new area of research that has grown quickly [57]. Nab-paclitaxel
is a new, albumin-bound, 130 nm particle preparation of paclitaxel, which is discharged
in a suspension of albumin particles [58]. As reported in a phase II study, nab-paclitaxel
was efficacious for Chinese breast cancer subjects with metastatic tumors [59]; however,
it was observed that, in contrast with subjects cured with sb-paclitaxel, those cured with
nab-paclitaxel displayed pruritus more often (9% vs. 27%). This rate was greater than those
described in western nations [27,28].

In a different report, Thang et al. assessed the effectiveness and security of the
administration of nab-paclitaxel and cisplatin in women with metastatic breast cancer.
In this case, also, the occurrence of skin alterations was reported to be greater than what
was described for western patients [29]. The albumin constituent of nab-paclitaxel might
be the origin of the skin alterations [29].

Another drug used in the treatment of breast cancer is interferon (IFN). Partially
purified human beta interferon (HuIFN-beta) was given to subjects with metastatic breast
carcinoma, and pruritus attributable to the IFN happened in all patients [60].

A different form of interferon is the pegylated interferon alpha-2b (pegIFN alpha-2b),
a recombinant interferon alpha-2b, which is covalently bound to polyethylene glycol (PEG).
PegIFN alpha-2b has been employed in various malignancies, such as leukemias. During
treatment, cutaneous side effects happen for up to 10% of the subjects, especially pruritus,
erythema, cutaneous xerosis, and exanthems [61].

However, interferon alpha is used in other forms of neoplasms. During experiments
on subjects with metastatic melanoma treated with pegIFN alpha-2b (SoraPeg study) and
sorafenib, several and grave cutaneous alterations were reported. In fact, 24.4 % of subjects
that presented with pruritus also present with exanthems, hand–foot syndrome, and alope-
cia. Due to the cutaneous symptoms, dose reductions or interruptions of treatment were
made in several patients. The combined treatment with sorafenib/pegIFN alpha-2b pro-
voked more cutaneous side effects than have been described for single drugs [62].
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Finally, numerous hematological neoplasms are accompanied by significant itching
and this symptom can be aggravated by drugs such as cytarabine and bleomycin.

Cytarabine is a pyrimidine antagonist generally employed in the therapy of hemato-
logic malignancies such as leukemia and non-Hodgkin’s lymphoma [63–65]. High dosages
provoke cutaneous toxicity with a reported incidence varying from 2% to 72% [66–68].

Several theories explaining the cutaneous alterations induced by cytarabine have been
suggested, referring to immune reactions, or direct epithelial toxicity [31–34]. Further-
more, an altered process of maturation of keratinocytes as an effect of chemotherapy with
cytarabine is frequently reported in the literature [35,36].

Bleomycin is a different drug employed in hematologic malignancies [69]. It is a
chemotherapeutic antibiotic and it acts by blocking DNA uptake of thymidine in the
S-phase of the cell cycle. It has been utilized in the treatment of Hodgkin’s lymphoma and
for some germ cell tumors. Numerous cutaneous reactions to bleomycin are reported in
the literature, with a percentage ranging from 8% to 20% in subjects getting a total dosage
of >100 units [70,71].

3. Immune Checkpoint Inhibitors, Targeted Therapies, and Pruritus

Novel anti-tumor treatments comprising immune checkpoint inhibitors (ICIs) and
targeted therapies are conceived to target alterations in the immune system and defects
in DNA repair pathways and to aim at specific tumor cells. However, these therapies
alter signaling pathways present in both malignant cells and normal cells and can modify
homeostatic events of the epidermis and dermis; therefore, although planned to cure ma-
lignancies, targeted therapies and immunotherapies also alter the skin and its appendages,
causing the occurrence of cutaneous toxicities in practically all treated subjects. In the face
of greater efficacy, greater skin toxicity has been reported for most of the new drugs that
we examine in the following paragraphs (Figure 1).

Figure 1. Possible mechanisms of cutaneous pruritus happening during cancer treatment.

Antibodies against programmed cell death 1 (PD-1), a checkpoint in the effector
phase of cytotoxic T cells, have been efficaciously employed in tumor immunotherapy.
PD-1 blocks T-cell–mediated immune responses by attaching to its ligands, specifically
PD-L1 and PD-L2. By avoiding the binding of PD-L to PD-1, some antibodies, such as
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pembrolizumab and nivolumab, stimulate T-cell–mediated cytotoxic activities, which de-
termine cancer improvement in a multiplicity of tumors. Since 2017, anti-PD-1/PD-L1
antibodies have been employed to cure melanoma, cutaneous squamous cell carcinoma,
lymphoma, gastric cancer, liver cancer, Merkel cell carcinoma, and other diseases [72–74],
demonstrating superior overall response rates (ORR) and progression-free survival (PFS)
compared to conventional chemotherapy [75–78].

Adjuvant immune checkpoint blockade with anti-cytotoxic T-lymphocyte-associated
protein 4 (anti-CTLA-4) antibody ipilimumab is a different type of inhibition and shows an
increase in overall survival (OS) and recurrence-free survival in several cancers, but this
was also associated with great toxicity percentages [79]. Both checkpoint inhibitors (anti-
CTLA-4 and the PD-1 antibodies) can cause pruritus in 18–34% of treated subjects [80],
with differences between the latter two forms of therapy.

Yang et al. examined the occurrence of dermatologic adverse effects (AEs) and es-
tablished the risk of these side effects due to PD-1/PD-L1 inhibitors, as compared to
conventional chemotherapy or ipilimumab [81]. Pruritus and rash were the most described
dermatologic AEs, with an incidence of 12.2% and 11.8%, respectively. Compared with
neoplastic subjects getting chemotherapy, PD-1/PD-L1 inhibitor-treated subjects presented
a greater risk of developing pruritus, and rash; however, anti-PD1/PD-L1 treatment pre-
sented a lesser risk of provoking pruritus with respect to ipilimumab. This report states
that anti-PD-1/PD-L1 drugs have a different dermatological security profile with respect
to conventional therapy and anti-CTLA-4 treatment [81].

One study seems to confirm the risk of cutaneous side events in melanoma subjects
treated with checkpoint inhibitors [82]. Cutaneous side effects of any grade happen
in about 30% of subjects, and side effects of grade 3, 4, or 5 happen in up to 10% of
patients [83]; similar findings were reported by several other studies [84–93]. These data
were also validated by a recent report that studied a cohort of 285 immune-related adverse
events (irAEs) subjects with various malignancies, reporting that pruritus (34%) and
maculopapular rash (28%) were the dominant cutaneous ICI-related toxicities. Moreover,
the authors evaluated irAEs’ histological pattern distinguished by perivascular/interface
inflammatory lymphocytic/eosinophilic infiltrate. Grave irAEs presented augmented
concentrations of IL-6, IL-10, and eosinophilia, implying multifactorial pathogenesis [50].

Finally, new combined treatments with ICIs have been recently investigated and the
onset of skin events has been analyzed. Doi et al. evaluated the security and effectiveness of
combined mogamulizumab, a new anti-CCR4 antibody, and nivolumab in immunotherapy-
naive subjects with metastatic cancers. The most commonly reported adverse effects were
pruritus (11%), rash (39%), and maculopapular rash (20%) [94].

Patients with untreated stage IIIB/IV EGFR-mutant non-small cell lung cancer (NSCLC)
were treated with pembrolizumab plus erlotinib. In this study too, the most reported
treatment-related side effects with pembrolizumab plus erlotinib were pruritus (33.3%)
and rash (50.0%) [52].

Generally, from a clinical point of view, pruritus appears at the start of treatment
and may continue for numerous months after the suspension of therapy. The torso and
extremities are the places most affected by pruritus, followed by the acral areas, neck,
and head [95].

A genetic susceptibility could be relevant for the occurrence of pruritus and skin
alterations. In a report, subjects with advanced melanoma were cured with anti-PD-
1 treatment, and 22% of subjects presented cutaneous reactions [51]. Gene expression
analysis of skin demonstrated a gene expression profile with an increase of several cytotoxic
mediators such as perforin 1 (PRF1) and granzyme B (GZMB), inflammatory chemokines,
such as CXCL9, CXCL10, and CXCL11, and the pro-apoptotic molecule Fas ligand (FASLG),
as well as an increase of PD-L1. Moreover, the expression profile of specific genes in the
skin alterations was different from that seen in skin alterations due to other treatments.
The gravity of the immune-mediated injury varies and is interindividual, and a possible
justification could be the genetic inclination based on single nucleotide polymorphisms
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(SNPs) in genes correlated to immune functions. These genetic background modifications
can provoke changes in the predisposition to get cutaneous drug reactions [51].

A remarkable aspect of some reports is the presence of a probable correlation between
irAEs and treatment effectiveness in tumor subjects who were treated with nivolumab or
pembrolizumab. Finding from these experimentations demonstrated that the occurrence
of any grade of skin irAEs can be considered as a predictor of a better outcome. In fact,
it was reported that subjects with skin irAEs had higher ORR, PFS, and overall survival
than subjects without skin irAEs, particularly if these skin irAEs happened soon, within six
weeks of drug administration [96–101].

4. Targeted Therapy and Pruritus

Recently, targeted anti-tumor treatments, comprising small-molecule tyrosine kinase
inhibitors (TKIs) and monoclonal antibodies (mAbs), were employed for the therapy
of lung, breast, colorectal, and several other tumors [102,103]. In contrast to the conven-
tional anti-tumor chemotherapy that non-specifically harms tumor cells as well as growing
normal cells, the novel targeted anti-tumor drugs selectively inhibit signal pathways cor-
related with specific tumor proliferation, and in doing so, efficaciously decrease systemic
side effects [104]; however, targeted anti-tumor drugs often cause cutaneous alterations.
Drug-provoked pruritus has even been reported to happen more commonly with targeted
anti-tumor drugs than non-targeted agents [105,106].

Among the monoclonal antibodies, a fundamental action in cancer patients is per-
formed by anti-CD30 antibodies. Subjects with primary refractory Hodgkin’s lymphoma
have bad outcomes. Although several salvage protocols have been proposed, there is no
standard of care. Children’s Oncology Group protocol AHOD1221 (NCT01780662) verified
Brentuximab vedotin with gemcitabine in patients with primary refractory Hodgkin’s
Lymphoma. The most common grade 3–4 collateral events were comprised of rash (36%)
and pruritus (10%) [107].

Pruritus is also a frequent event with other targeted anti-tumor agents such as multik-
inase inhibitors (MKIs) (19%) and Bcr-Abl inhibitors (13%), although grade 3 pruritus is
rare (<3%).

The MKI sorafenib is employed for the therapy of hepatocellular carcinoma and
metastatic renal cell carcinoma. The most recurrent collateral effects comprise dermatologic
alteration, which may happen in more than 10% of the treated subjects [108].

Imatinib mesylate is a small-molecule TKi created to target c-ABL and BCR-ABL,
employed for the therapy of chronic myeloid leukemia and gastrointestinal stromal tu-
mors. Cutaneous imatinib-induced alterations are common, usually modest, and dose-
dependent [109,110], although all grades of skin alterations have been described, extending
from pruritus to Stevens–Johnson syndrome [111–114].

As for the pathogenesis of cutaneous alterations happening during imatinib treatment,
a direct action of the tyrosine kinase block on the Platelet-Derived Growth Factor (PDGF)
receptor, present on dermal mast cells, was proposed [37]. The inhibition of this receptor
might provoke an increase of dermal interstitial fluid pressure with the consequent onset of
cutaneous edema and erythema; however, the histological proof for an increased number
of dermal mast cells, which present a functional c-kit receptor, in patients with grave
cutaneous alterations from imatinib mesylate appears to reject a direct action of the imatinib
on mast cells [115,116].

Imatinib mesylate-related dermatologic alterations might be also correlated to the
delivery of IL-31 and IL-33. The release of IL-33 and the subsequent interaction with its
receptor on mast cells causes the production of numerous substances capable of provoking
skin alterations, comprising IL-31, a known pruritus-inducing cytokine [38].

The employment of other targeted therapies, and in particular Epidermal Growth Fac-
tor Receptor Inhibitors (EGFRIs), is also correlated with the onset of dermatologic toxicities,
which provoke distress and negatively modify adherence with EGFRI treatment [117].
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Epidermal Growth Factor Receptor (EGFR) belongs to the Erb group of tyrosine
kinase receptors. The EGFR receptor family comprises four membrane receptors with
tyrosine kinase activity: EGFR (ErbB1, Her1), ErbB2 (Her2), ErbB3 (Her3), and ErbB4
(Her4) [118–120]. EGFR has a fundamental effect in several physiological processes, and its
principal regulators are Epidermal Growth Factor and Transforming Growth Factor-α.

An increase of these receptors is reported in several tumors, comprising colorectal,
breast, malignant head and neck neoplasms, non-small-cell lung cancer, prostate, ovarian,
cervical, stomach, and pancreatic cancer [121], and in clinical activity, substances that
modify the function of EGFR are progressively more utilized. Among them we can find
EGFR-inhibiting monoclonal antibodies such as cetuximab and panitumumab; EGFR tyro-
sine kinase inhibitors of the first-generation such as gerlotinib and efitinib; inhibitors of the
second-generation such as trastuzumab, necitumumab, and dacomitinib; inhibitors of the
third-generation such as pertuzumab, sapitinib, osimertinib, varlitinib, rociletinib, olmu-
tinib, poziotinib, and vandetanib. Finally, we have multitarget tyrosine kinases inhibitors
such as canertinib, afatinib, lapatinib, and neratinib [122–126].

The inhibition of EGFR function considerably alters epidermal homeostasis. The mech-
anism of EGFRI-provoked dermatologic alterations is to block the normal proliferation
and differentiation of the epidermis, leading to dermatologic symptoms such as pruritus,
xerosis, and inflammation [39,40]. Moreover, EGFR stimulation controls epidermal growth
by blocking keratinocyte programmed cell death [41,42]. Activation of the receptor is
correlated with the diffusion of a signal able to induce the transference of keratinocyte from
the G1 phase to the S phase of the cell cycle [127]. Epidermal Growth Factor (EGF) also
modifies the growth of sebaceous and sweat glands [128].

In an experimental animal model, the pharmacological block of EGFR is correlated
with aggravation of skin inflammatory conditions and increased production of chemokines
in keratinocytes [43–45]. In vitro and in vivo studies performed in patients confirmed that
blocking EGFR signaling increased inflammation in human keratinocytes [129] and clinical
suggestions indicate that the local cutaneous response could have systemic repercussions,
as we can also have modifications in circulating chemokines and cytokines in treated
patients [130–133]; however, it is unknown what actions have classical mediators, such
as histamine and neurotransmitters, comprising serotonin, opioids, and γ-aminobutyric
acid [134].

Pruritus arises among 57% of subjects treated with panitumumab, and 13% of those
treated with erlotinib [135]. During therapy, systemic or local pruritus was reported,
varying in strength from mild to severe itching. It often co-occurs with xerosis and papulo-
pustular rash. Pruritus can happen with or without visible skin changes; in some patients,
there are no observable skin alterations other than xerosis. Clinical reports stated xerosis
percentages of 7–90% and pruritus percentages of 15–60% under EGFRIs, with augmenting
percentages in the long-term treatment of up to 100% for both pruritus and xerosis in
subjects treated at least for six months [136–139].

Other reports have described the dermatological side effects of cetuximab, a differ-
ent specific inhibitor of EGFR. Cetuximab, dispensed in combination with conventional
chemotherapy, has been demonstrated to increase chemotherapy effectiveness in tumors
of the head and neck and metastatic colorectal cancer [140,141]; however, cutaneous alter-
ations are the main collateral effects correlated with cetuximab administration and they
comprise of pruritus [117,142].

Analogously, the administration of panitumumab in patients affected by advanced
colorectal cancer has ameliorated prognosis and overall survival but is often correlated
with cutaneous alterations, the most frequent of which are pruritus and papulopustular
rash [143], and its utilization has been impeded by the presence of dermatological toxicities
in the greater part of treated subjects (>90%) [144,145].

The ability of target therapy to induce pruritus was validated by an investigation
directed to evaluate the features of pruritus, employing a questionnaire-based analysis.
A total of 374 tumor patients took the survey, of which, 108 were administered with the
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targeted treatment. A total of 205 subjects had pruritus, of whom, 66 were under the
targeted therapy. EGFRI-treated patients presented the greatest incidence of pruritus and
highest numeric evaluation scale score for itching [146].

A relevant aspect of the cutaneous alterations provoked by EGFR inhibitors is the
chance that they can require an interruption in anti-tumor treatment; however, there is
a complete accord that suspension of anti-EGFR treatment-based therapy should be
avoided [147]. All guidelines report the suggestion that subjects with cutaneous alter-
ations should be examined by a dermatologist and that resolution of treatment should be
founded on the nature and the gravity of the dermatological events [147–150].

In addition to conventional chemotherapy and target therapy, pruritus could be
induced by other forms of cancer treatment such as radiotherapy. Collateral effects of
radiation-treatment, often combined with chemotherapy or targeted therapies, on the
skin comprise acute and chronic inflammation with pruritus and pain, and these may
modify patients’ quality of life. Relevant acute cutaneous toxicities may involve up to
95% of these subjects [151]. New radiation techniques enable the skin to be exposed to a
minimal amount of radiation that is directed specifically at the intended target, but in some
specific cases, such as head and neck cancer, the skin is so near target volumes that the
onset of inflammation cannot be prevented. Moreover, the combination of radio-sensitizing
systemic therapies (e.g., 5-fluorouracil, Cetuximab, etc.) augments this toxicity [152–155].

Finally, even the transplantation approach in the therapy of tumors can induce itching.
Allo-hematopoietic stem-cell transplantation (HSCT) patients are subjected to composite
drug protocols, augmenting the risk for pruritus [156]. A report evaluated the possible
causes of skin alterations in the first year after CD34+-selected peripheral blood stem
cell transplantation (PBSCT) [157]. A retrospective study evaluated 243 subjects who
experienced CD34+-selected PBSCT. A total of 152 patients (63%) presented rash within
1 year after PBSCT. The percentage of subjects with pruritus was not different between
those with an acute Graft-versus-Host Disease (aGVHD) rash versus non-aGVHD rash.
The most frequent reason for non-aGVHD rash was drug-related. Single drug culprits were
recognized in 51% of rashes. The most frequently described drugs comprised chemotherapy,
antibiotics, keratinocyte growth factor, and recombinant IL-7 [157].

5. Conclusions

Pruritus is an underestimated problem in patients living with cancer. Cutaneous
alterations due to chemotherapy and chemoradiation are very frequent and may provoke
even life-threatening complications augmenting morbidity and mortality. It should also be
observed that some cutaneous collateral effects that occur during therapy, such as pruritus,
can affect poor adherence to the therapy protocol or cause the need for dosage changes or
even discontinuation of treatment.

Although we could imagine that pruritus might be more of a problem in subjects on
lower-dose, long-term treatments with conventional chemotherapy, a clinically relevant
amount of pruritus may be observed among patients getting new treatments such as
targeted therapy [158].

Several new drugs can be responsible for the onset of acute or chronic itch; however,
the causal mechanisms have not yet been investigated in depth, and different mediators
could be implicated in the pathology of this symptom. Further exhaustive studies on
the incidence of drug-caused pruritus after the employment of specific new medications,
as well as exploration of its pathomechanisms, are urgently needed. In the near future,
data derived from these investigations will permit changes in the treatment of this sort
of pruritus, and itchy conditions will be considered and treated by targeting specific
pathways at their biomolecular level. The identification of specific humoral mediators
will help identify possible new drugs to treat this condition. All this will make it possible
to make the best use of the new antineoplastic drugs, optimizing their effectiveness and
reducing possible skin side effects.
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Moreover, data about the treatment of drug-provoked cutaneous reactions of antineo-
plastic agents emphasize the value of interdisciplinary cooperation between oncologists
and dermatologists. The complete knowledge of dermatological collateral effects and their
appropriate management are essential to improve patients’ quality of life and guarantee
sustainability of oncological therapies. Creation of multidisciplinary teams is crucial for
optimal management of these drugs.

Finally, with respect to drugs, studies on the relationship between the onset of skin
alterations and outcomes, and between the onset and severity of skin lesions and genetic
predisposition [159,160], could result in new perspectives on the treatment of neoplasms
through specific therapy.
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