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Background: In this study, different intent prediction strategies were explored with

the objective of determining the best approach to predicting continuous multi-axial

user motion based solely on surface EMG (electromyography) data. These strategies

were explored as the first step to better facilitating control of a multi-axis transtibial

powered prosthesis.

Methods: Based on data acquired from gait experiments, different data sets, prediction

approaches and classification algorithms were explored. The effect of varying EMG

electrode positioning was also tested. EMG data measured from three lower leg muscles

was the sole data type used for making intent predictions. The motions to be predicted

were along both the sagittal plane (foot dorsiflexion and plantarflexion) and the frontal

plane (foot eversion and inversion).

Results: The deviation of EMG data from its optimal pattern led to a decrease in

prediction accuracy of up to 23%. However, using features that were calculated based

on a participant’s specific walking pattern limited this loss of prediction accuracy as a

result of EMG electrode placement. A decoupled data set, one wherein the terrain type

was accounted for beforehand, yielded the highest intent prediction accuracy of 77.2%.

Conclusions: The results of this study highlighted the challenges faced when using very

limited EMG data to predict multi-axial ankle motion. They also indicated that approaches

that are more user-centric by design could led to more accurate motion predictions,

possibly enabling more intuitive control.

Keywords: classification tree, electromyography (EMG), intent prediction, linear discriminant analysis (LDA),

multi-axial motion, transtibial powered prostheses

INTRODUCTION

Great strides have been made in the field of lower limb prostheses, particularly in the past
few decades. The continued research and development conducted toward transtibial powered
prostheses has enabled users to achieve gait that is comparable to that of healthy able-bodied
individuals, whilst reducing their energy cost during ambulation (Hitt et al., 2009; Herr and
Grabowski, 2012; Cherelle et al., 2014; Zhu et al., 2014).

The development of powered prostheses has necessitated the implementation of control systems
to ensure desired functionality of these prostheses. Most of the control strategies implemented to
date have been hierarchical in nature (Lawson et al., 2013; Hargrove et al., 2014; Young et al., 2014b;
Yuan et al., 2014; Spanias et al., 2018). These have consisted of a high level (decision) control system,
which deciphers the type of motion a user wants to perform, and a low level (execution) controller
that oversees the actuation of said motion by the prosthesis. The high level controllers largely
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fall into two categories: machine learning based control
approaches and proportional control methods, frequently using
myoelectric signals (Dawley et al., 2013;Wang et al., 2013; Huang
et al., 2014).

The design basis of a prosthetic device is to be a replacement
of the amputated limb. As such, control strategies that can
effectively reproduce the movement of the biological limb when
executing both cyclical and random motions should be the next
step in replacing the neural connections that have been lost
due to amputation. Unlike for upper limb prostheses, there has
been slow-paced development and commercialization of EMG
based control strategies for lower limb prostheses. However,
some progress has been made to facilitate EMG based control
approaches (Au et al., 2005; Oskoei and Hu, 2007; Ha et al., 2011;
Hargrove et al., 2011). Studies have also been conducted on the
use of EMG signals for walking mode classification (Huang et al.,
2009; Hoover et al., 2013).

Due to the non-stationary nature of electromyography (EMG)
signals, particularly during walking, first identifying a user’s
locomotion mode has made it easier to implement control of
lower limb powered prostheses (Huang et al., 2009). Using
EMG data to predict user intent has been more successful
for transfemoral (above-knee) amputees compared to transtibial
(below-knee) amputees. This is mainly attributed to the larger
number of muscles, mostly in the thigh, which can be used when
controlling transfemoral prostheses, their relatively larger size
compared to lower leg muscles and said muscles not been as
affected by the ground-foot interaction during walking, unlike
the lower leg muscles which are used for transtibial prostheses
(Huang et al., 2009; Hoover et al., 2013).

The objective of this study was to investigate the effectiveness
of different approaches for user intent prediction of multi-
axis ankle motion. The intent prediction had to account for
ankle-foot motion along two degrees of motion. Thus, the
explored approaches had to predict user intent along the plane
of progression and also out of said plane.

METHODS

Data Acquisition Experiment Protocol
A gait experiment was conducted to study the biomechanical
strategies used by able-bodied individuals when walking over
a fixed, uneven terrain. The experiment was approved by the
University of Manchester Research Ethics Committee (UREC
reference 16086). Six able-bodied individuals participated in the
gait experiment. They were all male and had no musculoskeletal
limitations. The average height and weight of the participant
group were 1.7m (±0.08) and 74.2 kg (±12.2), respectively.

Participants walked at three self-selected speeds, these were
slow, normal, and fast. They walked over level-ground and a
custom made fixed, uneven terrain shown in Figure 1. Walking
over both terrain types made gait pattern comparison possible.
Each participant completed 20 walking trials for each speed, over
each type of terrain. This resulted in a total of 120 walking trials
for each participant.

Kinematic and kinetic data were recorded for each participant
using two 3D AMTI (Watertown, MA, USA) force plates and

FIGURE 1 | Level-Ground (left) and Uneven Terrain (right).

six Vicon (Oxford, UK) infrared cameras. The force plates were
zeroed before conducting the uneven terrain trials to account
for the weight of the introduced terrain. The addition of the
uneven terrain had no effect on the calibration of the motion
capture system. Surface EMG data was also recorded from eight
muscles on each leg; namely the tibialis anterior (TA), medial
and lateral gastrocnemius (MG and LG), rectus femoris (RF),
medial and lateral vastus (VM and VL), biceps femoris (BF),
and semitendinosus (SM). The EMG data was recorded using a
Delsys Trigno wireless system (Natick, MA, USA). Even though
EMG data from eight muscles was recorded, only data from
the three lower leg muscles, namely TA, MG and LG, was used
for intent prediction. This was done because the upper leg
EMG data showed little variation as participants walked on the
different terrains.

The three lower leg muscles used were chosen due to their
relative size, proximity to the skin and their contribution to
ankle-foot motion along both the frontal and sagittal plane.
This made it easier and more effective to use surface EMG
electrodes. It also minimized the likelihood of signal crosstalk,
which tends to occur when measuring activation from muscles
that are situated deeper in the body using surface electrodes.
However, the shortfall of this approach was that key muscles
that contribute more directly to ankle-foot motion along both
the sagittal and frontal planes were omitted. These included
the soleus, tibialis posterior, peroneus longus, brevis, and tertius
muscles. However, as eversion is a combination of foot abduction
and dorsiflexion and inversion is a combination of foot adduction
and plantarflexion, the three muscles chosen formed a good
basis from which to non-invasively explore intent prediction of
multi-axial ankle motion.

The EMGdata was automatically synchronized with data from
the force plates and the motion capture system using the Vicon
system. The kinematic and kinetic data were used to identify key
phases of the gait cycle, including foot eversion and inversion as
participants walked over the uneven terrain. Swing phase was
identified based on the activation and deactivation of the two
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force plates in relation to each other, and also using the motion
capture system. Identification of the gait cycle phases made it
possible to segment the EMG data for both frontal and sagittal
ankle-foot motion and use it to train the prediction approaches
that were implemented.

The participants’ muscle activation patterns and the
magnitude of activation for the respective muscles were
calculated from the measured EMG data (De Lisa, 1998).
The EMG data was initially bandpass filtered at 20–450Hz
using a Butterworth filter to remove motion artifact and non-
physiological signal content. It was then amplitude normalized
based on each participant’s maximum (isometric) voluntary
contraction (MVC) (Yang and Winter, 1984; Halaki and Ginn,
2012). The normalized EMG data was then low pass filtered
using a 2nd order recursive Butterworth filter with a cut-off
frequency of 20Hz to ensure motion artifacts were removed (De
Luca, 1997).

Feature Selection
The normalized EMG data was used in an incremental form with
sequential analyses windows, rather than overlapping analyses
windows. A window size of 150ms was chosen based on previous
studies (Huang et al., 2009, 2011; Varol et al., 2010) and our
own trial-and-error process. Six features were chosen to be
calculated from the EMG data. These were variance (VAR),
waveform length (WL), integrated EMG (IEMG), 2nd order
autoregression coefficients (AR), root mean square (RMS), and
moving average (MAV). These features were chosen because they
were time-domain features, meaning that their computation did
not require signal transformation. Despite being a frequency
domain feature, autoregression was chosen due to its relative
ease of implementation and its reported classification accuracy
(Huang et al., 2011; Young et al., 2013).

Five user motions were of interest, namely dorsiflexion, foot
flat, plantarflexion, eversion, and inversion. Foot motion during
swing phase of the gait cycle was omitted because said motion
was not unique enough to be accurately classified based solely
on EMG data. Omitting swing phase, and the prediction of this
motion, also had no consequences in relation to controlling
a prosthesis prototype as the foot was off the ground (non-
load bearing) during this phase of the gait cycle. Additionally,
swing phase foot motion could be reproduced using prosthesis
mounted sensors without affecting the volitional nature of an
implemented controller.

This study focused on predicting step-by-step user motion
intent, unlike similar studies that predicted locomotion modes,
such as level-ground walking, stair-ascent, ramp descent, etc.
(Huang et al., 2011; Miller et al., 2013; Young et al., 2014a).
This meant that for this study, a continuous data stream was
received from the EMG sensors and motion prediction was
perpetually performed at 150ms intervals. As such, prediction
was performed solely using EMG data and without mechanical
sensor cues, “knowledge” of the walking environment or defining
an environment mandated locomotion mode to be executed.
This approach enabled more volitional control strategies to
be implemented. The step-by-step intent prediction approach

implemented could make it possible for transtibial powered
prostheses users to perform non-cyclic motions in real-time.

Linear Discriminant Analysis (LDA) was used to determine
which features, and which combinations thereof, yielded the
most accurate prediction of user intent. LDA was chosen due
to its ease of implementation, computational efficiency and
classification accuracies which are comparable to more complex
algorithms (Miller et al., 2013; Young et al., 2014a). Feature
selection was done offline using EMG data acquired from the gait
measurement described in section Data Acquisition Experiment
Protocol. The gait experiment data set was segmented such that
70% of it was used for training while the remaining 30% was used
for testing.

Prediction Approaches
Three prediction approaches were explored. For all three
approaches, features were calculated from the EMG data of
the gait experiment discussed in section Data Acquisition
Experiment Protocol. However, the data point of reference with
regards to how the calculated features were used was different
based on the prediction approach implemented. This meant that
the features were implemented in varying ways specific to the
different prediction approaches or calculated from different data
subsets. The first approach used EMG features calculated from
the aggregated data of the entire participant group to predict user
intent. These features were not augmented in any way and were
used as they were to make predictions for new participants. This
was called the generic approach.

For the second approach, we first determined the degree
to which a participant’s walking style deviated from a defined
optimum walking style. A participant’s walking style was
determined based on their lower leg muscle activation patterns
during level ground gait. The optimum walking style was defined
as a gait pattern wherein particular lower leg muscles activated at
specific phases of the gait cycle (Winter, 1983; Winter and Yack,
1987). We then adjusted the participant’s measured EMG data
to better reflect the optimum walking style. This was done by
biasing the necessary EMG channel(s). The features calculated
from the aggregated data of the entire participant group were
then used tomakemotion predictions for new participants. Thus,
two additional steps were initially performed before using the
features calculated from EMG data of the entire gait experiment
participant group. This was called the biased approach.

For the third approach, six distinct walking styles were
identified and labeled from the gait experiment data acquired
as described in section Data Acquisition Experiment Protocol.
The six walking styles were hyper TA, hyper MG, hyper LG,
moderate MG, moderate LG, and an optimum walking. These
were defined based on the degree to which they deviated from
the optimumwalking style. For this approach, new EMG features
were calculated for each of the six walking styles identified. Intent
prediction was then performed using these new features that
were specific to a participant’s walking style, which was one of
the six identified. As such, this approach was more user-centric
by design. It was aptly called the walking style approach. The
differentiating factor for the three approaches was the EMG
features they used to facilitate intent prediction.
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TABLE 1 | Muscle activation expectations of the deterministic algorithm.

Movement type Muscle activation

TA MG LG

1. Dorsiflexion Maximum Minimum

2. Foot flat Maximum Medium

3. Plantarflexion Minimum Maximum

4. Eversion Maximum Minimum Medium

5. Inversion Maximum Medium Minimum

Classification Algorithms
In addition to using a LDA classifier, which was initially used
for feature selection, three more classification algorithms were
used to predict motion. As with exploring various prediction
approaches, different classification algorithms were explored to
determine which would yield the best accuracy for EMG based
multi-axial motion prediction.

The first additional algorithmwas a classification tree, a CART
algorithm (Breiman et al., 1984). The second was a deterministic
algorithm. Unlike the LDA and classification tree, it was not a
machine learning based algorithm. Its classification was based on
expectations of certain muscles being active at particular phases
of the gait cycle, with respect to specific ankle-foot motions.
The deterministic algorithm did not use EMG features to make
predictions. Rather, a comparative approach using raw measured
EMG data was implemented. The defined expectation of muscle
activations with respect to gait phases is listed in Table 1. A
mathematical description of this classifier is presented in (1).

Cdet →























1, (p ∧ q)
3, (∼ p∧ ∼ q)

4, (p∧ ∼ r)∧ ∼ q
5, (q ∧ r)∧ ∼ p
2, otherwise

(1)

where;

p → TA > MGas, q → TA > LGas, and r → MGas > LGas.

Such that;

TA = max
(

∑n

i=1
TA(i)

)

MGas = max
(

∑n

i=1
MGas(i)

)

LGas = max
(

∑n

i=1
LGas(i)

)

The third additional classification algorithm explored was a
voting scheme. Its classification output was based on a majority
agreement of the other three algorithms. If there was no
agreement, the voting scheme output defaulted to that of the
deterministic algorithm. A mathematical description of the
voting scheme is presented (2). A graphical representation of how

the four classification algorithms relate to each other and the
three prediction approaches is presented in Figure 2.

CVS(t) =















CLDA (t) , CLDA(t) = CTree(t)
CTree (t) , CTree(t) = Cdet(t)
Cdet (t) , Cdet(t) = CLDA(t)
Cdet (t) , Otherwise

(2)

where;
t is the current prediction outcome.
CLDA, CTree, and Cdet are the prediction outputs of the LDA,

classification tree and deterministic algorithm, respectively.

Intent Prediction Experiment Protocol
A second gait experiment was conducted to assess the
prediction accuracy of the different prediction approaches and
classification algorithm combinations. Kinematic and EMG data
were measured during the experiment. Three new participants
(one female and two males) took part in the gait experiment.
Their average height and weight were 1.74m (±0.06) and 72.7 kg
(±0.09), respectively. The participants walked at a self-selected
normal speed. They walked on both level ground and the same
fixed, uneven terrain used in the gait experiment of section Data
Acquisition Experiment Protocol. Each participant completed
eight walking trials over each type of terrain. This resulted in a
total of 16 walking trials for each participant.

In order to evaluate the effect of EMG quality on the
prediction accuracy, EMG data was collected for two electrode
placement conditions. These were an optimal electrode (OE)
and an electrode shift condition (ES). For the optimal electrode
condition, the EMG electrodes were placed at their optimal
anatomical locations. Though for the electrode shift condition,
one of the three EMG electrodes was purposely placed 2 cm
lower than its optimal location. The choice of which electrode
to displace was based on the participant’s walking style. For
instance, the EMG electrode was shifted along the MG muscle
for a participant that exhibited a hyper MG walking style.

The effect of using two different data sets for classifier training
was also investigated. The first was a combined data set, it
comprised of EMG data from both level ground and uneven
terrain walking trials. The second data set was a decoupled data
set, motion prediction was performed separately for level ground
and uneven terrain walking.

The effect of using differing data sets was of interest
because of the multi-axial nature of the motion being predicted.
Determining which data set resulted inmore accurate predictions
would have implications on how and what kind of control
strategy could be implemented for similar multi-axial transtibial
powered prostheses.

Statistical Analysis
Two-tailed paired t-tests were performed to investigate the effects
of (1) EMG electrode positioning, (2) using different prediction
approaches and classification algorithms, and (3) the data set,
combined or decoupled, used for prediction. A confidence level
of 95% was used for these analyses (α = 0.05).
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FIGURE 2 | Graphical Representation of how the Prediction Approaches and Classification Algorithms Relate.

RESULTS

Feature Set Selection
Intent prediction was initially performed using a LDA classifier
trained on the six individual EMG features and different
combinations thereof from EMG data of the gait experiment
described in section Data Acquisition Experiment Protocol. This
was done to determine which feature combinations resulted
in the highest classification accuracy. Three features that
individually yielded the highest accuracies were IEMG (70%),WL
(57%), and AR (57%).

However, combining all six features provided the highest
prediction accuracy of 93%. The second-best performing feature
combinations were VAR + IEMG + MAV and VAR + IEMG +

AR+MAV which both reached accuracies of 80%. Therefore, all
six features were used to evaluate the prediction accuracy of the
different prediction approaches and classification algorithms.

Combined Data Set
The prediction accuracy and misclassifications of each
classification algorithm and prediction approach, for both
electrode placement conditions are presented in Figures 3–8
as confusion matrices. Most of the algorithms performed
consistently better for the optimum electrode (OE) placement
condition compared to the electrode shift (ES) condition.
However, the prediction accuracies were significantly lower
than those obtained during feature set selection (section Feature
Set Selection).

The voting scheme algorithm produced the highest accuracy
of 49.3% for the OE condition, indicating the benefits of
aggregating multiple algorithms and playing to their individual
strengths (Figure 3D). The deterministic algorithm achieved an
accuracy of 38.5% for the OE condition (Figures 3C, 4C, 5C)
and was unaffected by the implementation of different prediction
approaches because it did not reply on EMG feature calculation.

Its misclassifications were other motions being classified as
foot flat.

The classification tree and LDA showed comparable
accuracies for the generic and biased generic approaches,
averaging 35 and 43%, respectively. However, the LDA
performed poorly for the walking style approach (Figure 5B).
The classification tree benefited from the implementation of the
more user-centric walking style approach, achieving a prediction
accuracy of 44.6% (Figure 5A). Overall for the OE condition,
most misclassifications for both the classification tree and LDA
were foot flat being misclassified as foot inversion, followed by
foot flat being misclassified as foot eversion. With regards to the
overall accuracy, the generic approach performed best for the
OE condition.

On average, the prediction accuracies for the ES condition
were 25.6, 20.6, and 18% lower than those of the OE
condition for the generic, biased generic and walking style
approaches, respectively (Figures 6–8). The machine learning
based algorithms demonstrated their strengths of being better
capable of handling imperfect input data. LDA performed best
for the ES condition, indicating its robustness in the presence of
flawed input data.

The biased generic approach was the best performing
approach in terms of overall prediction accuracy for the
ES condition (Figure 4). This suggested that a user-centric
approach, such as the biased generic or walking style approach
used in this study, could be beneficial when dealing with EMG
signals that have deviated from their optimal state. LDA achieved
the highest prediction accuracy of 37.5% for the ES condition.

Misclassifications for the deterministic algorithm were very
similar for both the OE and ES conditions, with other motions
being incorrectly classified as foot flat. The deterministic
algorithm performed the worst for the ES condition, only
achieving a prediction accuracy of 12.5%. The misclassifications
of the classification tree, for the generic and biased generic
approaches, suggested that predictions were slightly biased
to dorsiflexion (Figures 6A, 7A). Whereas, for the walking
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FIGURE 3 | Optimal Condition Combined Data Set—Generic Approach. (A) Tree, (B) LDA, (C) Deterministic, and (D) Voting scheme.

style approach, the miscalculations of the algorithm changed
to other motions being misclassified as foot flat (Figure 8A).
For the LDA, most of the misclassifications were other
motions being classified as foot inversion for the generic
and biased generic approaches (Figures 6B, 7B), and other
motions beingmisclassified as plantarflexion for the walking style
approach (Figure 8B).

Decoupled Data Set
Figures 9–12 present the prediction accuracies and algorithm
misclassifications when intent predictions were made separately
for the level ground and uneven terrain data. The machine
learning based classification algorithms were retrained to
classify the five ankle-foot motions detailed in section Feature

Selection specifically for level ground and uneven terrain
walking. Prediction accuracies for the optimal electrode (OE)
condition were higher than those for the electrode shift
(ES) condition.

Overall, the walking style approach was the best performing
approach for the level ground data. The voting scheme
algorithm achieved the highest prediction accuracy of
65.9% for the level ground OE condition. The deterministic
algorithm fared better for the OE condition achieving a
prediction accuracy of 62.6% (Figure 9C), compared to an
18% accuracy for the level ground ES condition (Figure 11C).
The deterministic algorithm’s errors of other motions being
misclassified as foot flat would greatly hinder prosthesis
user mobility.
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FIGURE 4 | Optimal Condition Combined Data Set—Biased Generic Approach. (A) Tree, (B) LDA, (C) Deterministic, and (D) Voting scheme.

Most of the algorithms misclassified other motions as foot
flat for the level ground data set. The exceptions were the
classification tree for the OE condition and the LDA for
both electrode placement conditions. The classification tree
misclassified other motions as foot inversion (Figure 9A).
The LDA had difficulty differentiating between other motions
and foot eversion for the level ground data set, which
accounted for most of its misclassifications (Figure 9B). These
misclassifications could have been attributed to the manner in
which foot eversion data used for classifier training was initially
obtained. The data were acquired during gait measurements
which had participants performing maximum foot eversion

whilst in a seated position with their heels in contact with
the ground. This approach was similar to one taken by Au
et al. during their study which involved a participant with an
amputation (Au et al., 2008).

The classification tree achieved a prediction accuracy of
26.1% for the level ground ES condition using the walking style
approach (Figure 11A), which was marginally better compared
to its 21.4% accuracy for the combined data set using the biased
generic approach (Figure 7A). This reinforced the hypothesis
that a user-centric approach, such as the walking style approach
used in this study, could be beneficial when dealing with EMG
data that has deviated from its optimal pattern.
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FIGURE 5 | Optimal Condition Combined Data Set—Walking Style Approach. (A) Tree, (B) LDA, (C) Deterministic, and (D) Voting scheme.

The LDA yielded the highest overall accuracy of 77.2%,
this was for uneven terrain data using the OE condition
(Figure 10B). This demonstrated the strength of the machine
learning based algorithm to better distinguish between various
patterns. When used with the biased generic approach, the LDA
demonstrated its ability to better generalize to new and sub-
optimum data, unlike the other algorithms, achieving a 55.4%
accuracy (Figure 12B).

The deterministic algorithm performed dismally for the
uneven terrain data, misclassifying all the motions. Its poor
performance was due to the challenge of differentiating
between foot eversion, foot flat and foot inversion based
solely on raw EMG data. The voting scheme also performed
poorly for the uneven terrain ES condition (Figure 12D).
Interestingly, during the ES condition, the prediction

accuracies for uneven terrain walking were generally higher
than those for level ground walking. This was attributed to
EMG patterns associated with performing foot motion along
the frontal plane being more distinguishable than those of
sagittal plane motion, particularly when using sub-optimal
EMG data.

DISCUSSION

EMG Electrode Placement
The effect of electrode placement was of interest due to the long-
term focus of this study being to develop a control strategy for
transtibial powered prostheses. As such, it is anticipated that
electrode placement would not be entirely consistent during
prosthesis use, even if low profile electrodes were embedded
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FIGURE 6 | Electrode Shift Condition Combined Data Set—Generic Approach. (A) Tree, (B) LDA, (C) Deterministic, and (D) Voting scheme.

in the prosthesis socket. There has been more recent research
conducted in developing transtibial prostheses with more than
one degree of freedom (DoF). Examples of these include the
Sparky 3 (Bellman et al., 2008) and a cable-driven 2 DoF ankle–
foot prosthesis controlled using a microcontroller executing
impedance control (Ficanha et al., 2016). To the author’s
knowledge, control strategies that have been implemented on
2DoF transtibial powered prostheses to date have used prostheses
mounted sensors or data fusion approaches. These controllers
have not solely used EMG data to drive the prostheses.

The highest overall prediction accuracies were achieved
by the generic approach for the optimal electrode condition

(Figure 10B) and the biased generic approach for the electrode
shift condition (Figure 12B). There was a difference of 21.8%
between the highest accuracies of these two electrode placement
conditions. Statistical analysis indicated that EMG electrode
placement (the quality of the EMG data) had a significant
effect on the prediction accuracy (p < 0.05). Miller et al.
reported similar findings for an electrode shift condition (Miller
et al., 2013). Their study involved both able-bodied participants
and those with unilateral transtibial amputations, all of whom
retained control of their residual muscles. The reduction in
classification accuracy as a result of electrode shift was observed
for both participant groups. However, the largest decrease in

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 November 2019 | Volume 7 | Article 335

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Gregory and Ren Multi-axial Ankle Motion Intent Prediction

FIGURE 7 | Electrode Shift Condition Combined Data Set—Biased Generic Approach. (A) Tree, (B) LDA, (C) Deterministic, and (D) Voting scheme.

accuracy of 60% was for an able-bodied participant, while the
largest decrease in accuracy for the participant group with
transtibial amputations was∼50%.

A deviation of the electrode position from its anatomically
optimal placement, particularly when taking a participant’s
walking style into consideration, affected the quality of the
measured EMG data used for motion prediction. It is worth
noting that the electrode shift condition was only one
representative cause of a reduction in EMG data quality in
practical use. Other causes for a similar reduction in EMG
data quality could occur due to muscle fatigue or signal noise
introduced from external factors, such as excessive sweat.

Prediction Approach vs. Classification
Algorithm
The use of different prediction approaches did not have a
significant effect on the prediction accuracies for both the
combined data set (p = 0.6) and the decoupled data set (p =

0.62). Nevertheless, the poor performance of the walking style
approach suggested that, in a broader sense, generalized data may
have an advantage of minimizing nuances in individual walking
patterns, particularly those leading to misclassifications of multi-
axial motion. This was most evident when conducting motion
predictions based on a combined data set wherein the worst
overall performing prediction approach was the walking style.
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FIGURE 8 | Electrode Shift Condition Combined Data Set—Walking Style Approach. (A) Tree, (B) LDA, (C) Deterministic, and (D) Voting scheme.

Statistical analysis revealed that using different classifiers had
a noticeable effect on the prediction accuracies. Though the effect
thereof was marginal for the combined data set (p = 0.096) for
both the OE and ES conditions. The different classifiers had no
significant effect when investigating the OE condition for the
decoupled data set (p = 0.79). Though a marginal effect was
found when dealing with the ES condition for the decoupled data
set (p= 0.07).

Among all the classification algorithms, the voting scheme
yielded the highest overall prediction accuracy of 49.3% for the
combined data set. This was followed by the classification tree
at 44.6%. The performance of the voting scheme demonstrated

the advantage of potentially compensating for deficiencies of
individual classification algorithms and leveraging their specific
strengths, particularly when classifying multi-faceted motions.
The voting scheme stemmed from the observation that different
classification algorithms performed differently when predicting
certain types of motion. We also took a cue from previous studies
that used a majority vote approach to make classifications (Varol
et al., 2010; Huang et al., 2011; Young et al., 2014a). These studies
used a classifier’s time history, the past n decisions a classifier has
made. A classification output triggered a change in locomotion
mode only when a majority of the past sample windows gave the
same output.
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FIGURE 9 | Optimal Condition Decoupled Data Set—LG Walking Style Approach. (A) Tree, (B) LDA, (C) Deterministic, and (D) Voting scheme.

It is possible that with further development, the voting
scheme could achieve improved prediction accuracy. However,
its performance would depend on the individual classifiers used
and on the manner in which the best classification output would
be determined if a majority vote was not achieved. For instance,
Huang et al. (2011) reported better classification accuracy using
SVM over LDA, while Miller et al. (2013) reported that they
observed similar accuracies for both LDA and SVM. This was also
evident from the classification results; the voting scheme only had
the highest classification accuracy 40% of the time. Hence, there
would be a possibility of introducing unnecessary complexity
with such an algorithm.

The performance of the deterministic algorithm suggested
that machine learning based algorithms could be outperformed
by simpler and less computationally intensive approaches. This
also supported the implementation of EMG based proportional
control approaches for powered prostheses that directly respond
to user input, rather than first conducting motion prediction.
Such approaches would not be susceptible to issues of
generalization and robustness which often affect machine
learning based approaches. This issue of controller generalization
was also highlighted in a study by Young et al. (2013).

However, the performance of an algorithm not based on
machine learning would depend on the type of data being
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FIGURE 10 | Optimal Condition Decoupled Data Set—UT Generic Approach. (A) Tree, (B) LDA, (C) Deterministic, and (D) Voting scheme.

used to make classifications. The disadvantage of using a
deterministic algorithm is that its performance is likely to
degrade in conditions wherein the input data is harder to
segment and distinguish from other similar data, e.g., the
foot flat vs. the foot eversion/inversion motion. Situations
wherein there are many possible output groups could also
affect the performance of such an algorithm. This was the case
observed in this study. An example of this was a study by
Miller et al. wherein they reported classifier misclassifications
when distinguishing between different level ground walking
speeds (Miller et al., 2013).

Data Set vs. Prediction Accuracy
Overall, the statistical analysis showed that decoupling the data
sets used for prediction had no significant effect on the prediction
accuracies (p = 0.98). Nonetheless, higher prediction accuracies
were achieved when using the decoupled data set for both the
optimal electrode (OE) and electrode shift (ES) conditions. There
were average increases in prediction accuracies of 10.3 and 3.5%
for the OE and ES conditions, respectively, for the decoupled data
set compared to the combined data set.

The prediction accuracies of the decoupled data set were
more comparable to those reported in similar studies (Huang
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FIGURE 11 | Electrode Shift Condition Decoupled Data Set—LG Walking Style Approach. (A) Tree, (B) LDA, (C) Deterministic, and (D) Voting scheme.

et al., 2011; Miller et al., 2013; Young et al., 2014a). Young et al.
reported classification errors of ±28 and ±6% for transitional
and steady-state data respectively, for level ground, ramp and
stair traversal when using EMG data from nine muscles (Young
et al., 2014a). The study presented in this paper used EMG data
from only three lower leg muscles.

Unlike other studies that classified data from varying terrains
which elicit distinct muscle activations, such as traversing
stairs; this study classified EMG data from level ground and
uneven terrain traversal. Walking over these two terrains
resulted in minimal differences in the measured EMG data
which, coupled with the limited number of EMG channels

used, affected the resulting accuracy. Other studies highlighted
the increase in misclassifications when using level ground
data compared to data from traversing ramps or stairs
(Miller et al., 2013; Young et al., 2014b).

The best performing combinations of prediction approach
and classification algorithm are listed in Table 2. The
performance of the generic and biased generic approaches
indicated the benefit of using a greater range of training
data when predicting multi-axial motion. This suggested
that a greater pool of training data, with more variations,
could lead to improved overall accuracy. The limitation of
this study was the small participant group from which the
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FIGURE 12 | Electrode Shift Condition Decoupled Data Set—UT Biased Generic Approach. (A) Tree, (B) LDA, (C) Deterministic, and (D) Voting scheme.

measurement data was acquired. Using three EMG channels
also affected the size of the feature set used for classification.
Young et al. discussed the LDA’s limitation in classifying
non-stationary signals, such as lower limb EMG signals, but
noted its ability to use a large feature set to classify new data
having used a small sized data set for training (Young et al.,
2014b).

The performance of the deterministic algorithm for the OE
condition, based on the level ground data set, suggested that
a simple classification approach could be useful for multi-axial
prosthetic control during every day, level ground walking. In

the same light, the poor performance of the machine learning
based classifiers highlighted one of the most challenging issues
when developing control strategies for powered prostheses, data
overfitting or classifier biasing. These issues could be overcome
by using larger training data sets or by conducting more classifier
training. However, these processes can be time consuming and
may introduce more complexities to the approaches used.

The overall prediction results, particularly for the decoupled
data set, suggested that higher accuracy and better performance
could be achieved by using the intent prediction approaches
presented in this study, especially if coupled with other sensors.
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TABLE 2 | Best performing combinations of prediction approach and

classification algorithm.

Data set Prediction approach Classification algorithm

Optimal electrode condition

Combined – LG + UT Generic Voting scheme

Decoupled – LG Walking style Voting scheme

Decoupled – UT Generic LDA

Electrode shift condition

Combined – LG + UT Biased generic LDA

Decoupled – LG Walking style Classification tree

Decoupled – UT Biased generic LDA

These approaches took into consideration the type of walking
terrain and the quality of the measured EMG data. This could
lead to the development of an adaptive control approach that
can adapt to the environment (walking terrain) and the user’s
conditions (EMG data quality) during use.

Additional Considerations
This study only involved able-bodied participants. However,
previous studies have reported that individuals with transtibial
amputations tend to retain control of their residual muscles
(Huang and Ferris, 2012; Seyedali et al., 2012; Silver-Thorn
et al., 2012). In their study, Silver-Thorn et al. measured
in-socket EMG data from three participants with transtibial
amputations using low-profile surface electrodes (Silver-Thorn
et al., 2012). They reported that the participants retained
independent control of the residual muscles that were previously
used to move the now amputated limb. However, the timing
of said muscle activity was not always similar to that of
able-bodied individuals.

The walking style approach would lend itself well to
participants with transtibial amputations as the features used
for intent prediction would be those based on their specific
walking style. As such, differences in muscle activation timings
or the repositioning of residual muscles following amputation
would be accounted for. The biased generic approach could also
be implemented as it accounts for a participant’s walking style
deviating from the defined optimum walking style.

On the other hand, new data would have to be measured from
a large participant group with transtibial amputations to develop
a generic approach for this group. Though given the unique
muscle activations that individuals exhibit post amputation,
this generic approach would still need to be “tuned” for each
individual. This emphasizes the issue of controller generalization
for prostheses and highlights the potential benefits of developing
prediction approaches that are more user-centric by design, such
as the biased generic and walking style approaches presented in
this paper.

CONCLUSIONS

The objective of this study was to explore the best combination
of prediction approach and classification algorithm to predict

multi-axial motion. This was done with the view of said strategy
being the preceding step in facilitating control of a multi-axial
transtibial powered prosthesis.

Gait experiments were conducted on both level ground and a
fixed, uneven terrain to provide data sets for algorithm training
and prediction accuracy assessment. A total of 12 combinations,
comprising of four classification algorithms and three prediction
approaches, were implemented and evaluated for both an optimal
electrode and an electrode shift condition.

The results from this study revealed that a generic approach
achieved higher overall prediction accuracy for the optimal
electrode condition. Whereas, the biased generic and walking
style approaches, which were more user-centric by design,
performed better when the quality of EMG data used
was negatively affected, as was the case for the electrode
shift condition.

When assessing the performance of the classification
algorithms using different data sets, it was found that the data set
used had a greater effect on the prediction accuracy compared to
the quality of the EMG data. This demonstrated that different
prediction approaches performed best for specific data sets.

The importance of this study was in conducting a systematic
investigation to determine the best way of predicting user intent
for multi-axial ankle motion. This was done with the view of
said prediction being used to drive and control a multi-axial
transtibial powered prosthesis. The prediction accuracy achieved
using a limited number of muscles was comparable to similar
previous studies which used more muscles or a fusion of data
from various types of sensors.

The results from this study suggested that more adaptive
control strategies could enable more biologically similar motions
for transtibial powered prostheses, including non-cyclic motions.
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