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Down syndrome (DS) is the primary genetic cause of intellectual disability (ID), which
is due to the triplication of human chromosome 21 (HSA21). In addition to ID,
HSA21 trisomy results in a number of neurological and physiological pathologies
in individuals with DS, including progressive cognitive dysfunction and learning and
memory deficits which worsen with age. Further exacerbating neurological dysfunction
associated with DS is the concomitant basal forebrain cholinergic neuron (BFCN)
degeneration and onset of Alzheimer’s disease (AD) pathology in early mid-life. Recent
single population RNA sequencing (RNA-seq) analysis in the Ts65Dn mouse model of
DS, specifically the medial septal cholinergic neurons of the basal forebrain (BF), revealed
the mitochondrial oxidative phosphorylation pathway was significantly impacted, with
a large subset of genes within this pathway being downregulated. We further queried
oxidative phosphorylation pathway dysregulation in Ts65Dn mice by examining genes
and encoded proteins within brain regions comprising the basocortical system at the
start of BFCN degeneration (6 months of age). In select Ts65Dn mice we demonstrate
significant deficits in gene and/or encoded protein levels of Complex I-V of the
mitochondrial oxidative phosphorylation pathway in the BF. In the frontal cortex (Fr Ctx)
these complexes had concomitant alterations in select gene expression but not of the
proteins queried from Complex I-V, suggesting that defects at this time point in the BF are
more severe and occur prior to cortical dysfunction within the basocortical circuit. We
propose dysregulation within mitochondrial oxidative phosphorylation complexes is an
early marker of cognitive decline onset and specifically linked to BFCN degeneration that
may propagate pathology throughout cortical memory and executive function circuits in
DS and AD.
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INTRODUCTION

Down syndrome (DS) is caused by the triplication of human
chromosome 21 (HSA21) and is the primary genetic cause
of intellectual disability (ID). HSA21 triplication is present in
approximately 1 in 700 live births and these individuals exhibit
multiple systemic functional deficits, including heart conditions,
increased incidence of leukemias, epilepsy, premature aging,
and neurological deficits (Bittles et al., 2007; So et al., 2007;
Lott, 2012; Presson et al., 2013; Mai et al., 2019). While the
lifespan of individuals with DS has increased significantly in the
past several decades, healthspan lags appreciably behind (Hill
et al., 2003; Bittles et al., 2007; Presson et al., 2013; Dick et al.,
2016). Most adults with DS start to exhibit Alzheimer’s disease
(AD)-like pathology, including senile plaques, neurofibrillary
tangles, synaptic dysfunction, and basal forebrain cholinergic
neuron (BFCN) degeneration, with the accompanying cognitive
decline, typically by the mid-third decade of life (Mann et al.,
1984; Coyle et al., 1988; Beacher et al., 2009; Lott and Dierssen,
2010; Costa, 2012; Lott, 2012; Hartley et al., 2015; Annus et al.,
2016). BFCN degeneration is an early pathological feature of
both DS and AD and coincides with cognitive decline early in
disease onset and throughout progression (Yates et al., 1980;
Sendera et al., 2000; Mufson et al., 2002, 2008; Iulita et al., 2014).
Recent imaging evidence indicates volume reductions in the
basal forebrain (BF) predicts entorhinal cortex loss and cortical
spread of degeneration in AD and correlates with AD biomarkers
(Grothe et al., 2013; Cavedo et al., 2020; Fernández-Cabello
et al., 2020; Teipel et al., 2020), suggesting BF dysfunction is one
of the earliest pathological changes during the development of
AD.

Mitochondrial oxidative phosphorylation is the main energy
source within neurons and is critical for normal brain
development and function (Mattson et al., 2008; Hall et al.,
2012). Deficits within the oxidative phosphorylation pathway
have devastating effects on normal neuronal function (Mattson
et al., 2008). The oxidative phosphorylation apparatus has five
mitochondrial respiratory chain complexes (Complexes I-V),
comprised of NADH-ubiquinone oxidoreductase Complex I,
succinate dehydrogenase Complex II, cytochrome bcL Complex
III, cytochrome C oxidase Complex IV, and the ATP synthase
Complex V (Valenti et al., 2014). Individual mitochondrial
complex proteins within the oxidative phosphorylation pathway
have been shown to be dysregulated in DS cell culture models
(Valenti et al., 2016; Briggs et al., 2017). Little information
is currently available on the status of individual oxidative
phosphorylation markers in the context of DS in vivo (Kim
et al., 2000, 2001; Bambrick and Fiskum, 2008). Although little
doubt exists that oxidative phosphorylation is critical for normal
brain function, oxidative phosphorylation pathway deficits in the
DS brain demands further exploration. Indeed, recent evidence
suggests evaluating oxidative phosphorylation complex proteins
in the cortex of the well-established Ts65Dn mouse model of
DS and AD is difficult and variable (Lanzillotta et al., 2021),
further highlighting the necessity of additional interrogation of
the oxidative phosphorylation pathway in the brain of DS and
AD relevant model systems.

There are several mouse models of DS available, however,
the Ts65Dn mouse is the most prevalent in terms of use
and applicability (Rueda et al., 2012; Ruparelia et al., 2012;
Ahmed et al., 2017). The Ts65Dn mouse model recapitulates
many of the endophenotypes of DS and AD, including
hippocampal-dependent learning and memory deficits, BFCN
degeneration and septohippocampal circuit dysfunction, notably
CA1 pyramidal neuron and choline acetyltransferase (ChAT)
activity deficits (Granholm et al., 2000; Belichenko et al.,
2004, 2009; Kelley et al., 2014a,b). Degeneration of the BFCN
system, including within the septohippocampal and basocortical
pathways, are hallmarks of disease progression in DS and AD and
are a primary feature of the Ts65Dn mouse model (Holtzman
et al., 1996; Granholm et al., 2000; Hunter et al., 2003a;
Strupp et al., 2016). BFCN degeneration begins at approximately
6 months of age (MO) in Ts65Dn mice, and loss of BFCNs and
deficits in hippocampal cholinergic innervation are uniformly
reported by ∼10 MO (Holtzman et al., 1996; Cooper et al.,
2001; Hunter et al., 2003b; Contestabile et al., 2006; Powers
et al., 2016). Many of the mitochondrial deficits reported in
humanDS, principally in the periphery (Izzo et al., 2018; Bayona-
Bafaluy et al., 2021) are also present in this trisomic model
including lower ATP production in vitro (Valenti et al., 2016)
and metabolic changes in peripheral cell types (Cisterna et al.,
2020). Further, genes postulated to be involved in mitochondrial
dysfunction, including Dyrk1a and Ets2 (Izzo et al., 2018)
are triplicated in human DS and reproduced in the Ts65Dn
mouse model. These two genes have recently been shown to be
upregulated within BFCNs microisolated from the medial septal
nucleus (MSN; Alldred et al., 2021).

Although the oxidative phosphorylation pathway is known
to be dysregulated in DS (Helguera et al., 2013; Izzo et al.,
2018; Bayona-Bafaluy et al., 2021) and changes in oxidative
phosphorylation states have significant deleterious effects on
normal neuronal function (Mattson et al., 2008), prior studies
lack pathway-based evaluations conducted in vivo to understand
mechanisms driving this critical pathology. Herein, we utilized
the Ts65Dn mouse model to examine connectivity based
degeneration deficits in two interconnected brain regions
comprising the basocortical system, the BF and Fr Ctx, which are
critically impacted in DS and AD and are reflective of age-related
cognitive decline and loss of executive function. We examined
BF and Fr Ctx levels for oxidative phosphorylation changes at
the transcript and encoded protein levels within each oxidative
phosphorylation complex. We postulate reductions observed
within the basocortical circuit indicate BF degeneration drives
oxidative phosphorylation dysregulation and paces or precedes
cortical dysfunction associated with DS and AD.

MATERIALS AND METHODS

Mice
Animal protocols were approved by the Nathan Kline
Institute/NYU Grossman School of Medicine IACUC in
accordance with NIH guidelines. Breeder pairs (female Ts65Dn
andmale C57Bl/6J Eicher x C3H/HeSnJ F1mice) were purchased
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from Jackson Laboratories (Bar Harbor, ME, USA) and mated at
the Nathan Kline Institute. Mice were given ad libitum food and
water access (Alldred et al., 2015a,b). Standard cages contained
paper bedding and several objects for enrichment (e.g., plastic
igloo, t-tube, and cotton square). Mice were maintained on
a 12-h light-dark cycle under temperature- and humidity-
controlled conditions. Tail clips were taken and pups were
genotyped (Duchon et al., 2011) at weaning (P21) and aged to
∼6 MO.

Tissue Preparation
At ∼6 MO, mice were sacrificed for brain tissue accession.
Mice were given an overdose of ketamine and xylazine and
perfused transcardially with ice-cold 0.15 M phosphate buffer
(Alldred et al., 2015a,b, 2018, 2019). Brain tissues were accessed
from Ts65Dn (Ts; n = 10) and age-matched normal disomic
(2N; n = 10) male mice, with littermates between 2N and Ts
mice used when possible (age range: 5.8–6.4 MO, mean age
6.0 MO). The BF was dissected to enrich for cholinergic neurons
in the medial septal/ventral diagonal band region (∼Bregma
1.35–0.26) as well as the left Fr Ctx dissected using standard
coordinates from the mouse brain atlas (Paxinos and Franklin,
2001). Dissections were either flash-frozen or kept on wet ice
for homogenization directly following brain accrual. Tissue was
homogenized using ice-cold Tris homogenization buffer [THB;
20 mM Tris-Cl (pH 7.4), 1 mM EGTA, 1 mM EDTA and 0.25 M
sucrose] with a protease inhibitor cocktail (1:1,000, I3786, Sigma-
Aldrich, St. Louis, MO, USA and 1 mM PMSF, ThermoFisher,
Waltham, MA, USA) using 1.5 mm zirconium beads on Beadbug
homogenizer (Benchmark Scientific, Sayreville, NJ, USA) for
30 s at 4,000 rpm. Post homogenization, samples were kept
on ice and cell debris was spun down at 2,500× g for 5 min
at 4◦C. The supernatant was aliquoted to fresh tubes for
isolation of RNA (done immediately following homogenization)
or protein assays (each assay done with fresh aliquots of tissue
homogenates stored at −80◦C). RNase-free precautions were
employed, and solutions were made with 18.2 mega Ohm
RNase-free water (Nanopure Diamond, Barnstead, Dubuque, IA,
USA).

RNA Purification
RNA from microdissected regions of mouse tissue from BF and
Fr Ctx were purified using the miRNeasy Mini kit (Qiagen,
Hilden, Germany) according to manufacturers’ specifications. A
DNase digestion was performed twice sequentially before the
final washes and RNA purification (Alldred et al., 2021). RNA
quality control was performed at a 1:5 dilution to preserve RNA
for downstream applications (RNA 6000 pico kit, Agilent, Santa
Clara, CA, USA).

RT-qPCR
Equal amounts of RNA was reverse transcribed in a 50 µl
reaction volume to generate cDNA from Fr Ctx and BF tissue
from Ts and 2N littermates (n = 10 per genotype per brain
region) using random hexamers as described previously (Alldred
et al., 2012, 2015a,b, 2018, 2019; Bordi et al., 2016). RT-qPCR
was performed using 1 µl of cDNA and Taqman PCR primers
for select genes from oxidative phosphorylation Complexes I-V

along with a mitochondrial rRNA gene (Table 1) to assay
samples in triplicate on a real-time qPCR cycler (PikoReal,
ThermoFisher) as previously described (Alldred et al., 2008,
2012, 2015a,b, 2018, 2019; Jiang et al., 2010). The ddCT
method was used to determine relative gene level differences
between genotypes (ABI, 2004; Ginsberg et al., 2010; Jiang
et al., 2010). Glucuronidase beta (Gusb, Mm01197678_m1)
and 45S pre-ribosomal RNA (Rn45s; Table 1) qPCR products
were interrogated for use as controls as they did not show
significant changes by genotype within MSN BFCN RNA-seq
data (Alldred et al., 2021). Rn45s was subsequently selected
as the control housekeeping gene. Negative controls consisted
of the reaction mixture without input RNA. For each gene,
the PCR product synthesis was modeled as a function of
genotype, using mixed effects models with random mouse effect
to account for the correlation between repeated assays on the
same mouse (McCulloch et al., 2011; Alldred et al., 2015a,b,
2018, 2019). Significance was judged at the level α=0.05, two-
sided.

Protein Assays
Protein expression analysis was performed using theWES system
(Protein Simple, Santa Clara, CA, USA; Nguyen et al., 2011).
Briefly, protein samples were diluted in THB buffer 1:100 (w/v),
with 1× final concentration of fluorescent molecular weight
marker (provided in the kit) and heated to 50◦C for 5 min (as
per manufacturers’ recommendation), then cooled to 4◦C before
loading onto the WES system plate with a molecular weight
ladder. All blocking reagents, chemiluminescent substrate,
separation, and stacking matrices (Protein Simple) were
dispensed to designated wells. Primary antibodies against
Complex I-V (Total OXPHOS panel, 1:20 dilution, ab110413,
AbCam, Cambridge, United Kingdom) containing five mouse
mAbs, Complex I (NADH:ubiquinone oxidoreductase subunit
B8; NDUFB8), Complex II (succinate dehydrogenase beta;
SDHB), Complex III (Cytochrome b-c1 complex subunit
2;UQCR2), Complex IV (Mitochondrially encoded cytochrome
C oxidase I; MTCO1) and Complex V (ATP synthase lipid-
binding protein; ATP5A), along with a control antibody against
β-Tubulin III (β-TubIII; R&D Systems, Minneapolis, MN,
USA, MAB1195 1:50) and HRP conjugated secondary antibody
(rabbit anti-mouse; DM-002; Protein Simple) were dispensed to
designated wells. Plates were spun for 5 min at 1,000× g and
loaded onto the WES unit, where separation electrophoresis and
immunodetection steps are fully automated within the capillary
system. Instrument default settings were used with the exception
of protein loading run time that was increased from 25 to
35 min. The digital image was analyzed with Compass software
(Protein Simple), utilizing dropped lines for peak analysis area
calculation. Detected proteins were compared to control protein
(β-TubIII) and reported as the normalized percentage of control.
Each protein was performed in triplicate on separate plate runs.
Statistical analysis was conducted on each protein normalized
to β-TubIII and modeled as a function of the mouse study
group (Ts and 2N, n = 10 per genotype per brain region), using
mixed effects models with random mouse effect to account for
the correlation between repeated assays on the same mouse
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TABLE 1 | List of TaqMan primers for RT-qPCR analysis.

Gene TaqMan Primer Description

Rn45S Rn03928990_g1 Housekeeping, 45S pre-ribosomal RNA
Mt-Nd1 Mm04225274_s1 Complex I, mitochondrial NADH dehydrogenase 1
Mt-Nd4l Mm04225294_s1 Complex I, mitochondrial NADH 4L dehydrogenase
Sdha Mm01352360_m1 Complex II, succinate dehydrogenase complex flavoprotein, subunit A
Mt-Cytβ Mm04225271_g1 Complex III, mitochondrial cytochrome b
Mt-Cox2 Mm03294838_g1 Complex IV, mitochondrial Cytochrome c oxidase subunit II
Mt-Atp8 Mm04225236_g1 Complex V, mitochondrial ATP synthase 8
Mt-Rnr1 Mm04260177_s1 Mitochondrial 12S rRNA

(McCulloch et al., 2011; Alldred et al., 2015a,b, 2018, 2019).
Significance was judged at the level α = 0.05, two-sided.

Deproteinization and ATP Assay
Biochemical analysis of ATP levels were conducted using Fr
Ctx tissue. Deproteinization of mouse Fr Ctx homogenates were
performed utilizing the Deproteinizing Sample preparation kit
(ab204708, AbCam) according to manufacturer’s specifications
with the following alterations, starting sample volume was
reduced to 50 µl from 100 µl with 7.5 µl of TCA, and
neutralization was performed with 5 µl of neutralization
solution. Immediately following deproteinization, an ATP assay
(ATP assay kit, ab83355, AbCam) was performed in duplicate
for each sample (n = 6 per genotype) utilizing a 1:4 dilution
of the deproteinized sample according to the manufacturer’s
specifications for the fluorometric assay. The fluorometric
samples were read in duplicate on a plate reader (SpectraMax,
Molecular Devices, San Jose, CA, USA). ATP concentration
was calculated according to the manufacturer’s specifications.
Statistical analysis was performed using a non-parametric
method (Wilcoxon Test) due to the small sample size and some
losses of the sample (Wilcoxon, 1946; Pratt, 1959). Significance
was judged at the level α = 0.05, two-sided.

RESULTS

To understand changes in oxidative phosphorylation within
the basocortical circuit, we examined RNA and protein
levels from each of the five complexes in the oxidative
phosphorylation pathway from two synaptically connected
brain regions critical for attention, memory, and executive
function that show a significant decline in DS and AD. This
examination was based upon gene expression profile changes in
the oxidative phosphorylation pathway from MSN BFCNs by
single population RNA-seq in ∼6 MO Ts65Dn mice compared
to 2N littermates (Alldred et al., 2021). Bioinformatic inquiry by
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of
the oxidative phosphorylation pathway revealed downregulation
of multiple subunits of Complex I, III, IV, and V, but no
significant changes in Complex II subunits within MSN BFCNs
(Figure 1).

To examine if transcriptomic changes seen in the Ts65Dn
MSN BFCNs are selective to the MSN enriched BF or are
seen throughout the basocortical circuit, we examined both
BF and Fr Ctx at the RNA and protein level for expression

changes at the start of BFCN degeneration. We examined
a total of six subunits from Complexes I-V within the
oxidative phosphorylation pathway for gene expression, utilizing
transcripts that were significantly downregulated inMSN BFCNs
via single population RNA-seq along with candidates that
were not differentially regulated, to examine the pathway in a
comprehensive manner. We also assessed the Mt-Rnr1 gene,
which encodes the 12S rRNA as a marker of total mitochondrial
RNA. In the BF, downregulation was observed for members
of Complex I, Mt-Nd1 (trend level p = 0.072) and Mt-Nd4l
(p< 0.00228), Complex II, Sdha (p< 0.00846), Complex III,Mt-
Cytβ (not significant), Complex IV, Mt-Cox2 (not significant),
and Complex V, Mt-Atp8 (p < 0.0268; Figure 2A). Total
mitochondrial rRNA (Mt-Rnr1) also showed a downregulated
trend (p = 0.064; Figure 2A). When correlating the single
population MSN BFCN RNA-seq to regional BF RT-qPCR log
fold changes (LFC), a moderately high correlation was observed
(R2 = 0.5759; Figure 2B). Interestingly, while not significant,
downregulation observed via RT-qPCR for Mt-Nd1 and Mt-
Cox2 correlated with the significant downregulation seen in
trisomic MSN BFCNs by RNA-seq. The regional BF gene
expression of Mt-Nd1 was only trend level downregulated via
RT-qPCR, suggesting these changes are neuron-specific and the
observed downregulation within MSN BFCNs is diluted when
examined in tissue with admixed neuronal and non-neuronal
cell types. The same subset of genes was interrogated in the
Fr Ctx of Ts65Dn mice compared to 2N littermates by RT-
qPCR. Of the six genes examined from the five complexes,
no changes were found in either Complex I or II genes (Mt-
Nd1, Mt-Nd4l, and Sdha), trend level decreases in Complex III
and IV genes (Mt-Cytβ p = 0.067 and Mt-Cox2 p = 0.079),
and significant downregulation of Complex V member Mt-
Atp8 (p < 0.0059; Figure 2C). Total mitochondrial rRNA was
significantly downregulated in the trisomic Fr Ctx (p < 0.0012;
Figure 2C). Similar to regional BF RT-qPCR, a moderately high
correlation between MSN BFCN RNA-seq and Fr Ctx RT-qPCR
LFC was found (R2 = 0.6679; Figure 2D).

We employed the Total OXPHOS panel (Abcam) to
assess protein expression of select subunits from Complexes
I-V in the BF and Fr Ctx within Ts65Dn mice and
2N littermates. When examining the digital traces in BF
homogenates (Figure 3A), we saw a relatively high expression
of Complex II-V proteins, but relatively low expression of
Complex I protein (NDUFB8), indicating this may not be a
major subunit expressed in basocortical brain tissue. Within
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FIGURE 1 | Pronounced downregulation of members of the oxidative phosphorylation pathway in trisomic basal forebrain cholinergic neurons (BFCNs). The Kyoto
Encyclopedia of Genes and Genomes (KEGG) derived oxidative phosphorylation pathway is rendered by Pathview, with significantly dysregulated genes highlighted
for each complex from the medial septal nucleus (MSN) BFCNs as assayed by single population RNA-seq (Alldred et al., 2021). Downregulation is shown as color
coded log fold change difference (LFC) with green depicting downregulation and red depicting upregulation. Note no genes within the oxidative phosphorylation
pathway were upregulated.

the BF, Complex I, NDUFB8 expression was not significantly
downregulated. However, downregulation of proteins from
Complex II (SDHB, p < 0.016), III (UQCRC2, p < 0.0055),
IV (MT-CO1, p < 0.0034), and V (ATP5A, p < 0.019) were
found (Figure 3B), which highly correlated with MSN BFCN
RNA-seq data (R2 = 0.7658; Figure 3C). When examining the
same Complex I-V proteins in Fr Ctx tissue, variability in relative
expression levels was observed between animals (Figure 3D)
and no significant downregulation of protein expression was
detected. The only significant change in protein expression in
trisomic Fr Ctx tissue homogenates was upregulation of Complex
I (NDUFB8, p < 0.0012; Figure 3E). In contrast to RT-qPCR
findings, protein levels in Fr Ctx did not correlate with MSN
BFCN RNA-seq data (R2 = 0.0422, Figure 3F).

We indirectly examined the functionality of the oxidative
phosphorylation complex by biochemical analysis of ATP levels,
which are the output of the ATP synthase Complex V. Due to
the small size of mouse BF and the quantity of tissue needed for
the ATP assay, we were only able to perform this measurement
in Fr Ctx tissue. We found a significant decrease in ATP levels in
trisomic Fr Ctx (p < 0.0307; Figure 3G), which matched Fr Ctx
RT-qPCR findings for Complex V.

DISCUSSION

We employed the Ts65Dn mouse model of DS and AD to
examine oxidative phosphorylation pathway changes within
the basocortical circuit. The BF provides the main cholinergic
inputs for the hippocampus and cerebral cortex (Mesulam et al.,
1983). Cholinergic fiber input into the cortex is involved in
both attentional behavior and cognition and the activity of
these cholinergic neurons is decreased during normal human
aging (Mufson et al., 2003). This deficit is exacerbated during
AD and DS progression (Coyle et al., 1986, 1988; Mufson
et al., 2003). We examined expression level differences of
individual mitochondrial oxidative phosphorylation subunits
at the transcript and encoded protein levels ∼6 MO, a
timepoint where BFCN degeneration is initiated in Ts65Dn
mice. Bioinformatic inquiry of our recent single population
RNA-seq analysis of MSN BFCNs in Ts65Dn and 2N littermates
indicates that oxidative phosphorylation and mitochondrial
dysfunction are two of the top canonical pathways by Ingenuity
Pathway Analysis (IPA) downregulated in this vulnerable cell
type directly relevant to human DS and AD pathophysiology
(Alldred et al., 2021). Understanding the age of degeneration
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FIGURE 2 | Interrogation of oxidative phosphorylation Complex I-V subunit gene expression within the trisomic basocortical circuit. RT-qPCR was performed to
determine gene expression levels using regional dissections of the basal forebrain (BF; A,B) and Fr Ctx (C,D) from Ts65Dn and 2N littermates at ∼6 MO for
six genes. (A) Bar graph represents ddCT of each gene normalized to 2N levels in the BF. Significant downregulation was found for Mt-Nd4l, Sdha, and Mt-Atp8 and
trend-level downregulation was found for Mt-Nd1, Mt-Cytβ, and Mt-Rnr1. (B) Correlation plot association between MSN BFCN RNA-seq LFC (x-axis) and BF
RT-qPCR LFC (y-axis). (C) Bar graph represents ddCT of each gene normalized to 2N levels in the Fr Ctx. Significant downregulation was found for Mt-Atp8 and
Mt-Rnr1 and trend-level downregulation was found for Mt-Cytβ and Mt-Cox2. (D) Correlation plot association between MSN BFCN RNA-seq LFC (x-axis) and Fr Ctx
RT-qPCR LFC (y-axis). While most genes were not significantly downregulated by RT-qPCR, they trended in the same direction (downregulation). Sdha was the only
gene that did not correlate with RNA-seq results. Black bars represent relative 2N expression and gray bars indicate Ts65Dn expression normalized to 2N for each
gene (standard error of mean (SEM) is indicated by error bars). Key: *p < 0.05, **p < 0.01; t, trend.

onset and the pathways involved at this inception point would
help pinpoint novel targets for therapeutic development for
slowing or stopping the degeneration associated with cognitive
decline and loss of executive function. Indeed, despite hundreds
of trials for AD and DS treatment, no new therapeutics have
proven effective for AD or DS, with researchers suggesting that
the delayed onset of treatment is a driving factor of the failure
of these clinical trials (Gauthier et al., 2016; Yiannopoulou et al.,
2019).

Oxidative stress and mitochondrial dysfunction are thought
to play a critical role in DS and AD pathology (Mattson et al.,
2008; Lott, 2012; Helguera et al., 2013; Izzo et al., 2018).
Interestingly, a recent review postulates DS is an oxidative
phosphorylation disorder (Bayona-Bafaluy et al., 2021). To date,
the majority of studies evaluating oxidative phosphorylation
and mitochondrial dysfunction in DS have used in vitro model
systems. Although helpful to ascertain mechanistic interactions,
these in vitro studies benefit from parallel in vivo assessments
using the animal model and postmortem human brain tissue in
the context of DS and AD for greater applicability and disease
relevance.

Based on the present results, we postulate downregulation
of select members of the oxidative phosphorylation pathway
in the BF precedes degenerative changes within Fr Ctx, in a
connectivity based degeneration course of action. Supporting
evidence comes from the observation that downregulation
of oxidative phosphorylation pathway complex genes is less
pervasive in Fr Ctx along with a generalized lack of encoded
protein changes at ∼6 MO, whereas the BF has profound
transcript and protein level changes (Figures 2A,C, 3B,E). These
results correlate strongly with our previous RNA-seq analysis
(Figures 2B, 3B) within MSN BFCNs, indicating mitochondrial
oxidative phosphorylation complexes are highly vulnerable in
DS. Complementary observations were found in the Fr Ctx by
an independent group using the Ts65Dn model at different
age timepoints including no changes in Complex II (SDHB) or
Complex V (ATP5A) subunits and with deficits in Complex III
(UQCRC2) and Complex IV (MT-COX2) not seen until 18 MO
(Lanzillotta et al., 2021). Our ∼6 MO data is commensurate
with their 9 MO data showing a significant increase in Complex
I (NDUFB8) levels, which is reversed at 18 MO, possibly
indicating data this independent research group postulates is
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FIGURE 3 | Interrogation of oxidative phosphorylation Complex I-V subunit protein expression within the trisomic basocortical circuit. (A) Representative digital
signatures of each assayed protein raw expression levels (y-axis) and molecular weight (x-axis) from Ts65Dn and 2N BF tissue homogenates. (B) Bar graph
represents relative protein levels (normalized to beta-tubulin (βTubIII) as a percentage of 2N expression in BF tissue homogenates. Black bars represent 2N and gray
bars indicate Ts65Dn (SEM indicated by error bars). (C) Correlation plot association between MSN BFCN RNA-seq LFC (x-axis) and BF protein level LFC (y-axis)
indicating a high correlation. (D) Representative digital signatures of each assayed protein raw expression levels (y-axis) and molecular weight (x-axis) from Ts65Dn
and 2N Fr Ctx tissue homogenates. (E) Bar graph represents relative protein levels (normalized to βTubIII) as a percentage of 2N expression in Fr Ctx tissue
homogenates (SEM indicated by error bars). (F) Correlation plot association between MSN BFCN RNA-seq LFC (x-axis) and Fr Ctx protein level LFC (y-axis)
indicating no significant correlation. (G) Box and whisker plots highlight downregulation of ATP levels in trisomic Fr Ctx. Key: *p < 0.05, **p < 0.01.

due to the shift from juvenile age to adulthood and to aged
animals, whereby Ts65Dn mice react differently than their 2N
counterparts (Lanzillotta et al., 2021). These researchers also
conclude the oxidative phosphorylation machinery is highly
downregulated in their DS cohort (Lanzillotta et al., 2021). BF
was not evaluated, so comparisons are only available in the
Fr Ctx. Although a compensatory mechanism prior to overt
pathology onset is possible and would explain upregulation of
NDUFB8 protein levels in Fr Ctx, differential regulation of
this subunit does not reflect overall deficits in the oxidative
phosphorylation pathway seen in our ∼6 MO trisomic cohort
during initiation of BFCN degeneration. We also demonstrate
downregulation of cholinergic and glutamatergic protein levels
in the BF (Supplementary Figure 1), indicating synaptic deficits
also exist in ∼6 MO trisomic mice, correlating with single
population RNA-seq findings (Alldred et al., 2021). Synaptic-
related marker downregulation in the BF which project to
the Fr Ctx, along with the high number of significantly
downregulated genes and proteins evidenced in BF, and the
reduction of corresponding deficits in Fr Ctx are supportive of
our overarching hypothesis that BF degeneration drives oxidative
phosphorylation dysregulation and precedes cortical dysfunction
in DS as well as across the AD spectrum (Mufson et al., 2016,
2019). Deficits in the activity of the oxidative phosphorylation
complex have been shown in astrocyte cultures derived from
the Ts1Cje DS mouse model, including lower ATP levels and
decreased mitochondrial membrane potential (Shukkur et al.,
2006). This study also showed in vivo brain ATP levels are
reduced in Ts1Cje mice at 3 MO (Shukkur et al., 2006).
Neural progenitor cells obtained from the Ts65Dn hippocampus

revealed reduced ATP levels and loss of mtDNA levels, indicating
a neuronal deficit in energy production (Vacca et al., 2016;
Valenti et al., 2018). We corroborate these findings within the
Ts65Dn model in vivo, with reduction in ATP levels and overall
mitochondrial RNA (via Mt-Rnr1) in Fr Ctx (Figures 2C, 3G).
We postulate significant decreases in trisomic mitochondrial
RNA, as determined by Mt-Rnr1 may drive gene expression
changes seen in Fr Ctx tissue. Interestingly, these deficits may be
the result of the use of regional tissue with admixed cell types
for the protein assays, with the expectation that neuron-specific
protein level changes may be obscured. Conversely, BF oxidative
phosphorylation changes are likely to involve multiple neuronal
subtypes within the BF and are able to be discriminated even in
admixed tissue.

Mitochondrial dysfunction beyond the oxidative
phosphorylation pathway has been linked to DS pathology
including deficits in mitochondrial biogenesis, turnover, and
mitophagy (Helguera et al., 2013; Izzo et al., 2018; Bordi
et al., 2019; Mollo et al., 2019, 2020). The balance between
biogenesis and mitophagy is perturbed using in vitro models
of DS, with hyperactivation of proteins from the rapamycin
(mTOR) pathway responsible for mitophagy and impaired
activity of PGC-1α pathway responsible for biogenesis (Valenti
et al., 2016; Bordi et al., 2019; Mollo et al., 2019, 2020).
These studies link dysregulation of mitochondrial function to
dysregulation of autophagy pathways, which have also been
shown to be dysregulated in MSN BFCN neurons by single
population RNA-seq (Alldred et al., 2021). We postulate BFCN
degeneration in DS and AD may be directly related to the failure
of mitochondrial turnover and mitophagy. From a translational
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perspective, choline, an essential nutrient required for the
production of the cholinergic neurotransmitter acetylcholine,
the phosphatidylethanolamine N-methyltransferase (PEMT)
pathway for generation of key substrates of neuronal membranes,
and the primary methyl donor in the brain, requires properly
functioning mitochondria and the oxidative phosphorylation
pathway (Mailloux et al., 2016). Our collaborative group
demonstrated metabolites of the PEMT pathway are significantly
downregulated in the brains of Ts65Dn mice including within
the BF and Fr Ctx (Yan et al., 2014), which also implicate
deficits in mitochondria and the oxidative phosphorylation
pathway. Further study on overall mitochondrial turnover,
morphology, and mitophagy within in vivo DS and AD models
are warranted.

RT-qPCR analysis and protein chemistry in trisomic BF and
Fr Ctx reveals downregulation within oxidative phosphorylation
genes and proteins that are specific to the brain regions
analyzed. We recognize there are limitations and caveats to the
studies we conducted using this approach. For example, each
of these complexes in the oxidative phosphorylation pathway
consists of numerous subunits, and the current interrogation
was limited to one to two genes or proteins per complex.
It is possible that other Complex I-V subunits will not be
differentially regulated, although the larger number of changes
identified by IPA and KEGG analysis from the MSN BFCN
RNA-seq study of ∼6 MO Ts65Dn mice and 2N littermates
analysis indicates BFCNs are significantly vulnerable and
display an abundance of deficits in oxidative phosphorylation
and mitochondrial function transcripts (Alldred et al., 2021).
Another noted limitation is that when examining the correlation
analysis between BF regional RT-qPCR and single population
MSN BFCN RNA-seq, we were unable to compare Mt-
Nd4l or Mt-Atp8, as they were not detected by RNA-seq
(Alldred et al., 2021), likely due to the small size of the full-
length mitochondrial RNA and low RNA input (McCormick
et al., 2011; Stark et al., 2019). It is important to note
this study was performed in male mice, and sex differences
may exist in BFCN degenerative programs, as morphological
differences between sexes in BFCNs have been demonstrated
in trisomic mice (Kelley et al., 2014b). A cohort of female
trisomic mice is currently being accrued for RNA-seq, RT-
qPCR, and protein-based analyses, enabling sex differences to
be evaluated in future studies. Importantly, Lanzillotta et al.
(2021) demonstrate expression level changes in the oxidative
phosphorylation pathway in Fr Ctx within trisomic mice during
aging. Although beyond the scope of the present study, an
aging time-course assessment of the Ts65Dn BF is warranted
in future studies. Moreover, future assessments are planned to
evaluate vulnerable cell types, brain regions, age, and sex in

trisomic models in relation to parallel observations found in
human postmortem DS and AD studies in the same cell types
and regions.

In conclusion, select dysregulation of oxidative
phosphorylation pathway members is found at the RNA
and encoded protein levels within the vulnerable basocortical
circuit in an established model of DS and AD at a timepoint
where BFCN degeneration is occurring. Defects appear to initiate
in the BF and travel in the synaptic pathway that connects this
vulnerable region to a cortical terminal field associated with
memory and executive function. These data suggest deficits in
oxidative phosphorylation in the DS and possibly AD brain
may be circuit driven, and more specific to vulnerable brain
regions than previously appreciated, especially in the context of
neuropathological disorders and age–related cognitive decline.
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