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Semen evaluation: methodological advancements in sperm 
quality-specific fertility assessment — A review
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Abstract: Assessment of male fertility is based on the evaluation of sperm. Semen evaluation 
measures various sperm quality parameters as fertility indicators. However, semen evaluation 
has limitations, and it requires the advancement and application of strict quality control 
methods to interpret the results. This article reviews the recent advances in evaluating various 
sperm-specific quality characteristics and methodologies, with the help of different assays 
to assess sperm-fertility status. Sperm evaluation methods that include conventional micro-
scopic methods, computer-assisted sperm analyzers (CASA), and flow cytometric analysis, 
provide precise information related to sperm morphology and function. Moreover, profiling 
fertility-related biomarkers in sperm or seminal plasma can be helpful in predicting fertility. 
Identification of different sperm proteins and diagnosis of DNA damage has positively 
contributed to the existing pool of knowledge about sperm physiology and molecular 
anomalies associated with different infertility issues in males. Advances in methods and 
sperm-specific evaluation has subsequently resulted in a better understanding of sperm 
biology that has improved the diagnosis and clinical management of male factor infer-
tility. Accurate sperm evaluation is of paramount importance in the application of artificial 
insemination and assisted reproductive technology. However, no single test can precisely 
determine fertility; the selection of an appropriate test or a set of tests and parameters is 
required to accurately determine the fertility of specific animal species. Therefore, a need 
to further calibrate the CASA and advance the gene expression tests is recommended for 
faster and field-level applications.

Keywords: Biomarkers; Fertility; Sperm Biology; Sperm Evaluation; Computer-assisted 
Sperm Analyzers (CASA)

INTRODUCTION

Fertility defines the rate of reproduction and ability to propagate generations, though it is 
declining globally for the last two centuries [1]. Fertility rate measures the number of off-
spring that can be produced during the life span, and fecundity measures the biological 
potential of the number of offspring that can be obtained during a lifetime [2]. In either 
case, it is determined by the proper functioning of the reproductive system, its anatomy 
and physiology of organs, glands, ducts, and testicles/ovaries. In male animals, fertility 
can be evaluated from the number of sperm produced with the capability to fertilize the 
oocyte both in in-vivo and in-vitro and is measured with the help of semen analysis, even 
though it has limitations [3]. Semen analysis is advanced, but the reliability and validity of 
fertility determination in humans [4] and various species of animals [5] are widely con-
troversial in the literature.
 Semen primarily consists of two main components: the sperm and seminal fluids; sperm 
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are produced in the seminiferous tubules of the testicles, and 
the seminal fluids, in the accessory sex glands and excurrent 
ducts. Both of these components are examined in semen 
analysis in terms of sperm count and semen volume [6]. 
Semen analysis provides information about normal opera-
tions of the testicular machinery for the production of sperm, 
and the fluid part. Furthermore, it evaluates the sperm to 
assess fertility [7] or the success of surgical procedures such 
as vasectomy [8]. Semen analysis includes examining the 
physical characteristics of semen (color, odor, pH, viscosity, 
and liquefaction), volume, concentration, morphology, sperm 
motility and progression, conducted repeatedly at different 
intervals [9]. In domestic animals, fertility determination is 
very important, particularly in male animals used for breed-
ing purposes and artificial insemination (AI). The infertility 
issues associated with sperm can adversely affect the breed-
ing outcomes of large herds of animals [10]. Therefore, the 
assessment of sperm fertility in breeding bulls is of para-
mount importance [11-13]. 
 For a long time, semen evaluation was believed to be the 
single most important laboratory test for assessing male 
fertility [14] however, it still remains complex and difficult 
to standardize. Several confounders have made the goal of 
one-test evaluation quite difficult to accomplish, such as the 
inability to strictly control quality to obtain meaningful re-
sults, variability among laboratories, and inability to comply 
with standard procedures to accomplish correct interpreta-
tions from results [15]. The structural evaluation of sperm is 
based on its appearance, morphology, concentration, plasma 
membrane integrity, and chromatin integrity, whereas func-
tional evaluation is based on its motility, capacitation, and 
acrosomal reaction [16]. Advances in technologies enable 
the assessment of sperm structure and function, such as 
plasma membrane and genomic constituents, and enables 
better determination of sperm fertility potential.
 The structure of sperm is peculiar, and functions to trans-
fer the male gametes and required genetic information [17], 
equipped with a strong flagellum to propel but devoid of 
cytoplasmic organelles like ribosomes, Golgi apparatus or 
endoplasmic reticulum [18]. However, sperm contain more 
of mitochondria, placed strategically, bases of energy source 
for motility [19]. Structurally, even if consisted of single cell 
membrane, it has two morphologically and functionally 
distinct, tail to motion and head containing the genetic ma-
terial [20]. Different from other cells, DNA is tightly packed, 
and its integrity is basis for attaining the required fertility 
[21]. The head has anterior end of the nuclear envelope, re-
ferred as acrosome, contains hydrolytic enzymes that help 
the sperm to penetrate the egg's outer coat by an acrosome 
reaction [22]. 
 In bulls, semen quantity, quality, and/or health status are 
responsible for a significant percentage of reproductive fail-

ure in cattle production [23]. As AI is widely used in cattle, 
semen evaluation plays an imperative role not only in the 
successful establishment of pregnancy but also in facilitating 
genetic improvement [24], attaining breeding and milk, and 
meeting production objectives [25]. In bulls, factors includ-
ing age, breed, time and interval of collection, and season of 
the year affect the semen quality [26]. Computer-assisted 
sperm analyzers (CASA) is believed to be a better method 
for assessing the quality of fresh semen, not only as a faster 
measure but also in terms of the ability to measure multiple 
dimensions of sperm fertility, precisely and accurately [27,28]. 
The criteria for selecting bovine semen samples for preserva-
tion or breeding purposes rely on concentration (sperm/mL), 
initial motility (%), and total normal morphology of sperm 
(%), but the recommended criteria and points vary [13,25]. 
There is no doubt that more stringent criteria are required 
for the optimal evaluation of semen.
 In domestic animals, fertility indicators are affected by 
several factors, including the host environment and nutri-
tional factors; however, in this review, we have focused solely 
on semen evaluation methods. Semen evaluation can be con-
ducted at different levels, that is semen and sperm, or by 
assessing the mechanical, physical, or functional characteris-
tics of sperm [29], which directly or indirectly evaluates the 
sperm-specific quality in terms of attaining fertility. For the 
convenience of this review, we start with the fertility-related 
parameters of sperm and subsequently review the different 
methods and their advancements. Moreover, we describe 
the measurement values and advantages and disadvantages 
of specific methods in various species of domestic animals. 
Semen quality varies depending on animal characteristics, 
countries, and sometimes farms [30,31]. 
 This article reviews the developments in current semen 
analysis methods and the knowledge obtained from deter-
mining the fertility of sperm. Therefore, we aimed to review 
the progress in semen evaluation techniques and to make 
conclusive remarks regarding recent advances in semen evalu-
ation of domestic animals. This review focuses on the reliability 
and limitations of semen analysis for the diagnosis of fertility.

SPERM CONCENTRATION AND 
MORPHOLOGY 

Determination of sperm concentration, together with the 
assessment of motility and morphology, is an important 
method to determine fertility. Sperm concentration per mL 
of semen can be determined by counting the sperm in the 
chamber of a hemocytometer, a microcell, or a photometer. 
However, there are possibilities of underestimation and over-
estimation of sperm numbers depending on the types of 
products used [32]. The calibration of devices to measure 
concentration is critical to ensure accurate sperm number 
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per dose and produce maximum doses per ejaculate. In ad-
dition to these methods, sperm concentration can also be 
determined with the help of CASA [33], flow cytometer [34], 
and NucleoCounter SP-100 [35]. CASA can also be used for 
instant quantification of sperm concentration and motility. 
The NucleoCounter SP-100 can assess sperm concentration 
and membrane integrity. NucleoCounter SP-100 is more ef-
ficient than the hemocytometer because it is quicker, simpler, 
objective, and precise. Moreover, it is cost-effective and more 
user-friendly compared to flow cytometry [35]. 
 A study comparing various methods used for the determi-
nation of sperm concentration revealed that flow cytometry 
was the most precise method [36]. However, before perform-
ing flow cytometry, there is a requirement for preliminary 
assessment of sperm count using a different method to en-
sure proper semen dilution (close to 250,000 sperms/mL). 
The spectrophotometer was found to be the second-best op-
tion for the precise determination of sperm concentration. 
However, it might not be an appropriate method for the as-
sessment of sperm samples with low concentrations and 
volume [36]. Standardizing a laboratory procedure for as-
sessing sperm concentration is affected by factors, which 
include animal species, the sample size needed, operational 
frequency, the number of samples assessed per day, and the 
operational cost.
 Morphometric characteristics of sperm are one of the most 
important indicators of fertility. It is universally accepted that 
sperm with normal morphology have a significant effect on 
fertility both in vivo and in vitro, and it is an integral part of 
sperm functional test [37-40]. Abnormal types are categorized 
according to the sperm morphology, including defective 
head, neck, spacer, and default queue [41]. Different fixation 
and smear preparation methods are adopted for the assess-
ment of sperm morphology. However, no optimal method 
has been standardized for any particular animal species. High 
variability exists within and between laboratories regarding 
the accurate assessment of sperm morphology. The comput-
erized analysis of sperm morphology is known as automated 
sperm morphometry analysis (ASMA). ASMA enables mor-
phological assessments of live sperm [42]. This system can 
efficiently classify normal and abnormal sperm by overcom-
ing technical variations. Moreover, it provides objective 
estimation, with improved accuracy and precision of sperm 
morphology assay. Sperm morphology can be better elabo-
rated if staining is applied. 

SPERM MOTILITY 

The advancements in sperm motility assessment include 
the use of the light microscope and phase-contrast micro-
scope, using 20 and 40× objectives, which are reported to 
yield substantially good results [43]. The microscope should 

be equipped with a stage warmer that can be adjusted to 
37°C and magnification levels should allow clear visualiza-
tion of the sperm samples [44]. It is advised to avoid the use 
of a light microscope because of clear visualization issues, 
as immotile sperm are difficult to identify, especially at low 
magnification [44]. The inability to identify immotile sperm 
may result in false high-motility values.

Motility by phase-contrast microscopy 
Phase-contrast microscope is generally used to determine 
mass motility or progressive sperm motility [45]. Mass mo-
tility is a very important parameter for assessing sperm fertility 
in humans and domestic animals [46-50]. Based on the mo-
tility pattern, each sperm is categorized either as possessing 
progressive motility (PR) or non-progressive motility [51]. 
While reporting sperm motility, it is necessary to consider 
total motility (PR+NP) or progressive motility. In terms of 
fertility, only the percentage of progressively motile sperm 
was found to be associated with pregnancy rates. Thus, dif-
ferentiating PR and NP is important [52].
 PR is usually expressed as a percentage of sperm motility, 
which is suggestive of sperm fertility, indicating proper sper-
matogenesis and maturation of sperm during epididymal 
transit [53]. In humans, the PR of sperm is mainly affected 
by thiols of flagellar proteins such as outer dense fiber pro-
tein 1, which are oxidized to form disulfides during epididymal 
transit and the sperm attains motility [53]. In animals, with 
external fertilization, usually, the exposure of sperm to the 
fertilization medium results in hypotonic shock that induces 
activation of motile function [54,55]. In mammals, cAMP 
signaling pathways and adenylyl cyclase are associated with 
progressive sperm motility [56,57]. The PR of human sperm 
is associated with DNA damage and fragmentation, which is 
vital for successful fertilization [58].
 Various factors can affect the results of phase-contrast mi-
croscopy, such as, magnification, working conditions (heated 
stage, ambient temperature), personal experience, and en-
vironmental factors [44,59]. Some authors have described 
specific sperm motility characteristics such as swirling os-
cillation in warm slide microscopy to measure the mass 
motility to predict fertility [48]. 

Motility by computer-assisted sperm analysis 
The CASA is the first major system to analyze motion char-
acteristics of sperm. It provides instant quantification of sperm 
motility and concentration. CASA is relatively better than 
phase-contrast microscopy as it can generate accurate and 
highly reproducible data of different kinetic parameters of 
sperm [60,61]. Furthermore, CASA largely reduces the sub-
jectivity by overcoming the inherent variability of routine 
microscopic semen examination [27]. It simply involves the 
grading of sperm motility into four orders, which are, highly 
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progressively motile, progressively motile, non-progressively 
motile, and immotile (grade a, b, c, and d). While this pre-
sented breakthroughs for sperm-motility quantification, they 
were largely black boxes with little true verification and skep-
ticism. 
 In domestic animals, commercial use of a fully automated 
CASA system was introduced in 1985 [62]. In the beginning, 
the CASA systems utilized for sperm analysis were based 
on an expert vision system developed for other purposes 
[63,64]. Later on, in 1992, old systems were replaced with 
automated CASA systems specifically developed for deter-
mining sperm-morphology of bull [65], dog [66], human 
[67], and stallion [68]. Many CASA systems utilize different 
filters to better recognize sperm and represent great improve-
ments. For streamline accuracy, intelligent filters form part 
of the software that can detect if a “particle” has a tail. This 
became an advantage in case of contaminated semen samples 
which are difficult to analyze using other software.
 CASA generated motility data of sperm, (percentage and 
concentration of motile sperm) which is very helpful for the 
prediction of fertility in humans in vivo [69] and in vitro [70]. 
The development of CASA has enabled the evaluation of 
various fertility parameters. The recent development of CASA 
technology to analyze key kinematic functionality parameters 
such as hyperactivation, enabling visualization of sperm in 
three dimensions, and measuring the flagellar and sperm 
tracking (FAST) in a quantitative way will be of paramount 
importance to assess sperm characteristics and fertility in 
detail [62,71].
 However, the CASA system has some limitations, affected 
by the higher sperm concentration, which interferes with 
progressive motility [37,72,73]. During semen analysis, short-
comings such as low contrast images and artifacts of dirt 
can negatively affect the accuracy of the CASA software. In 
such cases, sperm concentration is greatly overestimated 
and the percentage motility of sperm is underestimated. These 
issues remained inherent in most CASA systems only to be 
partly resolved in the last two decades by some CASA systems. 
Another problem associated with CASA motility was that 
it was based on video frames associated with either NTSC 
or PAL systems (restrictive in frame rates), and poor reso-
lution cameras that were very restrictive. Furthermore, for 
reliable measurements and generating unbiased data, a con-
centration between 20 to 50×106 sperm/mL has been recorded 
in some CASA studies [74-77].

Kinematic parameters using computer-assisted sperm 
analysis
In addition to sperm motility and concentration, the CASA 
system can analyze different kinematic parameters including 
curvilinear velocity (VCL), straight-line velocity (VSL), aver-
age path velocity (VAP), linearity (LIN), straightness (STR), 

wobble (WOB), beat cross frequency (BCF), and amplitude 
of lateral head displacement (ALH). VCL analyzes the velocity 
of a sperm head on time-average basis along its actual curvi-
linear path (measured in in two dimensions). VSL measures 
the velocity of a sperm head on a time-average basis along 
the straight line between its first and last detected position. 
VAP measures the velocity of a sperm head along its average 
path on a time-average basis. This path is computed by smooth-
ing the actual path according to algorithms in the CASA 
instrument, these algorithms vary among instruments. ALH 
measures the magnitude of the lateral displacement of a 
sperm head about its average path. This can be expressed 
as the maximum or an average of such displacement [69]. 
LIN estimates a curvilinear path reflecting the straightness 
of the sperm path (VSL/VCL×100 [%]); STR, reflecting the 
righteousness of motion (VSL/VAP×100 [%]); WOB, is the 
degree of oscillation of the actual path of the sperm head 
in its relationship with VAP (VAP/VCL×100 [%]). The pro-
gression of sperm in CASA also measures LIN, righteousness 
movement or STR, and Balancing or WOB, expressed as 
percentages.
 ALH and BCF are measurements derived from VAP, where 
ALH is the amplitude of variations of the current path of the 
sperm head in its relationship with VAP, and BCF is the aver-
age rate at which the actual sperm trajectory crosses the VAP 
(a derivation of the true frequency of flagellar beat and fre-
quency of rotation of the head). Although, CASA is a new 
technology and most of the progression of the sperm mea-
surements are derived from the speed/velocity measurement, 
we did not find studies showing their correlation with fertility. 
Despite this, we recommend further studies should be per-
formed on how these measurements can be utilized for 
assessing sperm fertility, unless there is no need to measure.
 Rather than the PR, VAP is preferred to evaluate and pre-
dict the fertilizing potential of fresh or post-thawed bull semen 
[78]. The evaluation of sperm kinematic parameters with 
fertilizing capacity in bulls showed that all VCL, VSL, and 
VAP in post-thaw doses for AI were found to be correlated 
in achieving pregnancy [78-80]. From amongst the three kine-
matic parameters, VCL, VSL, VAP, VAP shows the highest 
correlation with fertility, and it may be the most useful sperm 
speed/velocity parameter, which can be relied upon for the 
estimation of sperm fertility [78]. 

Flagellar and sperm tracking 
The FAST method analyzes the movement of sperm by using 
the FAST program. FAST measures the flagellar beat frequency 
and the tangent and curvature of the flagellar wave to deter-
mine the arc-length (true length of the track). The analysis is 
usually conducted at higher frame rates, and tracks are rep-
resented quantitatively in three dimensions [71]. The FAST 
measures flagellar beat frequency, flagellar arc wave speed, 
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flagellar arc wavelength (μm) (fAWL), Sperm flagellar length 
(μm), flagellar power dissipation tail length (fwatts), flagellar 
power dissipation first 30 μm (fwatts30), and potentially, also 
amplitude of flagellar displacement measured in TCS = track 
centroid speed (progressiveness) [62,71]. 

Computer-assisted sperm analysis-three dimensions 
(3D) of sperm evaluation
The three dimensions (3D) system analyzes sperm tracks in 
three dimensions (X, Y, and Z axes); Z-axis is reconstruct-
ed as the sperm of most animal species are swimming in a 
spherical helix [62,81-83]. However, the 3D method has the 
disadvantage that the Z-axis is presumed to be harmonic, 
but in most cases, it is not possible. In the 3D patterns, there 
are clear differences, such as, in a bull sperm with a much 
higher speed and ALH, the helix diameter is almost twice 
that of boar sperm. A sperm of Saanen goat has similar VCL 
as that of a bull sperm, however, the BCF is an important 
factor here, showing small stepwise increases in the Z plane 
in Saanen goat sperm, in comparison to the larger Z-plane 
increases observed in bull sperm [62]. Although the 3D method 
is useful in describing qualitative differences, it is not nec-
essarily useful in describing quantitative differences. However, 
there is a need for further investigations to uncover the cor-
relation between 3D measurements and fertility indicators. 
 In combination, the findings of FAST and 3D can be used 
for the advanced analysis of sperm-motility, such as mea-
surements of sperm capacitation and hyperactivity, which 
was not possible with the conventional approach. This can 
be achieved by analyzing flagellar speed increase as well as 
energy expenditure (in Watts) over the first 30 μm length of 
the flagellum. There is a decrease in sperm flagellar beat fre-
quency as it becomes capacitated and hyperactivated, resulting 
in tumbling sperm which shows swimming star spin patterns 
[62]. In general, CASA-based sperm analysis is one of the 
easiest, fastest, and reliable fertility assessments for semen 
evolution in individual animals, and it would be a method of 
choice for undertaking sperm evaluation comparative studies 
[84].

The future of computer-assisted sperm analysis
The CASA analyzes sperm motility, which is directly corre-
lated with fertility reported for bovine [85], equine [86], ovine 
[87], rabbit [88], and swine [89] sperm. What makes CASA 
essential is that it brought improvements in the quantitative 
analysis of the sperm quality in terms of accuracy and preci-
sion, as compared to conventional motility measurement 
methods [90-92]. It should be noted that there are various 
CASA system brands applicable for sperm evaluation, and 
standardization of the methods is of paramount importance 
to make objective measurements to precisely determine fer-
tility [27,93].

 The results of CASA should be defined in terms of the 
measurement conditions that are correlated with the outcome 
figures. In particular, the rate of image acquisition, time for 
tracking sample, smoothing algorithm, sperm concentration 
per sample, chamber’s type and depth, model and software 
version, microscope optic and magnification should be clearly 
defined to interpret CASA results to determine fertility in 
different species and conditions [94-97]. The setting of CASA 
measurements must be standardized for each species, else 
the instrument settings will affect the measurement results 
[27]. The results of CASA measurements can be interpreted 
into different parameters of sperm characteristics, including 
kinematic parameters, FAST, and 3D sperm evaluation.
 Over the decades, the CASA system has developed pro-
tocols to efficiently analyze the kinematic parameters of 
sperm in animals [98,99]. However, its use is not just limited 
to kinematic parameters, it can also analyze morphology, 
viability, DNA fragmentation, and acrosome reaction [100], 
which are considered vital for fertility determination. Com-
puter-based semen analysis is striving to develop automatic 
microscopic systems by using artificial intelligence techniques 
(deep learning, machine learning, and computer vision). 
 Sperm morphology needs to be better elaborated by in-
cluding the entire cell and especially understanding the tail 
characteristics by polychromatic staining in CASA. There 
seems to be a need for agreement in the selection of stains 
for use in conjunction with CASA for tail-characteristic 
studies. In future, developments could lead to no further 
need for staining and looking at the possibilities of more 
detailed analysis by using phase-contrast and Nomarski 
differential interference contrast optics. It is also expected 
that the CASA system will develop a new automatic analysis 
for new tests such as reactive oxygen species (ROS), mito-
chondrial assay, sperm maturity, sperm chromatin packaging, 
3D reconstruction, and tail analysis. This will further enhance 
our understanding of sperm functionality. 

PLASMA MEMBRANE INTEGRITY

The integrity of the plasma membrane is essential for proper 
sperm function and fertility, pertaining to its function to 
maintain homeostasis [101,102], protection against foreign 
agents, and interactions with other cells, including oocytes, 
and the epithelial lining of the female reproductive tract [103, 
104]. Sperm fertility is dependent on the integrity of the 
plasma membrane, as it plays an important role in different 
physiological events such as capacitation, acrosomal reaction, 
and zona binding [105].
 Plasma membrane integrity is usually analyzed for a via-
bility test, as it is pivotal for communication with other cells 
and the environment [106]. Methods used for analyzing 
sperm plasma membrane are normally based on the enhanced 
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permeability of damaged membrane [107]. These methods 
include the hypo-osmotic swelling (HOS) test [108,109], 
eosin–nigrosin staining [110,111], and use of fluorescent 
probes [112,113]. Fluorescent probes such as Hoechst or 
propidium-iodide (PI) are either used alone or in combination 
with other permeable fluorochromes such as carboxyfluores-
cein diacetate or SYBR [114-116]. Complementary techniques, 
including flow cytometry and fluorimetry, can be helpful 
in improving measurement precision, as large numbers of 
fluorochrome-stained sperm can be assessed in a short du-
ration of time [117,118]. The recent development of the 
CASA technique has allowed the automated measurement 
of sperm plasma membrane integrity [119].

VIABILITY AND ACROSOMAL STATUS 

Sperm viability is a key factor for quality analysis and a pre-
requisite for success in fertilization, particularly in cases, such 
as AI, where low sperm numbers are used [120]. Eosin–ni-
grosin has been conventionally employed as a differential 
stain to assess the proportion of live and dead sperm. Eosin, 
being the cellular stain, stains the dead sperm with the dam-
aged plasma membrane, whereas the live sperm will not attain 
any color and remain colorless and the nigrosin stains the 
background. In addition, several other stains have been widely 
used for sperm viability assessment, including fast–green 
and eosin, and opal–blue and eosin [121]. However, none of 
these methods has yielded consistently satisfactory results in 
comparison to that of eosin–nigrosin. Recently, sperm via-
bility has been assessed using a combination of molecular 
probes, including SYBR-14 and PI [112]. After SYBR-14 and 
PI staining, live sperm percentage was determined by fluo-
rescence microscopy, while flow cytometry was used to assess 
the uptake of stain. Live sperm are stained green with SYBR-
14, whereas the dead sperm are stained red by PI. 
 Acrosomal integrity is one of the determining factors for 
fertility because, for successful fertilization, sperm must have 
an intact acrosome and must react on time when they reach 
the site of fertilization [122-124]. The ideal test used for the 
analysis of sperm acrosomal status should be precise, quick, 
applicable to samples with low sperm count, safe for sperm 
function, and must be able to differentiate normal from false 
acrosome reactions [125]. Previously, the acrosomal integrity 
of spermatozoa was assessed by fixing the sperm sample in 
1% formal citrate solution [126]. Sperm with normal acro-
somes have a sharp crescent-type appearance on the apical 
ridge. In addition, two classes of fluorescence probes were 
used for the assessment of acrosomal status. One probe in-
volves the use of lectins and antibodies to detect intracellular 
acrosome-associated materials, whereas the other probes, 
used for live sperm, include chlortetracycline and antibodies 
against the exposed antigens [125]. The acrosomal status of 

spermatozoa can be determined by staining with fluores-
cein isothiocyanate-conjugated peanut agglutinin (FITC-
PNA) [127] and fluorescein isothiocyanate-conjugated 
Pisum sativum agglutinin (FITC-PSA) [128]. FITC-PNA 
specifically binds to the sugar Galactosyl 61 β-1,3 N-acetyl 
galactosamine found in the acrosomal membranes [129], 
serving as a probe to visualize acrosomal integrity [130]. The 
limitation of using FITC-PSA is that it binds non-specifically 
with the sperm head and tail. However, cautions should be 
taken to distinguish true degenerative acrosome reactions 
and degenerative acrosome loss in FITC-PSA [128]. Later, 
the FITC-PNA methods were improved in 2019 [124]. 

MITOCHONDRIAL INTEGRITY 

Abnormal mitochondrial integrity or functionality in the 
supra structure or mitochondrial genome and low membrane 
potential of mitochondria or the change in level of oxygen 
consumption, are important for sperm function, affecting 
motility [131] and maturation [132] even protection of sperm 
against damage [133]. Mitochondrial function can be mea-
sured by rhodamine 123 (R123) fluorescence, when stain 
dye diffuses into the cell and accumulates in mitochondria 
[134,135] enabling mitochondrial damage detection, de-
pending on the amount of fluorescence, and indicating the 
proportion of functioning mitochondria [120,136]. In ad-
dition to the R123 probe, JC‐1 or Mitotracker dyes [137] 
can be used for the assessment of sperm mitochondria. The 
JC-1 dye cytometer is more sensitive and requires more 
careful preparation of staining conditions than other probes 
and must be used along with controls [138]. In bovine sperm, 
the DiOC6(3) probe can also be used, which has increased 
fluorescence compared to the JC-1 probe but lower speci-
ficity toward mitochondria [139].

CHROMATIN INTEGRITY

The most common analytical tests used to assess sperm-DNA 
integrity include DNA fragmentation tests, measured by DNA 
fragmentation index (DFI) or sperm chromatin structure 
assay, and protamination, measured by sperm protamine 
deficiency assay [140]. These tests provide proof of sperm 
fertility by examining the level of DNA damage. DFI is found 
to be highly sensitive (79%) and specific (86%) for the detec-
tion of infertility in human sperm, and has higher accuracy 
than the conventional method of sperm evaluation [141]. DFI 
is one of the most common methods used to assess sperm 
DNA fragmentation. It can also be employed for fertility as-
sessment of processed and cryopreserved sperm [142-144]. 
The higher the DFI percentage, the lower is the fertility in 
animals. In humans, a DFI of more than 30% indicates in-
fertile sperm, which are unable to establish pregnancy [145].
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  The chromatin integrity of sperm is vital not only for fer-
tility, but also for subsequent maintenance of gestation and 
offspring fitness [146]. The sperm chromatin assay is widely 
used for the assessment of chromatin status in sperm [146]. 
Chromatin integrity is essential for fertility, evidenced by the 
fact that higher DFI has been correlated with reduced fertility 
in boar [147], bull [148,149], and humans [150]. The sperm 
chromatin assay utilizes the metachromatic features of acri-
dine orange, a DNA probe, and the principles of flow cytometry, 
which are correlated with classical sperm quality, whereby 
the intact chromatin are stained green and the damaged chro-
matin are stained orange [151]. In this assay, sperm containing 
greater red to green ratios exhibit more DNA denaturation 
than sperm exhibiting lower red to green ratios [150]. More-
over, male sperm DNA integrity is not only an indication of 
fertility, but it also affects embryonic development [145,146, 
151]. 
 Moreover, sperm chromatin integrity can be analyzed by 
detection of protamine-deficient sperm. During spermato-
genesis, histone proteins are replaced by protamine to acquire 
a tightly packaged chromatin structure [152]. Sperm with 
protamine deficiency is an indication of loosely packed chro-
matin material [153]. Protamine deficiency can be directly 
detected using chromomycin A3 (CMA3) staining or indi-
rectly by using an aniline blue (AB) staining procedure. CMA3 
is a fluorochrome that competes with the protamine proteins 
for binding to the minor groove of DNA and emits green 
fluorescence, indicating protamine deficiency, thus reflect-
ing abnormal chromatin [51]. AB stain binds to lysine-rich 
histone proteins and the sperm head is stained dark blue, 
indicating abnormal chromatin structure [152].

REACTIVE OXYGEN SPECIES AND DNA 
DAMAGE MEASUREMENT 

The ROS has both physiological and pathological roles, and 
an optimal amount is required for normal sperm function 
and fertilization [154]. Oxidate stress (OS) is an imbalance 
between the amount of ROS released and the ability of an-
tioxidants to detoxify them. Higher ROS levels in semen 
can lead to OS, which is an important factor causing male 
infertility, reduced sperm motility, DNA damage, and in-
creased risk of recurrent abortions and genetic diseases [155]. 
ROS-mediated peroxidation leads to DNA damage, base 
modification/strand breaks/chromatin cross-links, and also 
damages the plasma membrane, which accounts for defec-
tive sperm function observed in a high proportion of infertile 
patients, which results in cell apoptosis [156]. 
 The ROS levels can be determined directly either by mea-
suring the ROS levels or oxidation-reduction potential, or 
indirectly by measuring molecules, peroxidation, or DNA 
damage [157]. In humans, the ROS level can be measured 

using a direct method of luminal-mediated chemiluminescence 
[158], using the protocol [159]. The latest technique for mea-
suring ROS levels directly, the MiOXSYS System, introduces 
a new strategy to detect OS by measuring the oxidation-re-
duction potential; a direct evaluation of the redox balance 
between ROS and antioxidants has shown promise as a di-
agnostic tool in the evaluation of male infertility [160,161]. 
Moreover, ROS levels can be measured indirectly by ana-
lyzing the expression levels of genes associated with DNA 
damage and mitochondrial ROS modulation. The methods 
developed include DNA fragmentation, chromatin integrity, 
sperm chromatin stability assay (SCSA modified), sperm 
chromatin dispersion, comet assay, transferase dUTP nick 
end labeling, and protamine evaluation in sperm chromatin 
assays, such as toluidine blue, CMA3, protamine expression, 
and cysteine radical evaluation [162].

SPERM MATURATION AND 
CAPACITATION 

Sperm maturation and capacitation are prerequisites for 
successful fertilization and are regulated by protein phos-
phorylation [163], the influx of calcium ions (Ca2+) to the 
sperm perinuclear and neck regions and the flagellum, and 
the generation of controlled amounts of ROS [106]. Capaci-
tation mainly involves cytosolic pH changes and increasing 
Ca2+ levels, and Indo‐1 acetoxymethylester (Indo‐1 AM) 
has been used to measure intracellular Ca2+ in sperm with 
the help of flow cytometry [164] or fluo‐3‐acetomethoxy 
ester (Fluo‐3 AM) probe [120,165,166].

SPERM CYTOMETRIC ANALYSIS (FLOW 
CYTOMETRY) 

Flow cytometry is a high-throughput technique that enables 
the analysis of thousands of sperm within seconds, captur-
ing many physiological features of each sperm and can analyze 
sperm viability, acrosomal status, capacitation, mitochon-
drial status, apoptotic markers, OS markers, DNA damage, 
sperm count, and sperm size [138,167]. In general, the de-
velopment of a flow cytometer is believed to revolutionize 
sperm analysis with further studies and understanding of the 
functions of sperm in wider animal species. Moreover, the 
advancement in semen evaluation by detecting the proteins 
in cytometry would give us a better insight into the struc-
ture-function relationship of a particular protein. Proteins 
with multiple post-translational modifications (PTMs) can 
be used to generate the complex interaction network involved 
in the physiological function of sperm. It can be speculated 
that crosstalk between different PTMs occurring either on 
the same or different proteins regulates protein stability and 
activity both in physiological and pathological states [168].
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 The viability and acrosomal status of sperm are vital in terms 
of determining sperm fertility. Cytometry can be used to as-
sess the viability and acrosomal status of sperm. Viability of 
sperm can be assessed using PI and ethidium homodimer 
stains [169] or a combination of PI and SYBR-14 [170] or 
cyanine dye [171]. The acrosomal status is usually assessed 
by detecting targets/probes inside the acrosome, with the help 
of fluorochrome FITC test [172]. The disadvantage of the 
acrosomal reaction test is that it may result in false-negative 
results due to the disappearance of the binding sites by exten-
sive acrosomal damage, either because of the heterogeneous 
labeling [173] or non-specific labeling [138] of the sperm.

SEMEN PLASMA EVALUATION 

Seminal plasma is a biological fluid contributed by the dif-
ferent accessory sex glands of male individuals. Seminal 
plasma is the supernatant recovered after centrifugation of 
liquefied semen, which constitutes >90% of semen [174]. It 
serves as a potential biological fluid for the discovery of novel 
fertility-related biomarkers and as clinical sample for non-
invasive fertility diagnostics. Different components of seminal 
plasma play a wide range of physiological roles, including 
sperm nutrition and transportation, provision of an alkaline 
environment, liquefaction or coagulation of the ejaculate, 
and augmentation of immune response. The semen char-
acteristics vary from species to species and within breeds of 
animals such as cattle [175], dog [176], and stallion [177]. 
The seminal plasma characteristics, which usually focus on 
measuring proteins as an indicator of fertility, affects the 
OS [178], function, survival, and transport of sperm in the 
female reproductive tract [179]. In humans, the plasma 
protein has essential role in fertility, and it is also involved 
in the inflammatory and immune response to sperm during 
transit through the reproductive female tract in animals 
[180] and is associated with the fertility of bulls [181]. 
 As with the proteomic analysis of blood plasma, owing to 
the wide dynamic range of protein concentrations, identifi-
cation of low-abundance proteins in seminal plasma by mass 
spectrometry is challenging. Particular obstacles are the high-
abundance proteins expressed in the seminal vesicles and 
prostate [174]. Polyacrylamide denaturation test (gel electro-
phoresis) is used for the detection of protein metabolites and 
has proved to be helpful for the identification of certain pro-
teins that can serve as biomarkers of fertility. In stallions, two 
proteins were found to be positively correlated with fertility, 
and another two, with infertility [182]. In Holstein-Friesian 
bull, the proteins associated with fertility in seminal plasma 
represent the major protein fraction of bovine seminal plasma 
[183]. The same seminal plasma protein is found to be asso-
ciated with fertility in different species, such as horse, goat, 
and bison [184]. 

Seminal plasma evaluation by liquid chromatography 
Liquid chromatography analyzes the presence of specific 
metabolites associated with sperm fertility [185]. Metabolites 
can be detected in seminal plasma or serum as an indicator 
of fertility. Metabolites are products of biochemical path-
ways that are considered more representative of phenotypic 
traits and hence, are more reliable [186]. The metabolites 
are outcomes resulting from transcriptional and transla-
tional changes that are significantly associated with one or 
more already established individual sperm quality parame-
ters (motility, concentration, total count, and morphology) 
[185]. 
 Assessing metabolites could be helpful in estimating a 
bull's fertility even without manipulating sperm [186]. This 
technique is superior to genomic and proteomic analysis, 
because in genomic techniques, results are affected by post-
transcriptional and post-translational changes, and leads to 
variation in the sperm phenotypic characteristics [186]. For 
instance, in Holstein bull’s seminal fluid, fructose is the most 
abundant metabolite, followed by citric acid, lactic acid, urea, 
and phosphoric acid, whereas, androstenedione, 4-ketoglu-
cose, D-xylofuranose, 2-oxoglutaric acid, and erythronic acid 
represent the least predominant metabolites [187]. For sepa-
ration between high-and low-fertility groups, 2-oxoglutaric 
acid and fructose are taken as indicators of high fertility in 
bulls [187]. In humans, plasma proteins vary according to 
fertility, with lactate, citrate, glycerylphosphorylcholine, and 
glycerylphosphorylethanolamine levels being higher in the 
seminal fluid in the infertile as compared to the fertile [188]. 
In addition, epididymal function and prostate function are 
correlated with the presence of citric acid, α‐glutamyl trans-
ferase, and acid phosphatase in seminal plasma [189]. The 
presence of leptin in serum is also correlated with proper 
sperm morphology [190]. Recently, in China, the presence 
of higher monobutyl phthalate (toxic substance) in human 
semen has been found to be associated with decreased sperm 
concentration and total count, whereas di-(2-ethylhexyl)-
phthalate metabolites were associated with an increased 
percentage of sperm head abnormalities [191-193]. 

Semen plasma evaluation by spectrophotometry
The seminal plasma examination in bulls can be conducted 
using a proton nuclear magnetic resonance spectrometer. 
This method showed that citrate and isoleucine were low, 
whereas tryptamine/taurine and leucine were greater in high 
fertility bulls than in low‐fertility bulls, which can be identified 
by peaks in seminal plasma [186]. In serum, the identifiable 
level can be used for the diagnosis and determination of fer-
tility in bulls, whereby, isoleucine and asparagine were lower, 
and glycogen and citrulline were significantly greater in high 
fertility bulls [186]. Semen evaluation by spectrometry is highly 
sensitive and can measure the phenotypic sperm quality char-
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acteristics, but it requires well-equipped laboratories, limiting 
its wider application [194]. We recommend a comparative 
evaluation of the seminal plasma from different species of 
animals, which may be used in research and for defining the 
fertility in animals, where AI is used.

SPERM TRANSCRIPTOME ASSAY (GENE 
EXPRESSION) 

Gene expression pattern of the sperm, in terms of defined 
fertility indicators, was found to be an important indicator 
of fertility. The transcriptomic profiling of human sperm 
assumes significance as it carries information about sper-
matogenesis, sperm function, and paternal roles in post-
fertilization events [25]. In bovine studies on sperm transcripts 
revealed thousands of gene transcripts associated with the 
events of spermatogenesis [25,195]. 
 In bovines, the genes related to spermatogenesis are prot-
amine 1 (PRM1), insulin like growth factor 1 (IGF1), bone 
morphogenetic protein 2 (BMP2); sperm function are, tes-
tis specific serine kinase 6 (TSSK6), cysteine‐rich secretory 
protein (CRISP), heat shock transcription factor Y-linked 
(HSFY2); fertility are, ubiquitin-conjugating enzyme E2 
D3 (UBE2D3), integrin-β, leucine decarboxylase 1 (LDC-1); 
and embryonic development are, miR34c-5p, B-cell lym-
phoma-2-like protein 11 (BCL2L11), breast cancer type 1 
(BRCA1). The most abundant translated bovine transcripts 
are binder of sperm 3 (BSP3) and spermatogenesis associ-
ated 18 (SPATA18), which are involved in the regulation of 
germ cell development and the maintenance of chromatin 
integrity during spermatogenesis, respectively [25]. The ad-
vantages of examining transcriptomic gene quality are its 
ability to predict semen quality significance as it carries infor-
mation about spermatogenesis, sperm function, and paternal 
roles in post-fertilization events [25]. 
 Improved gene expression test, in lieu of the conventional 
and CASA assessments, is associated with phenotypic traits of 
developing embryos and offspring, and can identify idiopathic 
infertile males [196,197]. For example, the embryogenesis-
associated transcripts were highly abundant, and transcripts 
such as BCL2L11 and BRCA1 existed as intact and full-length 
molecules in sperm. The molecular functions of the highly 
abundant sperm transcripts are associated with the struc-
tural components of ribosomes, whereas the less abundant 
transcripts are associated with ion transporter activity, and 
these transcripts are constituents of cytosolic ribosomes and 
main axons [198]. Furthermore, placenta-associated genes, 
such as thrombospondin type-1 domain-containing protein 
4 (THSD4), pregnancy-associated glycoprotein 5 (PAG5), 
PAG7, and PAG10, were abundantly transcribed in sperm, 
suggesting their possible role in implantation and placental 
development [198]. The proper organization of the centro-

some of sperm, in the function of the sperm transcriptome 
tektin-1 (TEKT1) is essential for oocyte genome activation 
leading to successful fertilization, and any defects in this 
process might lead to male infertility [199]. MAP7, PTK2, 
PLK1S1, microtubule associated protein 7 (MYH9), and 
protein kinase C zeta type (PRKCZ) are essential for sper-
matogenesis and sperm function [25].
 Polymerase chain reaction (PCR)-based techniques are 
best due to their more quantitative nature, but their major 
limitation is the need for prior knowledge of the gene se-
quences to be assessed [25,200]. Most studies indicate that 
sperm RNA levels can be used to study the past events of 
spermatogenesis, sperm function, and successful fertilization 
in cattle and pig [198,201]. Subtle changes in sperm tran-
scripts and proteins are not assessed as part of the standard 
semen evaluation procedure. Through fertilization, these 
seemingly normal spermatozoa may yet be detrimental to 
the post-fertilization development where the spermatozoal 
RNAs play a crucial role [25].
 Cryopreserved semen can be assessed for its general char-
acteristics by CASA, but to assess the phenotypic normality 
of sperm, we propose that further gene expression assess-
ment be done, particularly if the genetic materials in the 
same cycle are going to be used in wider scales [202-204]. 
Gene expression, in terms of the composition of sperm RNA 
can be analyzed using hybridization, quantitative (real-time) 
PCR, microarray, and sequencing techniques, which reflect 
the level of sperm maturation, function, quality, and success-
ful outcome of fertilization and zygote development [25,205, 
206].

CONCLUSIVE REMARKS

Semen analysis remains the only choice for accurate prediction 
of fertility in males. The advancement in semen evaluation 
methods still requires refinement, species-specific standards, 
and quality control. The prediction of fertility in interspecies 
and/or intraspecies by a single analytical method is not yet 
possible due to the complexity of different tests. Various 
methods can be used to estimate sperm quality parameters, 
even though few techniques require shorter time. Various 
techniques have their own pitfalls and the possibility of vari-
ability; a combination of tests is therefore required to achieve 
high correlations of test results with fertility. The CASA sys-
tem mainly assesses motion characteristics of sperm and 
despite the addition of morphology and concentration para-
meters, it is impossible to evaluate all sperm quality parameters 
for species with relatively small head size at the same time. 
Moreover, the major problem with the automatic CASA system 
is the inability to differentiate sperm from cells, cytoplasmic 
droplets, and cellular debris of similar size.
 The flow cytometry method shows high sensitivity and 
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reproducibility for DNA analysis but requires expensive 
equipment and proper training. Similarly, seminal plasma 
spectrometry reveals the results of the actual metabolism 
and is more accurate in fresh semen, but it was not well de-
termined for most species. Gene expression demonstrated 
a marked improvement in fertility prediction, enabling the 
measurement of DNA fragmentation and the normality of 
acrosome, particularly in post-thaw sperm. However, the 
requirement of molecular laboratories, capital inputs, and 
more skilled personnel limits its use for research purposes 
only. We recommend the use of seminal plasma metabolite 
analysis for different animal species as the last level of fer-
tility assessment.
 Finally, we can conclude that the conventional semen 
analysis must undergo quality control measures, and refer-
ence values should be followed for clinical interpretation of 
results. Similarly, the primary basis of semen assessment re-
quires constant visual supervision, calibration by trained 
personnel, and objective evaluation. Therefore, it is recom-
mended that novel tests should be incorporated into the 
clinical andrology.
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