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Summary

Dopaminergic neurons provide value signals in mammals
and insects [1–3]. During Drosophila olfactory learning,

distinct subsets of dopaminergic neurons appear to assign
either positive or negative value to odor representations in

mushroom body neurons [4–9]. However, it is not known
how flies evaluate substances that have mixed valence.

Here we show that flies form short-lived aversive olfactory
memories when trained with odors and sugars that are

contaminated with the common insect repellent DEET. This
DEET-aversive learning required the MB-MP1 dopaminergic

neurons that are also required for shock learning [7]. More-
over, differential conditioning with DEET versus shock sug-

gests that formation of these distinct aversive olfactory
memories relies on a common negatively reinforcing dopa-

minergic mechanism. Surprisingly, as time passed after

training, the behavior of DEET-sugar-trained flies reversed
from conditioned odor avoidance into odor approach. In

addition, flies that were compromised for reward learning
exhibited a more robust and longer-lived aversive-DEET

memory. These data demonstrate that flies independently
process the DEET and sugar components to form parallel

aversive and appetitive olfactory memories, with distinct
kinetics, that compete to guide learned behavior.
Results and Discussion

DEET has been reported to drive aversive behavior in flies
through olfactory [10–12] and gustatory [13] pathways. We
therefore used a low concentration presented in solid medium
(1%agar) to decrease the effects of volatile DEET and increase
the chance that flies would taste and perhaps ingest it. To
further encourage flies to sample DEET, we increased its palat-
ability by adding it to a mixture of sweet sugars—3 M xylose
and 100 mM sucrose (from here on referred to as ‘‘carrier’’).
Xylose is detected by sweet-sensitive gustatory neurons and
is palatable to flies, but it contributes no measurable nutrient
value [14]. The low concentration of sweet and nutritious su-
crose was added to further increase palatability [14]. We first
determined the optimum DEET concentration by adding
increasing amounts to sugar carrier and conditioning hungry
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flies by pairing the exposure of the second of two odors with
DEET presentation.
Flies trained with only the sugar carrier showed a significant

appetitive memory (Figure 1A). In contrast, those trained with
increasing amounts of DEET formed aversive memory, with
the score rising in line with the increase in DEET concentration,
up to 0.4%. Surprisingly, flies trained with 0.8% DEET did not
exhibit significantly negative aversive memory scores, sug-
gesting a change in the flies’ perception of DEET at this con-
centration. We therefore tested the effect of 0.4% and 0.8%
DEET on fly feeding by measuring ingestion marked with blue
food dye (Figure 1B). Whereas flies ate significant amounts of
food containing sugar carrier, both 0.4% and 0.8% DEET
strongly suppressed feeding behavior. However, whereas flies
ate a measurable amount of dye with 0.4% DEET, ingestion
was abolished with 0.8% DEET. These data suggest that the
failure to train flies with 0.8% DEET reflects an inhibition of
sampling by the proboscis and perhaps ingestion of DEET
and sugar. To further test a requirement for feeding in learning,
we attempted to train flies that were not hungry or with 0.4%
DEET without sugar carrier (Figure 1C). Both of these condi-
tions significantly impaired aversive learning when compared
to hungry flies trained with 0.4% DEET in sugar carrier. We
also observed a similar concentration-dependent aversive
memory formation when flies were trained with bitter-tasting
quinine that wasmixedwith sugar carrier (Figure S1A available
online). Furthermore, flies that were defective in the IR40a
olfactory route of DEET detection displayed normal DEET
learning (Figure S1B). We therefore conclude that robust
learning with 0.4% DEET-laced sugar requires the flies to
attempt to eat DEET and that lowDEET concentrations convert
the conditioned approach that is formed when flies are trained
with the sugar carrier into a conditioned aversion.
We next measured the persistence of DEETmemory by con-

ditioning flies and testing their odor preference at extended
times after training (Figure 1D). Whereas aversive memory
performance was robust immediately after training, no statis-
tically significant performance was evident 15 min later. Aver-
sive memory formed with 0.4% DEET is therefore surprisingly
labile. DEET and quinine can be sensed by bitter-taste neurons
[13, 15, 16], and ablation of bitter-sensing neurons withGr66a-
GAL4-directed expression of cell-death genes [17] partially
impaired DEET, but not sugar, learning (Figures 1E and S1D).
We therefore tested whether flies could be aversively condi-
tioned by pairing odor presentation with artificial bitter-taste
neuron [16, 18] activation, achieved by expression of UAS-
dTrpA1 (Figure 1F). The dTrpA1 gene encodes a transient
receptor potential (TRP) channel that conducts Ca2+ and de-
polarizes neurons when flies are exposed to temperature
>25�C [19]. Gr66a-GAL4, UAS-dTrpA1, and Gr66a-GAL4;
UAS-dTrpA1 flies were conditioned by presentation of the first
odor with activating 32�C and were immediately tested for
memory. Gr66a-GAL4; UAS-dTrpA1 flies exhibited aversive
memory that was statistically different from that of all other
groups (Figure 1F). However, unlike flies conditioned with
DEET (Figure 1D), significant memory remained 3 hr after
training (Figure 1F). The differing persistence could result
from artificial stimulation of bitter neurons being stronger
than DEET activation, in addition to lacking plausible competi-
tion from a copresented sugar stimulus.
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Figure 1. Aversive Olfactory Learning with DEET

Reinforcement

(A) Learning with DEET depends on concentra-

tion. Wild-type flies starved overnight were

trained with 0%–0.8% DEET with a sugar carrier

(3M xylose plus 100mMsucrose). Aversivemem-

ory performance increased with DEET concentra-

tions up to 0.4% but was negligible with 0.8%

DEET. Learning with 0.4% DEET is significantly

different from that with both 0.1% and 0.8%

DEET (both p < 0.001). All other group wise com-

parisons are not significant (all p > 0.05). ANOVA

followed by Tukey’s multiple comparison test

was performed. p values are multiplicity adjusted

(ANOVA). n R 5.

(B) DEET inhibits ingestion. The amount of sugar

carrier plus DEET (0.4% or 0.8%) ingested in

5 min was quantified using FD&C Blue No. 1 dye

supplementation. Flies consumed sugar carrier

alone, but inclusion of 0.4% or 0.8% DEET sig-

nificantly reduced consumption. However, flies

consumed statistically significant amounts of

dye presented with 0.4% DEET, but not with

0.8% DEET (p = 0.002 and p = 0.8427, respec-

tively, from zero; one-sample t test, n R 5).

(C) DEET learning is most robust when flies

ingest. Hungry flies display robust immediate

aversive memory with 0.4% DEET presented

with sugar carrier. However, both satiated flies

and those trained with 0.4% DEET without sugar

carrier exhibited significantly less aversive mem-

ory performance (both p < 0.05, ANOVA, n R 10).

(D) DEET memory is labile. DEET reinforced

memory decayed rapidly and was not significant

15 min after training (p < 0.05 versus 3 min perfor-

mance and p > 0.9 versus 30 and 60 min, ANOVA,

n R 6).

(E) Ablation of bitter-taste neurons impairs DEET

learning. Flies expressing UAS-hid and UAS-rpr

in Gr66a-GAL4 cells were trained with 0.4%

DEET in sugar carrier (3 M xylose and 100 mM

sucrose) and were immediately tested for mem-

ory performance. The performance of these flies

was statistically different than that of the control

groups (p < 0.05, ANOVA, n R 23).

(F) Aversive memory can be implanted with bitter-

taste neuron activation contingent with odor

presentation. Flies were trained by pairing

dTrpA1-mediated activation ofGr66a-GAL4 bitter

gustatory neurons with odor as shown in the

schematic. Significant aversive memory was

formed in Gr66a-GAL4/UAS-dTrpA1 flies that

persisted for at least 3 hr (at both time points

p < 0.005, ANOVA, n R 8).

Data are shown as mean 6 SEM. Asterisks

denote significant difference between marked

group and the relevant controls. See also Fig-

ure S1.
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Octopamine is required to convey the reinforcing effects
of sweet taste [9]. We therefore tested DEET learning in
TbhM18 mutant flies that cannot synthesize octopamine
[20] (Figure 2A). Whereas appetitive conditioning with 1 M
sucrose was significantly impaired in TbhM18 flies, aversive
learning with 0.4% DEET was indistinguishable from that of
wild-type flies. Therefore, octopamine
is not required for DEET learning.
Electric-shock-reinforced aversive

memory formation also requires specific
dopaminergic neurons and the DopR1
dopamine receptor [5–7, 21]. We therefore first determined
whether DEET learning required the DopR1 receptor (Fig-
ure 2B). Mutant dumb1 flies that are defective for the DopR1
dopamine receptor did not display aversive learning with
DEET. Similarly, aversive learning with artificial activation of
bitter-taste neurons was abolished in dumb1 flies (Figure 2C).



A B C

D

E F

G H

I

Figure 2. DEET Reinforcement Involves Specific Dopaminergic Neurons

(A) DEET learning does not require octopamine. Appetitive memory formation with 1 M sucrose was significantly impaired in TbhM18 flies (p < 0.05, t test,

n R 4), whereas aversive memory with DEET was statistically indistinguishable from that of control flies (p > 0.5, t test, n R 6).

(B) DEET memory formation was significantly impaired in dumb1 mutant flies (p < 0.001, t test, n R 10).

(legend continued on next page)
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The MB-MP1, MB-MV1, and MB-M3 classes of dopamine
neuron have been previously implicated in shock learning [6,
7] (Figure 2D). To test whether either of these neurons were
required for DEET learning, we expressed the dominant
temperature-sensitive UAS-shibirets1 transgene [22] in MP1,
MV1, and M3 neurons using the c061; MBGAL80, R73F07,
and NP5272 and NP1528 GAL4 drivers [7, 23, 24], respectively.
The shits1 transgene permitted blockade of the respective
neurons by performing DEET conditioning experiments at the
restrictive temperature of 31�C. This analysis revealed signifi-
cantly impaired DEET learning performance when MP1 neu-
rons were blocked (Figure 2E) but nonsignificant effects
when either MV1 (Figure 2F) or M3 (Figure 2G) neurons were
compromised. Blockade of MP1 neurons, however, did not
significantly affect DEET avoidance in naive flies (Figure S2).
To further support a role for the dopaminergic MP1 neurons
in c061; MBGAL80, we removed them from the expression
pattern by including a TH-GAL80 transgene [25]. When the
remaining cells were blocked during conditioning, flies ex-
hibited levels of DEET learning that were indistinguishable
from those of wild-type flies (Figure 2H). We therefore
conclude that MP1 neurons are critical for DEET learning,
whereas MV1 and M3 neurons contribute a lesser role. We
note that prior work implicated the MV1 and M3 neurons in
the formation of more persistent forms of shock-reinforced
aversive memory [6, 7].

We next used live imaging to determine whether DEET
ingestion activated the MP1 dopamine neurons. We ex-
pressed UAS-GCaMP3 [26] in dopaminergic neurons with
TH-GAL4 [27] and imaged DEET-evoked changes in fluo-
rescence in the dopaminergic neuron processes on the
mushroom body (Figure 2I). These analyses revealed strong
activation of the MP1 innervated heel and MV1 innervated
junction regions of the mushroom body while presenting flies
with both 0.4% DEET in sugar carrier, sugar carrier alone,
and DEET alone. In comparison, water presentation did not
activate the MP1 and MV1 neurons. Therefore, functional im-
aging does not reveal obvious valence specificity of MP1
and MV1 signals, being activated by both sugar and DEET. It
should be noted that the MP1 neurons have been previously
implicated in shock- and sugar-reinforced learning and mem-
ory expression [6, 7, 9, 23]. Since we observed a strong
requirement for MP1 neurons in behavioral DEET learning (Fig-
ures 2E and 2H), we conclude that MP1 activity is likely to
represent aversive reinforcement signals to mushroom body
(C) Aversive memory formation with bitter-taste neuron activation is impaired

statistically different from that of Gr66a-GAL4/UAS-dTrpA1; dumb1 and wild-t

(D) Schematic of the training paradigm for testing the role of the specificMP1, M

each type of dopaminergic neuron on the ipsilateral mushroom body lobe is illus

M3 is in the PAM cluster.

(E) Blockade of the MP1 neurons with c061; MBGAL80; UAS-shits1 significantl

(F) Blockade of the MV1 neurons with R73F07; UAS-shits1 did not significantly im

ANOVA, n R 20).

(G) Blockade of the M3 neurons with NP5272; UAS-shits1 or NP1528; UAS-shit

(H) Removal of shits1 transgene expression from dopaminergic neurons in c061

restores DEET learning (p < 0.001 versus c061-GAL4; MBGAL80; UAS-shits1 fli

flies was indistinguishable from that of other control groups (all p > 0.5, ANOV

(I) Feeding of 0.4% DEET in water evokes an increase in intracellular Ca2+ in M

TH-GAL4. A time course of DEET-evoked GCaMP3 responses (DF/F) in MP1 a

regions of interest (dashed outlines), is shown. Averaged traces are shown as so

of DEET presentation. Inset panels show pseudocolored activity maps of neur

ages of baseline fluorescence. Additionally, DEET in carrier (3 M xylose and 10

Ca2+ in MP1 andMV1 neurons. Water presentation produced a negligible respo

are shown for all groups, except 0.4% DEET by itself.

Data are shown as mean 6 SEM. See also Figures S2 and S3.
neurons. As expected, transmission from mushroom body
neurons is required for the expression of DEET memory
(Figure S3).
Finding a role in DEET learning for dopamine neurons that

are also required for shock learning [6, 7] suggests a common
reinforcement process, despite the different nature of the
external unconditioned stimulus. We therefore designed a
differential conditioning paradigm to further test this model.
Flies were trained by pairing of one odor with DEET and the
other odor with a varying intensity of electric shock. These
experiments revealed an avoidance of the previously DEET-
associated odor when countered with 30 or 60 V but an avoid-
ance of the shock-paired odor when countered with 80 or 90 V
(Figure 3A). Extrapolation of a curve fit between the tested
points predicted 70 V as being equivalent to 0.4% DEET—
which was subsequently confirmed in direct experiments (Fig-
ure 3B). Having established the point of reinforcer equivalence,
we reasoned that if the shock and DEET reinforcement pro-
cesses were common, blocking some of the responsible
dopamine neurons would equally impair shock and DEET
learning and therefore not alter equivalence. If, on the other
hand, MP1 neurons contribute differently to DEET and shock
reinforcement, we expected to see that blocking them would
unevenly affect learned behavior and would skew perfor-
mance toward one or the other, reflecting the imbalance.
Strikingly, differential learning remained balanced in c061;
MBGAL80; UAS-shits1 flies in which MP1 neurons were
blocked. Importantly, this balanced valuation does not reflect
a ‘‘zero versus zero’’ learning because the same c061;
MBGAL80; UAS-shits1 flies only display a partial defect if
they were trained with 70 V shock alone (Figure 3C). Therefore,
these experiments support a model in which the reinforcing
systems for 0.4% DEET and 70 V shock are similar, with MP1
being part of the system for both. In addition, it is notable
that despite the relative magnitude of immediate memory
scores (w0.6 for 70 V shock and <0.3 for DEET) and the differ-
ence in respective memory persistence (hours for shock and
minutes for DEET), the immediate learned value of these two
aversive stimuli is comparable.
We next investigated whether the apparent fragility of aver-

sive DEET memory could be explained by the coformation of a
more persistent sugarmemory. Reasoning that these analyses
would benefit from the induction of a more robust sugar mem-
ory, we first established optimal conditions for aversive mem-
ory formation with DEET-laced 1 M sucrose. Flies trained with
in dumb1 mutant flies. Performance of Gr66a-GAL4/UAS-dTrpA1 flies was

ype flies (both p < 0.005, ANOVA, n R 11).

V1, andM3 dopaminergic neurons in DEET learning. The innervation zone of

trated. MP1 andMV1 neuron cell bodies reside in the PPL1 cluster, whereas

y impaired DEET learning (p < 0.001, ANOVA, n R 12).

pair DEET learning (p < 0.05 versus R73F07, but p > 0.05 versus UAS-shits1,

s1 did not significantly impair DEET learning (p > 0.05, ANOVA, n R 7).

-GAL4; MBGAL80; UAS-shits1 (III) flies, by inclusion of TH-GAL80, significant

es). Further, performance of c061-GAL4; TH-GAL80/MB-GAL80; UAS-shits1

A, n R 8).

P1 and MV1 neurons, measured using UAS-GCaMP3 expression driven by

nd MV1 processes in the mushroom body lobes, measured at the indicated

lid lines, and shaded areas represent the SEM. The arrow indicates the onset

al responses before and after DEET presentation, overlaid on grayscale im-

0 mM sucrose) and carrier alone evoke a significant increase in intracellular

nse. Average traces (from seven to 17 repetitions in three flies per condition)
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Figure 3. Discrete Aversive Signals Use Common

Reinforcing Dopaminergic Neurons

(A) Flies were differentially conditioned by pairing

of one odor with electric shock of varying magni-

tude and the other odor with 0.4% DEET in sugar

carrier. They were then immediately tested for

olfactory preference. Flies avoided the odor that

had been previously paired with 80 or 90 V but

preferred the odor if it was paired with 30 or 60

V. Linear regression suggested that the inter-

secting point of equivalence between DEET

and shock reinforcement was w70 V (R2 = 0.68).

n R 8.

(B) Blockade of MP1 neurons did not alter the

equivalent value of 0.4% DEET and 70 V. Flies

trained with 70 V versus 0.4% DEET showed no

learned odor preference. Performance of c061;

MBGAL80; UAS-shits1 flies with blocked MP1

neurons was indistinguishable from that of con-

trol groups (p > 0.6, ANOVA). None of the groups

were statistically significant from zero (p > 0.1,

one-sample t test, n R 5).

(C) Blockade of MP1 neurons partially impaired

aversive learning with 70 V. Performance of

c061; MBGAL80; UAS-shits1 flies was statistically

different from that of control groups (p < 0.05,

ANOVA, n R 5).

Data are shown as mean 6 SEM.
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DEET in 1 M sucrose showed a similar dose-dependent aver-
sive learning to those trained in prior experiments with DEET
in xylose and sucrose carrier, although the optimal DEET con-
centration for learning shifted from 0.4% to 0.6% (Figure 4A).
We next tested the DEET memory performance of TbhM18

mutant flies that are impaired in appetitive learning. Strikingly,
whereas the behavior of wild-type flies became conditioned
approachwithin 30min, TbhM18 flies showed amore persistent
aversive memory performance, with scores remaining signifi-
cantly negative 30 and 60 min after training (Figure 4B). How-
ever, the performance still converted from odor avoidance to
approach by 24 hr. Since octopamine only provides short-
term sweet-taste reinforcement [9], we hypothesized that
persistent nutrient-dependentmemorymust be independently
formed in TbhM18 flies. Indeed, TbhM18 flies trained with 1 M
sucrose did not display immediate memory, but significant
performance emerged 1 hr after training
and remained for at least 24 hr (Fig-
ure 4C). These data support the prior
model of octopamine specifically
conveying short-term appetitive rein-
forcement and not the nutrient-depen-
dent long-term signal [9]. In addition,
they suggest that our DEET learning
protocols form parallel aversive and
appetitive memories. To further test a
parallel memory trace model, we trained
flies with 0.3% DEET and 1 M sucrose, a
combination with which no immediate
odor avoidance or approach perfor-
mance is evident, and blocked either
the rewarding or aversive dopaminergic
neurons during training (Figures 4D–4F).
Strikingly, blockade of the rewarding
dopaminergic neurons with 0104; UAS-
shits1 revealed significant conditioned
avoidance (Figure 4E). In contrast, blockade of the negatively
reinforcing MB-MP1 dopaminergic neurons with c061;
MBGAL80; UAS-shits1 uncovered significant conditioned
odor approach performance (Figure 4F). We therefore
conclude that training with the compound DEET and sugar
stimulus leads to the independent formation of aversive and
appetitivememories. The differing stability of these competing
memories subsequently determines which one of them guides
learned behavior after training.
The extent to which rewarding and aversive stimuli are

coded in mammalian dopaminergic neurons is hotly debated
[2, 28, 29]. Recordings in the monkey have shown that some
dopaminergic neurons respond to either bitter taste or an aver-
sive air puff [30], suggesting that the quality of an aversive rein-
forcer may be represented. Work in flies has functionally split
dopaminergic neurons into groups that are critical for reward
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Figure 4. DEET:Sucrose Learning Forms Parallel

Competing Appetitive and Aversive Memories

(A) Learning with DEET in 1 M sucrose depends

on concentration. Wild-type flies starved over-

night were trained with 0% to 0.6% DEET in 1 M

sucrose. Increase of DEET concentration

impaired appetitive memory performance and

formed robust aversive performance when pre-

sented as 0.6%. Performance with 0.6% DEET

is significantly different from that of all other

groups (all p < 0.0001, ANOVA, n R 10).

(B) Aversive DEET memory is longer lasting in

TbhM18 mutant flies trained with 1 M sucrose

plus 0.6% DEET. Wild-type flies exhibit robust

aversive memory immediately after training, but

the performance converts to stable and long-

lasting conditioned approach 30 min later. In

contrast, TbhM18 mutant flies show significant

aversive memory 30 and 60 min after training,

compared to that of the wild-type flies (both p <

0.005, t test). Memory performance of the

TbhM18 mutant flies also converts to conditioned

approach by 24 hr and was not significantly

different from that of wild-type flies (p > 0.1,

t test). All n R 10.

(C) TbhM18 mutant flies lack short-term sweet-

taste sucrose-reinforced memory but form long-

term nutrition-dependent memory. Wild-type

and TbhM18 mutant flies were starved overnight

and trained with 1 M sucrose in 1% agar.

TbhM18 flies showed significantly defective imme-

diate memory performance (p < 0.005, t test) but

were indistinguishable from wild-type flies 0.5,

1, 3, and 24 hr after training (all p > 0.1, t test).

All n R 8.

(D) Training paradigm for testing the role of

MP1 and PAM dopaminergic neurons in DEET

learning. The mushroom body lobe innervation

of each type of dopaminergic neuron is illus-

trated.

(E) Blockade of rewarding PAM dopaminergic

neurons enhanced aversive memory perfor-

mance after learning with 1 M sucrose plus

0.3% DEET. Performance of 0104-GAL4 UAS-

shits1 flies was significantly different from that of

both control groups (p < 0.005, ANOVA, n R 15).

(F) Blockade of the negatively reinforcing MP1

neurons enhanced appetitive memory perfor-

mance after learning with 1 M sucrose plus

0.3% DEET. Performance of c061; MBGAL80;

UAS-shits1 flies was significantly different from

that of both control groups (p < 0.005, ANOVA,

n R 19).

Data are shown as mean 6 SEM.
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learning and others for aversive learning [3, 5–9]. However,
recent studies suggested a requirement for modulation of
the aversive system in appetitive learning [9] and demon-
strated a role for rewarding dopaminergic neurons in relative
aversive learning [31]. In addition, imaging activity in nega-
tively reinforcing MB-MP1 neurons revealed responses to
both sweet sugar and bitter DEET. Nevertheless, the DEET
reinforcement data presented here, when takenwith published
knowledge of shock reinforcement [7], imply that flies utilize
the same, or at least an overlapping, evaluation system to
convey the reinforcing effects of discrete aversive stimuli. It
will be interesting to determine the respective input pathways
to the negatively reinforcing dopaminergic neurons. These ex-
periments also highlight the importance of being able to both
record from and control recognizable subpopulations of dopa-
minergic neurons. Without intervention, it is difficult to
understand whether a given dopaminergic neuron provides a
reinforcement or motivational salience [2] signal.
Perhapsmost surprisingly, our data demonstrate that during

learning flies independently assign the value of individual com-
ponents of a compound food stimulus to an odor. Rather than
forming a single memory of the relative quality of the tainted
sugar, they learn the bitter and sugar components in parallel.
This multiplexing is further illustrated by sugars in which
octopamine distinguishes between memories of sweet taste
and nutrient components [9]. These results suggest that
despite the integration of tastant information that occurs
within the first layers of the gustatory system [15, 16, 32, 33]
and provides control over food ingestion, each component
also gains unprocessed access to the negative and positive
arms of the reinforcement system. The fly therefore appears
to retain as much information of foraging history as possible,
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while allowing the relative persistence of the resultant constit-
uent memories to inform later behavior. Such a mechanism
might help the fly to direct short-term foraging away from
food sources that happen to be unpalatable but remember
that they are usually nutritious.

Experimental Procedures

Details of all experiments are provided in the Supplemental Experimental

Procedures.

Fly Strains

Flies were raised on cornmeal food at 25�C and 40%–50% relative humidity.

The wild-type Canton-S [23], c061; MBGAL80 [23], TbhM18 [20], dumb1 [21],

UAS-shits1 [22], R73F07-GAL4 [24], NP1528-GAL4 [6], NP5272-GAL4 [6],

UAS-dTrpA1 [19], Gr66a-GAL4 [34], UAS-hid:UAS-rpr [17], UAS-GCaMP3

[26], TH-GAL4 [27], and UAS-IR40aRNAi [12] flies have all been described.

Behavioral Analysis

Mixed-sex populations of 6- to 9-day-old flies were tested together in all ex-

periments. For DEET training, groups of w100 flies were food deprived for

22–28 hr in vials containing 2–3 ml 1% agar and filter paper. Liquid DEET

was diluted to the appropriate final concentration with a given sugar solu-

tion in 1% molten agar (in water) and shaken to create a suspension and

spread onto filter paper. Dried papers were rolled into training tubes.

Training paradigms are indicated in the figure legends.

A performance index (PI) was calculated as the number of flies approach-

ing (appetitive) or avoiding (aversive) the conditioned odor minus the

number going the other direction, divided by the total number of flies in

the experiment. A single PI is the average of two experiments in which iden-

tical genotype flies are trained with the reciprocal reinforced/non-reinforced

odor combination. Odors were 3-octanol and 4-methylcyclohexanol.

Two-Photon In Vivo Calcium Imaging

Adult, food-deprived UAS-GCaMP3; THGAL4 flies were waxed to a custom-

built imaging chamber, and the head capsule was removed under ice-cold

sugar-free saline. Two-photon imaging was performed with a custom-

made imaging setup as described [35].

Statistical Analysis

Statistical analyses were performed with PRISM (GraphPad Software) and

are specifically referenced in the figure legends.

Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures

and three figures and can be found with this article online at http://dx.doi.

org/10.1016/j.cub.2014.05.078.
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