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Thalidomide, a sedative drug that was once excluded from the market owing to its
teratogenic properties, was later found to be effective in treating multiple myeloma.
We had previously demonstrated that cereblon (CRBN) is the target of thalidomide
embryopathy and acts as a substrate receptor for the E3 ubiquitin ligase complex,
Cullin-Ring ligase 4 (CRL4CRBN) in zebrafish and chicks. CRBN was originally identified
as a gene responsible for mild intellectual disability in humans. Fetuses exposed to
thalidomide in early pregnancy were at risk of neurodevelopmental disorders such as
autism, suggesting that CRBN is involved in prenatal brain development. Recently,
we found that CRBN controls the proliferation of neural stem cells in the developing
zebrafish brain, leading to changes in brain size. Our findings imply that CRBN is
involved in neural stem cell growth in humans. Accumulating evidence shows that
CRBN is essential not only for the teratogenic effects but also for the therapeutic
effects of thalidomide. This review summarizes recent progress in thalidomide and
CRBN research, focusing on the teratogenic and therapeutic effects. Investigation of
the molecular mechanisms underlying the therapeutic effects of thalidomide and its
derivatives, CRBN E3 ligase modulators (CELMoDs), reveals that these modulators
provide CRBN the ability to recognize neosubstrates depending on their structure.
Understanding the therapeutic effects leads to the development of a novel technology
called CRBN-based proteolysis-targeting chimeras (PROTACs) for target protein
knockdown. These studies raise the possibility that CRBN-based small-molecule
compounds regulating the proliferation of neural stem cells may be developed for
application in regenerative medicine.
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INTRODUCTION

Thalidomide—originally developed as a sedative-hypnotic drug and used worldwide
approximately 60 years ago—is an effective antiemetic and prescribed for morning
sickness during pregnancy. This drug was withdrawn from the market because newborns
showed multiple birth defects when pregnant women consumed the drug during early
pregnancy. Thalidomide is associated with a range of teratogenicity, termed thalidomide
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embryopathy, in the ears, eyes, face, limbs, genitalia, and
internal organs, including heart, kidney, and gastrointestinal tract
(Miller and Strömland, 1999; Vargesson, 2015). Thalidomide
teratogenicity shows different critical exposure periods during
embryogenesis. Previous research indicates that the earliest
exposure to thalidomide increases the risk of autism and epilepsy
(Strömland et al., 1994; Miller and Strömland, 1999; Miller
et al., 2005). Notably, limb malformations in embryos exposed
to thalidomide were observed in humans and rabbits but not
in rodents, implying that thalidomide teratogenicity is species-
specific (Fratta et al., 1965; Schumacher et al., 1968).

We previously identified cereblon (CRBN) as a primary
direct target of thalidomide (Ito et al., 2010). CRBN, encoding
a 442-amino-acid protein, is identified as a gene responsible
for autosomal recessive non-syndromic intellectual disability;
a nonsense mutation, p.R419X, generates a truncated CRBN
lacking 24 amino acids at the C-terminal owing to the presence
of a premature stop codon (Higgins et al., 2004). Another
missense mutation in CRBN is also associated with severe
intellectual disability and seizures (Sheereen et al., 2017). CRBN
serves as a substrate receptor of the Cullin-Ring ligase 4 E3
ubiquitin ligase complex (CRL4CRBN) that recognizes substrates
for ubiquitination and subsequent proteasomal degradation (Ito
et al., 2010). CRBN is identified as a protein directly interacting
with the cytosolic carboxy-terminus of large conductance,
Ca2+- and voltage-activated K+ (BK) channel α subunit (Jo
et al., 2005). However, the significance of these mutations with
respect to intellectual disability and cellular functions of CRBN
is still unclear.

Although the mechanisms underlying the sedative function
of thalidomide has not been elucidated, thalidomide has
been found to have therapeutic effects in the context of
erythema nodosum leprosum and multiple myeloma. At
present, thalidomide and its derivatives lenalidomide and
pomalidomide are repurposed as immunomodulatory
drugs (IMiDs) for blood cancers. Accumulating evidence
suggests that thalidomide and IMiDs bind to CRBN,
thereby altering substrate recognition depending on
the ligand structure and exerting therapeutic effects by
degrading different ligand-specific substrates (neosubstrates)
(Chamberlain and Cathers, 2019; Ito and Handa, 2020).
Elucidation of the molecular mechanisms of action of
thalidomide and IMiDs promoted the development of a
new protein knockdown technique, proteolysis-targeting
chimeras (PROTACs), originally developed using another E3
ubiquitin ligase, von Hippel-Lindau (Sakamoto et al., 2001;
Pettersson and Crews, 2019).

We demonstrated that thalidomide caused limb defects
through CRBN in chicks and zebrafish (Ito et al., 2010;
Asatsuma-Okumura et al., 2019), suggesting that basic
molecular mechanisms of limb development involving CRBN are
evolutionarily conserved among vertebrates. Zebrafish (Danio
rerio) is an excellent model organism to investigate molecular
genetic and pathogenic mechanisms underlying human diseases
that have a developmental origin (Lieschke and Currie, 2007).
Each fish lays many eggs, and the transparent small embryos
develop externally in a dish, enabling us to easily observe

and analyze the effects on development by gene expression,
knockdown, knockout, and screening of small-molecule libraries
using living whole embryos (Driever et al., 1994; Kaufman
et al., 2009; D’Amora and Giordani, 2018). Furthermore, many
transgenic lines, mutants, and disease models are currently
available for studying neurodevelopmental disorders in zebrafish
(Meshalkina et al., 2018; Sakai et al., 2018; Vaz et al., 2019).

In this mini review, we summarize recent advances in our
understanding of the teratogenic and therapeutic effects of
thalidomide and its derivatives, currently called cereblon E3
ligase modulators (CELMoDs), and describe the potential
of CELMoDs for developing small-molecule compounds
that regulate neural stem cell (NSC) proliferation and their
significance in regenerative medicine.

TERATOGENIC EFFECTS OF
THALIDOMIDE IN HUMANS

In human fetal development, 4–15 weeks gestation (3–
14 weeks post-conception) is the organogenesis period;
especially, 4–9 weeks gestation (3–8 weeks post-conception)
is critical for organogenesis. Human embryos in the first
8 weeks are highly sensitive to teratogens (Wilson, 1973;
Hill, 2007). The earliest exposure to thalidomide (20–24 days
post-fertilization) has been reported to increase the risk
of autism and epilepsy (Strömland et al., 1994; Miller and
Strömland, 1999; Miller et al., 2005). Brain development
initially begins with the induction of neuroectoderm from
ectoderm during gastrulation. This neural induction occurs
3 weeks post-fertilization in humans, roughly corresponding
to the critical period for autism elicited by thalidomide
exposure (Strömland et al., 1994; Miller and Strömland,
1999; Miller et al., 2005). This suggests that thalidomide
has the potential to affect early brain development when
neuroectodermal cells, including NSCs, dramatically proliferate
and differentiate.

Although the precise molecular mechanisms underlying
thalidomide teratogenicity remain obscure, multiple teratogenic
effects were considered due to the functional CRBN inhibition,
as CRBN is a direct protein target of thalidomide that
inhibits the auto-ubiquitination of CRBN (Ito et al., 2010).
Furthermore, thalidomide teratogenicity implies that CRBN
plays a critical role in human fetal development. However,
CRBN-knockout mice exhibit normal brain development, but
show impaired presynaptic function owing to enhanced BK
channel activity and deficits in hippocampal-dependent learning
and memory via exaggerated AMP-activated protein kinase
(AMPK) activity (Higgins et al., 2004; Bavley et al., 2018; Choi
et al., 2018). Forebrain-specific conditional CRBN-knockout
mice also show hippocampus-dependent deficits in associative
learning (Rajadhyaksha et al., 2012). Although the role of CRBN
in brain development remains poorly understood, investigation
of the molecular mechanisms underlying the therapeutic effects
of thalidomide and IMiDs revealed that CELMoDs bind to
CRBN to alter substrate recognition, leading to ligand-specific
neosubstrate degradation (Figure 1). Two different proteins,
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FIGURE 1 | Mechanism of action of CRL4CRBN E3 ubiquitin ligase and its effects through CRBN-based small molecules. CRBN, a substrate receptor of CRL4CRBN,
binds to CRBN-based small molecules (IMiDs, CELMoDs, PROTACs) through the glutarimide moiety (green ellipse) and recognizes different neosubstrates
depending on the structure (red circle). Polyubiquitination and proteasomal degradation of the target neosubstrates cause cell death or presumably NSC proliferation
that leads to various teratogenic and therapeutic effects.

spalt-like transcription factor 4 (SALL4) and tumor protein
63 (TP63, p63), have been identified as CRBN neosubstrates
responsible for the teratogenic effects of thalidomide in the limb
and ear (Donovan et al., 2018; Matyskiela et al., 2018; Asatsuma-
Okumura et al., 2019, 2020; Figure 2). In contrast, the original
substrates for CRBN during development and any endogenous
ligands have not yet been clarified.

SALL4 is a member of the spalt-like family of C2H2
zinc finger transcription factors that is involved in embryonic
development. Mutations in SALL4 are associated with Duane-
radial ray syndrome/Okihiro syndrome and SALL4-related Holt-
Oram syndrome, both of which show phenotypes similar to
those of thalidomide embryopathy (Al-Baradie et al., 2002;
Kohlhase et al., 2002, 2003). Consistent with these observations,
thalidomide was found to induce SALL4 degradation in a species-
specific manner (Donovan et al., 2018). SALL4 is expressed
in early embryos, including the inner cell mass, heart, and
neuroectoderm. Thus, SALL4-deficient mice are embryonic lethal
(Sakaki-Yumoto et al., 2006). SALL4 haploinsufficiency results in
death in utero, anorectal and heart anomalies, and exencephaly
in mice. Therefore, SALL4 may be involved in thalidomide-
induced miscarriage or other birth defects in humans. Sall4 is also
required for pectoral fin outgrowth (Harvey and Logan, 2006)
that seems consistent with thalidomide-induced limb defects
in zebrafish (Ito et al., 2010; Asatsuma-Okumura et al., 2019).
However, zebrafish SALL4 is resistant to thalidomide-induced
degradation (Donovan et al., 2018), suggesting the presence of
other neosubstrates.

We identified p63 as another thalidomide-dependent CRBN
neosubstrate and found that it was involved in teratogenic effects
in the limb and ear (Asatsuma-Okumura et al., 2019). P63 is
a member of the p53 transcription factor family, also known
as tumor suppressors, and plays an important role in limb
development (Yang et al., 2002). P63-deficient mouse embryos
show severe limb defects similar to thalidomide-induced amelia
and defects in craniofacial and epithelial development, suggesting
that p63 is essential for ectodermal differentiation, epithelial
development, and morphogenesis (Mills et al., 1999; Yang et al.,
1999). In humans, mutations in TP63 cause ectodermal dysplasia,
cleft lip/palate syndrome, and congenital limb malformations
(Rinne et al., 2006). Consistently, knockdown of a p63 isoform,
1Np63, showed disruptions in epidermal growth and limb
development in zebrafish (Lee and Kimelman, 2002). The
similarity of these phenotypes to thalidomide embryopathy
prompted us to explore the possibility of p63 as a thalidomide-
dependent neosubstrate. Using zebrafish, we demonstrated
that p63 isoforms 1Np63α and TAp63α were responsible
for teratogenicity in the limb and ear through thalidomide-
dependent degradation, respectively (Asatsuma-Okumura et al.,
2019, 2020). P63 is also expressed in the embryonic and
adult mouse and human telencephalon (Hernandez-Acosta
et al., 2011). Genetic p63 knockdown in the embryonic
telencephalon causes embryonic cortical precursor cell apoptosis
that is rescued by 1Np63 expression (Dugani et al., 2009).
Nevertheless, constitutive p63 ablation results in no deficits in
neural development (Holembowski et al., 2011). In contrast,
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FIGURE 2 | Teratogenic and therapeutic effects of CRBN-based small molecules and the corresponding neosubstrates in humans. The structures of thalidomide
and its derivatives are indicated. AML, acute myeloid leukemia; ASD, autism spectrum disorder; MDS, myelodysplastic syndrome; MM, multiple myeloma; ND, not
determined.

inducible p63 ablation from embryonic day 12 leads to an
increase in neural precursor cell apoptosis in the embryonic
cortex (Cancino et al., 2015). These observations suggest that
p63 plays an important pro-survival role in the developing
brain (Joseph and Hermanson, 2010), also implying that p63 may
be a potential neosubstrate for thalidomide teratogenicity in
the brain.

THERAPEUTIC EFFECTS OF
THALIDOMIDE IN HUMANS

The effectiveness of thalidomide against multiple myeloma
encouraged Celgene Corporation to develop its derivatives,
lenalidomide and pomalidomide that have higher
immunomodulation activities (Bartlett et al., 2004). Thalidomide
and its derivatives were therefore referred to IMiDs. Consistent
with their immunomodulatory activity, we demonstrated
that lenalidomide and pomalidomide bounded more strongly to
CRBN than to thalidomide (Lopez-Girona et al., 2012), indicating
that CRBN is required for both their teratogenic and therapeutic
effects. Because CRBN is a CRL4CRBN substrate receptor, the
substrates responsible for the therapeutic effects were explored;
different ligand-dependent substrates (neosubstrates) have been
identified for the therapeutic effects of thalidomide and its
derivatives (Kronke et al., 2014, 2015; Lu et al., 2014; Matyskiela
et al., 2016; Ito and Handa, 2020; Figure 2).

The transcription factors Ikaros (IKZF1) and Aiolos (IKZF3)
that belong to the Ikaros zinc finger family (IKZF), were first
identified as lenalidomide-dependent CRL4CRBN substrates in
multiple myeloma cell lines (Kronke et al., 2014; Lu et al., 2014).

Ikaros and Aiolos degradation is the main mediator of
the anti-myeloma effects of lenalidomide. We revealed that
lenalidomide and pomalidomide also induced Ikaros and Aiolos
degradation in T cells (Gandhi et al., 2014).

Casein kinase 1A1 (CK1α) was identified as another
lenalidomide-dependent CRL4CRBN neosubstrate responsible for
the therapeutic effect of lenalidomide against myelodysplastic
syndrome with chromosome 5q deletion (Kronke et al., 2015).
CK1α is a serine/threonine kinase that plays important roles
in embryonic and tumor development. CK1α inhibits p53 and
negatively regulates Wnt signaling (Huart et al., 2009; Elyada
et al., 2011; Wu et al., 2012). Consistently, homozygous deletion
of the CK1α gene, Csnk1a1, in hematopoietic cells results in
apoptosis through p53 activation in conditional knockout mice
(Schneider et al., 2014). CK1α degradation by lenalidomide
was substantially more extensive than that by thalidomide or
pomalidomide, indicating that substrate recognition by CRBN
differs depending on the ligand structure (Kronke et al., 2015).

In a thalidomide derivative library developed by Celgene, CC-
885 was discovered to possess remarkable therapeutic effects
against acute myelogenous leukemia. We identified a CC-885-
dependent neosubstrate, G1-to-S phase transition 1 (GSPT1), by
immuno-affinity purification and found that CC-885 has an anti-
proliferative effect by degrading this neosubstrate (Matyskiela
et al., 2016). Because the effects of CC-885 were beyond the scope
of immunomodulatory drugs, thalidomide and its derivatives
IMiDs have been collectively termed CELMoDs. This recent
progress in elucidating the molecular function of CELMoDs
supports the hypothesis that these small-molecule compounds
confer neosubstrates on CRBN by altering substrate recognition
(Chamberlain and Cathers, 2019; Ito and Handa, 2020; Figure 1).
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The CRBN-based PROTAC technique utilizes thalidomide
or other CRBN-binding compounds combined with small-
molecule compounds that interact with the proteins of interest,
allowing us to target protein degradation by recruiting CRL4CRBN

(Winter et al., 2015; Burslem and Crews, 2020). This targeted
protein knockdown with PROTACs opens new possibilities for
CELMoDs in drug discovery (Chamberlain and Hamann, 2019;
Pettersson and Crews, 2019).

NSCs IN BRAIN DEVELOPMENT AND
NEURODEVELOPMENTAL DISORDERS

The number of NSCs is determined by the balance of
proliferation, differentiation, and apoptosis. Caspase-3 and
-9 knockout suppresses apoptosis, causing expansion of
NSCs/radial glial cells (RGCs), leading to a larger and
consequently convoluted cortical surface (Haydar et al.,
1999; Rakic, 2009). NSC proliferation and differentiation are
strictly regulated during brain development (Kriegstein and
Alvarez-Buylla, 2009; Rakic, 2009; Aimone et al., 2014; Florio
and Huttner, 2014). In the developing brain, NSCs/RGCs
proliferate through symmetric cell divisions or give rise to
intermediate (basal) progenitor cells or neurons by asymmetric
cell division in the ventricular zone. Intermediate progenitor
cells migrate basally along radial fibers and produce two
neurons by symmetric cell divisions in the subventricular zone.
Thus, NSCs produce differentiated cells (progenitor cells or
neurons) at the expense of proliferation. Consequently, the
number of NSCs/RGCs at early developmental stages impacts
brain size at later stages (Golzio et al., 2012; Malhotra and
Sebat, 2012). Indeed, multiple human genes associated with
microcephaly, macrocephaly, and megalencephaly are involved
in cell division and cell cycle regulation, such as mitotic spindle
orientation, centromere formation, microtubule organization,
cytokinesis, and signal transduction (Williams et al., 2008;
Pirozzi et al., 2018). Moreover, microcephaly and macrocephaly
are observed in neurodevelopmental disorders, autism spectrum
disorder, and intellectual disability, suggesting that impaired
neurogenesis in the embryonic brain accounts for susceptibility
to these neurodevelopmental disorders (Courchesne et al., 2007;
Vorstman et al., 2017; Bonnet-Brilhault et al., 2018).

During brain development, newly generated neurons
migrate into different layers depending on the timing of
their generation from RGCs (Kriegstein and Alvarez-Buylla,
2009). Early-born neurons are distributed in the deeper
layers, and later-born neurons in the superficial layers;
thus, cortical layers are developed in an inside-out manner.
A disrupted balance between NSC/RGC proliferation and
differentiation could affect cortical circuit organization, as
projection neuron subtypes are determined by the cortical
layers in which the neurons reside (Greig et al., 2013). Indeed,
multiple susceptibility genes for neurodevelopmental disorders,
such as PTEN, CHD8, and SYNGAP1 for autism spectrum
disorder; KRAS and RHEB for intellectual disability; and
DISC1, NRG1, and MAPK3 for schizophrenia are implicated
in embryonic neurogenesis, including NSC/NPC proliferation
and differentiation, neuron generation and migration, and

post-mitotic neuron differentiation during brain development
(Abrahams and Geschwind, 2008; Amaral et al., 2008;
Sato et al., 2015; Vorstman et al., 2017; Sacco et al., 2018),
suggesting that neurodevelopmental disorders are attributed to
impaired neurogenesis in the fetal brain (Kaushik and Zarbalis,
2016; Muhle et al., 2018; Sacco et al., 2018). The pathogenic
mechanisms underlying neurodevelopmental psychiatric
disorders support the hypothesis that fetal development affected
by in utero environments, including exposure to teratogens,
pathogens, or maternal stress, leads to later-onset diseases
(Gluckman et al., 2007).

NSCs IN ADULT NEUROGENESIS AND
MENTAL DISORDERS

Fetal exposure to teratogens, including thalidomide as well
as other small-molecule compounds such as valproic acid
(antiepileptic), misoprostol (antiulcer drug), and ethanol, is
associated with autism (Dufour-Rainfray et al., 2011). Prenatal
exposure during the first trimester to antidepressants such as
the selective serotonin reuptake inhibitor (SSRI), fluoxetine was
associated with an increased risk of autism (Velasquez et al., 2013;
Andalib et al., 2017; Millard et al., 2017). Fluoxetine promotes
neurogenesis in the adult hippocampus and has been proposed
to contribute to the therapeutic effects on mood disorders such
as major depression in humans (Santarelli et al., 2003; Micheli
et al., 2018; Planchez et al., 2020). Consistently, serotonin (5-
HT) has multiple roles in adult hippocampal neurogenesis (Song
et al., 2017). Most notably, it promotes NSC proliferation through
the 5-HT1A receptor in the adult hippocampus (Radley and
Jacobs, 2002; Banasr et al., 2004) suggesting that embryonic
and adult neurogenesis share a common molecular mechanism
mediated by targets of small-molecule compounds. However,
adult hippocampal neurogenesis reduces dramatically with age
not only in rodents (Altman and Das, 1965; Kempermann
et al., 2015), but also in humans (Snyder, 2018; Sorrells
et al., 2018). Therefore, reactivation of quiescent NSCs and
expansion of endogenous NSCs/NPCs in the brain will be an
ideal symptomatic treatment for patients with impaired adult
neurogenesis resulting in neurodevelopmental disorders, mood
disorders, and neurodegenerative disorders (Li et al., 2013;
Herrera-Arozamena et al., 2016; Duncan and Valenzuela, 2017).

TERATOGENIC EFFECTS OF
THALISOMIDE AND POTENTIAL
THERAPEUTIC ACTIVITY OF CRBN IN
ZEBRAFISH BRAIN DEVELOPMENT

We found that thalidomide treatment during early gastrulation
resulted in the generation of small heads and eyes in zebrafish
embryos (Ando et al., 2019). This is consistent with thalidomide-
induced birth defects in mice and humans, indicating that
the mechanism underlying thalidomide teratogenicity in
brain development is conserved among vertebrates (Miller
and Strömland, 1999; Hallene et al., 2006; Fan et al., 2008).
Knockdown of CRBN the direct target of thalidomide,
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elicited p53-dependent apoptosis in the presumptive brain
region, suggesting that CRBN is required for neuroepithelial
cell survival, including that of NSCs. This is consistent with
the teratogenic effects of thalidomide in zebrafish embryos in
which thalidomide induces apoptosis in the developing fin bud
(Asatsuma-Okumura et al., 2019). A discrepancy in phenotypes
between CRBN-knockdown zebrafish and CRBN-knockout mice,
as observed for p63, remains an open question, although genetic
compensation by mutant mRNA degradation was reported as the
molecular mechanism underlying such discrepancies (Rossi et al.,
2015; El-Brolosy et al., 2019).

CRBN overexpression by injection of mRNA into one-cell-
stage embryos caused expansion of the head at later stages
in zebrafish (Ando et al., 2019). CRBN overexpression caused
expanded NSC marker sox2 expression in the presumptive brain
field as well as an increase in mitotic cells in the telencephalon
and an increase in her5-positive NSCs in the midbrain-
hindbrain boundary. The effects of CRBN overexpression on
early brain development lead to the expanded expression of
neural and glial marker genes and results in an enlarged brain.
These results suggest that CRBN overexpression promotes the
proliferation of sox2-positive NSCs in the developing brain.
This conclusion is supported by the fact that another E3
ubiquitin ligase complex, CRL4Mahj, using Mahjong as a substrate
receptor, promotes the exit of NSCs from quiescence and leads
to the reactivation of proliferation in Drosophila (Ly et al.,
2019). These observations may indicate that newly developed
CELMoDs including thalidomide analogs corresponding to
CRBN overexpression can enhance NSC proliferation if they
promote stabilization by inhibition of auto-ubiquitination or
degradation of endogenous substrates more efficiently or by
degradation of CELMoD-dependent neosubstrates that leads to
cell cycle progression or growth factor signal propagation. This
type of CELMoD is a potential candidate for therapeutic drugs
for treating diseases that affect adult neurogenesis.

CONCLUSION

Thalidomide has multiple teratogenic effects depending on
the time of exposure during development. Early exposure
to thalidomide caused a small head in zebrafish embryos,
consistent with an increase in the risk of autism and mild
intellectual disability that often affect head size in humans.
Brain size is primarily affected by the number of NSCs
that is determined by the balance of growth, differentiation,
and apoptosis during development. Early exposure to small
molecules affecting adult neurogenesis, such as antidepressants,
increases the risk of autism, suggesting a common molecular
mechanism underlying NSC growth and differentiation in the
developing and adult brain. Our finding that thalidomide’s
direct target, CRBN, regulates NSC proliferation in zebrafish
embryonic brain implies that small-molecule compounds,
including CELMoDs, can promote NSC growth in the adult brain
and thus might be developed as effective therapeutic drugs for
regenerative medicine.
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