
biomedicines

Article

Influence of Serotonin 5-HT4 Receptors on Responses to
Cardiac Stressors in Transgenic Mouse Models

Ulrich Gergs , Timo Gerigk, Jonas Wittschier, Constanze T. Schmidbaur, Clara Röttger, Mareen Mahnkopf,
Hanna Edler, Hartmut Wache and Joachim Neumann *

����������
�������

Citation: Gergs, U.; Gerigk, T.;

Wittschier, J.; Schmidbaur, C.T.;

Röttger, C.; Mahnkopf, M.; Edler, H.;

Wache, H.; Neumann, J. Influence of

Serotonin 5-HT4 Receptors on

Responses to Cardiac Stressors in

Transgenic Mouse Models.

Biomedicines 2021, 9, 569. https://

doi.org/10.3390/biomedicines

9050569

Academic Editor: Shaker A. Mousa

Received: 30 March 2021

Accepted: 14 May 2021

Published: 18 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg,
06097 Halle (Saale), Germany; ulrich.gergs@medizin.uni-halle.de (U.G.); timo.gerigk@t-online.de (T.G.);
jonas@wittschier.com (J.W.); c.schmidbaur@web.de (C.T.S.); clara.roettger@yahoo.de (C.R.);
mareen.mahnkopf@outlook.de (M.M.); hanna.edler@med.ovgu.de (H.E.); elisabeth.wache@t-online.de (H.W.)
* Correspondence: joachim.neumann@medizin.uni-halle.de; Tel.: +49-345-557-1686

Abstract: The current study aimed to deepen our knowledge on the role of cardiac 5-HT4 receptors
under pathophysiological conditions. To this end, we used transgenic (TG) mice that overexpressed
human 5-HT4a receptors solely in cardiac myocytes (5-HT4-TG mice) and their wild-type (WT)
littermates that do not have functional cardiac 5-HT4 receptors as controls. We found that an
inflammation induced by lipopolysaccharide (LPS) was detrimental to cardiac function in both 5-HT4-
TG and WT mice. In a hypoxia model, isolated left atrial preparations from the 5-HT4-TG mice went
into contracture faster during hypoxia and recovered slower following hypoxia than the WT mice.
Similarly, using isolated perfused hearts, 5-HT4-TG mice hearts were more susceptible to ischemia
compared to WT hearts. To study the influence of 5-HT4 receptors on cardiac hypertrophy, 5-HT4-TG
mice were crossbred with TG mice overexpressing the catalytic subunit of PP2A in cardiac myocytes
(PP2A-TG mice, a model for genetically induced hypertrophy). The cardiac contractility, determined
by echocardiography, of the resulting double transgenic mice was attenuated like in the mono-
transgenic PP2A-TG and, therefore, largely determined by the overexpression of PP2A. In summary,
depending on the kind of stress put upon the animal or isolated tissue, 5-HT4 receptor overexpression
could be either neutral (genetically induced hypertrophy, sepsis) or possibly detrimental (hypoxia,
ischemia) for mechanical function. We suggest that depending on the underlying pathology, the
activation or blockade of 5-HT4 receptors might offer novel drug therapy options in patients.

Keywords: serotonin; LPS; hypoxia; ischemia; PP2A transgenic mice; inflammation; 5-HT4 receptor;
transgenic mice; cardiac hypertrophy

1. Introduction

Serotonin (5-HT) is taken up by animals in the gastrointestinal tract from food [1].
Baganz and Blakely (2013) reported that about 5% of the total 5-HT in mammals is formed
in the brain [2]. Peripheral organs, such as the intestinal wall [3], contain 95% of the total
amount of 5-HT in the body [4]; from there, the 5-HT can be taken up by various blood
cells and transported mainly by thrombocytes to the heart [5,6]. In addition, 5-HT can also
be synthesized in the heart, most notably in cardiomyocytes [7,8].

5-HT can lead to vasoconstriction and subsequent hypertension [1,9,10], although
it can also directly affect the cells in the heart. It is also known to increase the force of
contraction and, thus, has a positive inotropic effect (PIE) on the atrium and the ventricle
of some mammals, including humans [7,11–13]. Moreover, 5-HT can increase the heart rate
by acting on cells in the sinus node in isolated human preparations [14,15] and isolated
pig atrium samples [16]; thus, 5-HT has a positive chronotropic effect (PCE). The effects of
5-HT on the cardiovascular system can be mediated by several receptors [17]. In humans
and pigs, the PIE [12,16] and PCE of 5-HT are mediated through 5-HT4 receptors. The
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5-HT4 receptors stimulate forming cAMP in the heart via G proteins [18], enhancing protein
phosphorylation [19] and leads to the PIE and PCE in the appropriate cell types.

Mice, which are currently widely used as model species because they are quite amenable
to genetic manipulation, do not possess 5-HT4 receptors in cardiomyocytes [20–23]. Therefore,
we have previously generated and initially characterized transgenic (TG) mice with cardiac
myocyte-specific overexpression of the human 5-HT4a receptor, which is the main 5-HT4
receptor isoform in the human heart; these mice are 5-HT4-TG mice [20]. We found that
5-HT elicited a PIE in isolated electrically driven atrial preparations from 5-HT4-TG mice [21].
In addition, in isolated perfused Langendorff hearts from 5-HT4-TG mice, 5-HT increased
contractility in living 5-HT4-TG mice and induced a PCE in spontaneously beating right
atrial preparations and isolated hearts from 5-HT4-TG mice. However, none of these effects
were present in preparations from their wild-type (WT) littermates [20,21]. The effects of
5-HT in 5-HT4-TG mice were accompanied by increased phosphorylation of proteins, such
as phospholamban or the troponin inhibitor, which are thought to lead, at least in part, to
hastened relaxation of the heart. There was also an increased incidence of arrhythmias in
isolated right atrial preparations from 5-HT4-TG mice compared with WT mice under basal
conditions (i.e., without the addition of drugs). The incidence of arrhythmias was enhanced
after applying 5-HT to isolated transgenic atria [23]. The results may be attributed to the
known spontaneous release of Ca2+ from the sarcoplasmic reticulum into the cytosol in 5-
HT4-TG mice [20]. It has been suggested that the 5-HT released from damaged thrombocytes
might contribute to or prolong the duration of atrial fibrillations in patients [18].

In the present work, we wanted to gain deeper insight into the putative pathophysi-
ological roles of 5-HT4 receptors in the heart. We hypothesized that the heart’s response
to cardiac stressors like sepsis, hypoxia, ischemia or genetically caused hypertrophy is
influenced by serotonin via 5-HT4 receptors. Therefore, mice or murine cardiac prepara-
tions were subjected to classical stressful interventions with different pathophysiological
stimuli and, thus, diverse putative biochemical pathways were activated. These pathways
translated into different physiological endpoints. The main finding in this communication
was that 5-HT4 receptors can be involved in certain cardiac stress responses and should be
further studied as a therapeutic treatment for cardiac diseases in humans. Progress reports
in the form of abstracts have been previously published [24–30].

2. Materials and Methods
2.1. Transgenic Mice

This investigation conformed to the Guide for the Care and Use of Laboratory Animals
published by the National Research Council (2011) [31]. Animals were maintained and
handled according to the approved protocols of the Animal Welfare Committee of the
University of Halle-Wittenberg, Germany. The experimental protocols were approved by
the local committee on the ethics of animal experiments of the state Sachsen-Anhalt (Permit
Number: 42502-02-691 MLU and 42502-2-1537 MLU). Echocardiography was performed
under isoflurane anesthesia, and for euthanasia of mice, pentobarbital (50 mg/kg body
weight i.p.) was used. The generation and basal characterization of 5-HT4-TG mice with
cardiac expression of the human 5-HT4 receptor and mice overexpressing the catalytic
subunit of PP2A in the heart (PP2A-TG) were reported previously in detail [20,32]. Im-
munohistology demonstrated localization of the 5-HT4 receptor with the t-tubule system
in 5-HT4-TG cardiomyocytes [20], whereas overexpressed PP2A was evenly distributed
throughout the cardiomyocytes in PP2A-TG hearts [32]. Both TG mouse strains (CD1
background) expressed the transgene under control of the mouse α-myosin heavy chain
promoter, specifically in cardiac myocytes of the atrium and ventricle [20,32]. In all experi-
mental groups except the mice in the experimental setup with the double transgenic mice,
we used 150-day-old mice with equal distribution of both sexes. In all experimental groups
for the genetically induced hypertrophy (WT, mono-transgenic, double transgenic), we
used 12 months old mice because the hypertrophy induced by PP2A overexpression in
PP2A-TG mice was an age-dependent process.
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2.2. Contraction Studies of the Atrium

The contraction studies of the atrium followed our previously published proce-
dures [20,33,34]. In brief, hearts were excised from anesthetized mice (50 mg/kg pen-
tobarbital i.p.); left and right atria were prepared and transferred to 10 mL organ baths
containing the following physiological buffer that was adjusted to pH 7.4 at 37 ◦C (in mM):
NaCl 119.8, KCl 5.4, CaCl2 1.8, MgCl2 1.05, NaH2PO4 0.42, NaHCO3 22.6, Na2EDTA 0.05,
ascorbic acid 0.28 and glucose 5.0, continuously gassed with Carbogen (95% O2, 5% CO2).
Left atria were electrically stimulated (1 Hz), whereas right atria contracted spontaneously.
The contractions of the atrial preparations were detected by isometric force transducers, and
the data were recorded using a PowerLab system (ADInstruments, Oxford, UK). Hypoxia
was induced by switching the gas supply of the organ bath from carbogen to a mixture
of 95% N2 and 5% CO2 (Linde Gas Supply Company, Pullach, Germany). After 20 min,
the gas supply was switched back to carbogen (as reported [33]). In some experiments,
different protocols were used, including hypoxic preconditioning. Details are provided in
the appropriate legends and figures.

2.3. Contraction Studies of the Ventricle (Langendorff Procedure)

The mouse hearts were prepared using the Langendorff procedure as previously
described [33,35,36]. In brief, hearts were excised from anesthetized and heparin-treated
mice (50 mg/kg pentobarbital and 1.5 units heparin i.p.). Hearts were fixed via the aorta
to a 20-gauge cannula, and retrogradely perfused with a constant flow of 2 mL/min on a
Langendorff apparatus with modified Krebs-Henseleit buffer (37 ◦C, pH 7.4) containing
(in mM): NaCl 118, NaHCO3 25, Na-EDTA 0.5, KCl 4.7, KH2PO4, 1.2, MgSO4, 1.2, CaCl2
2.5 and glucose 11, continuously gassed with Carbogen (95% O2, 5% CO2). The force of
contraction of the heart was detected by an isometric force transducer attached to the apex
of the heart, and the data were recorded using a PowerLab system (ADInstruments, Oxford,
UK). From these data, the beating rate, the first derivative of left ventricular force (+dF/dt
and–dF/dt) and other time parameters were calculated. No-flow ischemia was begun by
stopping the peristaltic pump of the buffer for 20 min. Reperfusion was brought about by
restarting the pump (as reported [33]). Drugs were applied by a syringe pump (B. Braun,
Melsungen, Germany) attached to the system, and when the maximum effect was reached
(after 5 min), the hearts were quick-frozen in liquid nitrogen and stored at −80 ◦C until
further use.

2.4. Quantitative Polymerase Chain Reaction (qPCR)

Quantitative PCR was done with slight modifications of the standard procedures
in our lab [33,37,38]. The abundance of mRNAs of typical marker genes was assessed.
Therefore, total RNA was isolated from homogenized frozen tissue using TRIzol® reagent
(Ambion Life Technologies, Carlsbad, CA, US) following the manufacturer’s instructions.
It was reverse transcribed using the maxima first-strand cDNA synthesis kit for RT–qPCR
with dsDNase (Thermo Fisher Scientific, Dreieich, Germany). Real-time PCR amplifica-
tion was performed in the CFX Connect real-time PCR detection system (Bio-Rad, Feld-
kirchen, Germany) using iTaq™ Universal SYBR® green supermix (Bio-Rad, Feldkirchen,
Germany), 10 ng of cDNA and 500 nM of each of the primers. Melting curve analy-
sis was performed to monitor the amplification products. The relative mRNA values
were calculated using the 2–∆∆CT method by Livak and Schmittgen (2001) and normal-
ized to expressing the housekeeping gene GAPDH [39]. Following primers were used
(5′–3′): GAPDH-forward, ATGCATCCTGCACCACCAAC; GAPDH-reverse, ATGCCT-
GCTTCACCACCTTC; ANP-forward, gtgcggtgccaacacagat; ANP-reverse, gcttcctcagtctgct-
cactca; BNP-forward, ccagtctccagagcaattcaa; BNP-reverse, agctgtctctgggccatttc; NFκB1-
forward, GAAATTCCTGATCCAGACAAAAAC; NFκB1-reverse, ATCACTTCAATGGC-
CTCTGTGTAG; IκBα-forward, ATGAAGGACGAGGAGTACGAGCAA; IκBα-reverse,
TCTCTTCGTGGATGATTGCCAA; IL-1β-forward, TCGTGCTGTCGGACCCATAT; IL-1β-
reverse, GTCGTTGCTTGGTTCTCCTTGT; IL-6-forward, CCGGAGAGGAGACTTCACAG;
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IL-6-reverse, TTCTGCAAGTGCATCATCGT; TNFα-forward, CACACTCAGATCATCTTCT-
CAAAA; TNFα-reverse, GTAGACAAGGTACAACCCATCG; LBP-forward, AGATCA-
CACTACCGGACTTCAGCG; LBP-reverse, TTCCATTTGCCTCGGACACCGATG; TLR4-
forward, CTCTGCCTTCACTACAGAGAC; TLR4-reverse, TGGATGATGTTGGCAGCAATG;
human 5-HT4R-forward, GTTGAACCCTTTTCTCTACG; human 5-HT4R-reverse, TTTCTC-
GAGTTCCTGATGAT.

2.5. Western Blotting

Homogenates from atrial and ventricular tissue samples were prepared as described
in previous studies [33,34,40] in 300 µL of 10 mM NaHCO3 with 100 µL of 20% SDS. Crude
extracts were incubated at 25 ◦C for 30 min before centrifugation to remove debris. The
supernatants, or homogenates, were then separated and stored at −80 ◦C until further
use. Western blot analysis was performed as previously described [20,32,33]. Briefly,
aliquots of 60 µg of protein were loaded per lane. Bands were detected using enhanced
chemifluorescence (ECF, GE Healthcare Europe, Freiburg, Germany) with a Typhoon 9410
variable mode imager (GE Healthcare Europe). The following primary antibodies were
used in this study: rabbit polyclonal anti-calsequestrin (1:1000; #SP5340P, Acris Antibodies,
Herford, Germany), mouse monoclonal anti-PLB (1:2000; #A010-14, Badrilla, Leeds, UK),
rabbit polyclonal anti-phospho-PLB (1:5000; #A010-12 and #A010-13, Badrilla, Leeds, UK),
rabbit monoclonal anti-p44/42 MAPK and anti-phospho-p44/42 MAPK (1:1000; #4695 and
#4370, Cell Signaling Technology Europe, Leiden, The Netherlands), rabbit polyclonal anti-
p38 MAPK and rabbit monoclonal anti-phospho-p38 MAPK (1:1000; #9212 and #4511, Cell
Signaling Technology Europe, Leiden, The Netherlands), rabbit monoclonal anti-PP2Ac
(1:1000; #ab32141, Abcam, Berlin, Germany), and mouse monoclonal anti-SERCA (1:1000;
kindly provided by L.R. Jones, Indianapolis, IN, USA). Note that the rabbit polyclonal
anti-phospho-PLB antibodies were raised against PLB-peptide phosphorylated at serine
16 or threonine 17. The characteristics and use of these antibodies have been previously
reported by our group [38,41]. Unedited Western blots can be found in the supplementary
figures.

2.6. Echocardiography

Echocardiography in spontaneously breathing mice was performed under anesthesia
with 1.5% isoflurane. The procedure was previously described [20,33]. In brief, echocardio-
graphic measurements were performed using a Vevo 2100 system equipped with an MS
550D transducer (Visual Sonics, Toronto, Canada). The anesthetized mice were fixed on a
37 ◦C heating pad, and two-dimensional images and M-mode tracings from the paraster-
nal long-axis view and short-axis view were recorded. Moreover, pulsed wave Doppler
measurements and tissue Doppler imaging were performed. If applicable, isoproterenol or
serotonin (100 µL of 1 mM solution) was injected where indicated.

2.7. Lipopolysaccharide Treatment

Mice were IP-injected with 30 µg/g body weight of lipopolysaccharide (LPS; O55:B5
from E. coli), which was dissolved in isotonic NaCl solution. The control mice were injected
with isotonic NaCl solution [37]. Cardiac function was measured by echocardiography
before LPS (NaCl) application (pre-drug values = basal values) and seven hours after LPS
(NaCl) application. Thereafter, the hearts were excised from the still anesthetized mice for
further analyses.

2.8. Data Analysis

Data shown are means ± SEM. Statistical significance was estimated by analysis of
variance (ANOVA) followed by a Bonferroni post-test or by a Student’s t-test as appro-
priate. A p-value < 0.05 was considered to be significant. For statistical analysis and data
presentation, the software GraphPad Prism 5.0 (GraphPad Software, San Diego, California,
USA) was used.
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2.9. Drugs and Materials

All chemicals were of analytical grade. LPS (#L2880), serotonin and isoproterenol
were purchased from Sigma-Aldrich (Munich, Germany).

3. Results
3.1. Cardiac Response to LPS-induced Sepsis

Initially, we wanted to simulate the cardiovascular burden of sepsis on mice. To
this end, the animals were treated with LPS. As expected, the LPS deteriorated cardiac
performance in a time-dependent way. For instance, the left ventricle ejection fraction
(EF) was reduced, as evidenced when the typical M-mode echocardiographs of the basal
contraction in WT mice and 5-HT4-TG mice (Figure 1A, Ctr) were compared with the
echocardiographs after 7 h of LPS treatment (Figure 1A, LPS). After summarizing the
results of several experiments, it was apparent that an injection of LPS diminished cardiac
function using EF as a parameter of left ventricular contractility compared with the effect of
a control injection of isotonic NaCl solution (Figure 1B). However, there was no difference in
the detrimental effect of LPS on the EF between the WT mice and 5-HT4-TG mice. Similarly,
LPS treatment led to reduced blood flow through the ascending and descending aortae,
pulmonary arteries, pulmonary veins and superior vena cava; however, there was no
difference between the 5-HT4-TG mice and WT mice (Supplementary Materials Table S1).
When we observed the E-wave and the A-wave through the mitral valve to assess the
diastolic function of the heart, we determined a time-dependent decrease for the E-wave
and A-wave after LPS treatment in both 5-HT4-TG and WT mice, but the ratio of E and
A was unchanged after LPS (Supplementary Materials Figure S1). A similar pattern was
noted concerning the E-wave and the A-wave through the tricuspid valve (Supplementary
Materials Figure S1). Interestingly, we noticed a substantial decline in expressing mRNA
for the transgenic 5-HT4a receptor in the heart of the 5-HT4-TG mice after application of
LPS (Figure 2A). Other genes measured were also regulated. LPS elevated the mRNA
expression, at least partially, but apparently not differentially in the hearts of the 5-HT4-TG
and WT mice. This is shown in Figure 2B for the interleukins IL-1β and IL-6, as well as
for tumor necrosis factor α (TNFα), LPS-binding protein (LBP), Toll-like receptor 4 (TLR4),
nuclear factor κB (NFκB) and inhibitor of NFκB (IκB), which are typical parameters that
are elevated in inflammation.

Figure 1. Echocardiography of LPS-treated mice. (A) M-mode pictures of WT and 5-HT4-TG, basal
and 7 h after LPS treatment. (B) LPS treatment (7 h) led to a deterioration of cardiac function
demonstrated as decreased left ventricular ejection fraction (EF). Number in brackets indicates the
number of mice studied. WT = wild-type mice, 5-HT4-TG=5-HT4-transgenic mice. Data shown are
means ± SEM. * p < 0.05 vs. basal; # p < 0.05 vs. WT.
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Figure 2. mRNA expression in WT and 5-HT4-TG mice, treated either with LPS or NaCl. (A) The
mRNA coding for the overexpressed human 5-HT4-receptor was greatly downregulated in hearts of
TG after LPS treatment. Ordinate: mRNA expression normalized to GAPDH expression. Three mice
were studied in each genotype. * p < 0.05 vs. NaCl. (B) LPS-induced heart failure was accompanied
by increased mRNA expression of cytokines like interleukin 1 β and 6 (IL-1 β, IL-6) and tumor
necrosis factor α (TNFα) in both 5-HT4-TG and WT. The mRNA of the LPS-binding protein (LBP)
and the Toll-like receptor 4 (TLR4) was increased in 5-HT4-TG, but not in WT. Whereas the mRNA
of NFκB was unchanged, the mRNA of IκBα was to a similar extent increased by LPS in WT and
5-HT4-TG. Three mice were studied in each group, and injection of NaCl served as control. WT =
wild-type mice, 5-HT4-TG = 5-HT4-transgenic mice. Data shown are means ± SEM. * p < 0.05 vs.
NaCl; # p < 0.05 vs. WT.

3.2. Atrial Response to Hypoxia in Vitro

Under the studied hypoxic conditions, I-III (see the schematic protocols in Figure 3A),
the left atria from the 5-HT4-TG mice went into contracture faster than the left atria from
the WT mice (Figure 3B). Following the hypoxic preconditioning protocol IV, the time to
contracture was no longer different between WT and 5-HT4-TG left atria (Figure 3B). To
determine the force of contraction of heart muscle under hypoxic conditions, 5-HT was
given right before the initiation of hypoxia and was found to exert a PIE in 5-HT4 TG mice,
but not in WT mice (Figure 4A). However, in 5-HT4 TG mice treated with 5-HT in the organ
bath, under hypoxic conditions, the force of heart muscle contraction gradually decreased
to similar levels of the WT mice (Figure 4A). Upon reoxygenation, the force of contraction
in these mice gradually increased to higher levels than in the WT mice, although they
did not reach the value before hypoxia (Figure 4A). A similar pattern was noted in the
beating rate of the right atrial preparations (Supplementary Materials Figure S2). There
was no difference between the WT mice and the 5-HT4-TG mice (Figure 4B) concerning the
effect of preconditioning (Figure 3A, protocol IV). Using a typical protocol for the single
preconditioning of mice, there was no difference between the WT mice and 5-HT4-TG mice
during the initial phase of reoxygenation or the second phase of reoxygenation (Figure 4B).
Repeating the same protocol as used in Figure 4A, but with the absence of external 5-HT in
the organ bath (protocol II), the 5-HT4-TG mice had lower levels of the force of contraction
after 1 min and 2 min of hypoxia and the force increased more slowly than in WT mice
upon reoxygenation (Figure 4C).
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Figure 3. Hypoxia in atrial preparations. (A) The scheme demonstrates the experimental protocols
of the experiments. Paced left atrial preparations from wild-type mice (WT), or 5-HT4-transgenic
mice (5-HT4-TG) were allowed to equilibrate in the organ bath in buffer saturated with carbogen
(=oxygenation, 5% CO2 and 95% O2). Then as indicated, four protocols were performed: (I.) 28 min
of oxygenation followed by addition of serotonin (5-HT, 1 µM) for 2 min; (II.) 30 min of oxygenation;
(III.) 28 min of oxygenation followed by addition of the 5-HT4-antagonist GR 113808 (GR, 1 µM) for
2 min; (IV.) 10 min of hypoxia (Hyp) followed by 20 min of oxygenation. Thereafter, all conditions
(I.–IV.) include the same procedure: 30 min of hypoxia (5% CO2 and 95% N2) and then again carbogen
(reoxygenation). (B) During hypoxia, left atrial preparations lose their ability to completely relax,
and an increase in diastolic tension (contractures) occurs. Under the setups serotonin (1 µM), single
hypoxia and GR 113808 (1 µM), 5-HT4-TG atria developed contractures earlier than WT atria. Roman
numbers indicate the experimental protocol, and numbers at the bottom of the columns indicate the
number of experiments. Data shown are means ± SEM. * p < 0.05 vs. WT.

3.3. Ventricular Response to Ischemia In Vitro

In isolated spontaneously beating Langendorff hearts, under normoxic or control
conditions, the basal developed force was comparable in the left ventricle, although the
beating rate was somewhat higher in the 5-HT4-TG mice than WT mice (Figure 5A,C). When
1 µM β-adrenoceptor agonist isoproterenol was given, it increased the basal developed
force to a comparable extent in both the WT mice and the 5-HT4-TG mice (Figure 5B). When
5-HT was given, it only increased the basal developed force in the 5-HT4-TG mice and not
in the WT mice, as expected, since WT cardiomyocytes do not express functional 5-HT4
receptors; the increase induced by 5-HT in the 5-HT4-TG mice was blocked by either the
specific 5-HT4 receptor antagonist GR 113808 or GR 125487 (Figure 5B). Moreover, 5-HT
increased the beating rate only in the 5-HT4-TG mice and not in the WT mice (Figure 5D).
The maximum effects of the agonists (5-HT and isoproterenol) were reached about five
minutes after starting the syringe pump, and therefore, the effects of all drugs mentioned
above were recorded five minutes after starting drug perfusion. Under conditions of global
ischemia, the force declined faster in the 5-HT4-TG mice than in WT mice (Figure 6A). It
should be noted that the basal developed force withstood ischemia very well because there
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was no difference between the force and the beating rate before hypoxia and after complete
reoxygenation (Figure 6B,C). Like hypoxic atria, the time to 50% decline of developed force
(F 1

2
) during ischemia was reduced in 5-HT4-TG compared to WT (Figure 6D).

Figure 4. Time course of hypoxia in left atrial preparations. (A–C) The force of contraction in% of
control (Ctr = initial force at the beginning of the experiment) during the time of oxygenation and
hypoxia is presented. After the addition of serotonin (5-HT, 1 µM, protocol I), the relative force was
greatly increased in 5-HT4-TG and reached initial values again after hypoxia and reoxygenation (A).
Preconditioning (protocol IV) as short hypoxia for 10 min was not beneficial (B). Under the condition
of single hypoxia (protocol II), force decline was faster in TG left atria than in WT (C). WT = wild-type
mice, 5-HT4-TG=5-HT4-transgenic mice. Data shown are means ± SEM. * p < 0.05 vs. WT.



Biomedicines 2021, 9, 569 9 of 20

Figure 5. Basal characteristics of isolated perfused heart preparations from WT and 5-HT4-TG mice.
(A) Basal force of contraction in mN. (B) Effects of agonists and antagonists on the force of contraction
after 5 min (maximum was reached). (C) Basal beating rate in beats per minute (bpm). (D) Effects of
agonists and antagonists on the beating rate after 5 min. Ctr, control, Iso, isoproterenol (1 µM), 5-HT,
serotonin (1 µM) and 5-HT (1 µM) in the presence of the 5-HT4-receptor antagonist’s GR 113808 (1
µM) or GR 125487 (1 µM). WT = wild-type mice, 5-HT4-TG = 5-HT4-transgenic mice. Data shown are
means ± SEM. * p < 0.05 vs. Ctr, # p < 0.05 vs. WT.

Figure 6. Ischemia and reperfusion in isolated perfused heart preparations. (A) Exemplary recordings
of the time course of force reduction (ischemia) and force recovery (reperfusion, Rep) in isolated
perfused heart preparations from WT and 5-HT4-TG. The perfusion rate was always 2 mL/min. No
flow ischemia indicates global ischemia of the heart by stopping the perfusion pump. Horizontal bar:
20 min of ischemia. A period of 20 min ischemia did not cause permanent damage because, after
reperfusion, force (B) and heart rate (C) of both 5-HT4-TG and WT reached preischemic values again.
Time to 50% decline of developed force (F 1

2
) during ischemia was reduced in 5-HT4-TG compared to

WT (D). WT = wild-type mice, 5-HT4-TG=5-HT4-transgenic mice. Data shown are means ± SEM.
# p < 0.05 vs. WT.

After the perfused hearts were freeze-clamped as depicted in the appropriate pro-
tocols (Figure 7A), Western blot analysis was performed on thawed and homogenized
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samples (representative Western blots are shown in Figure 7B). The following alterations in
protein expression were observed: ischemia followed by an application of 5-HT increased
phospholamban phosphorylation in 5-HT4-TG mice at serine 16 and threonine 17, although
the effect was less than under normoxic conditions (Figure 7C,D). It was noteworthy that
ischemia depressed 5-HT-induced phosphorylation at serine 16 but not 5-HT-induced
phosphorylation at threonine 17 (Figure 7C,D). Ischemia itself or applying 5-HT led to an
increased phosphorylation state of p-38 in 5-HT4-TG mice and WT mice (Figure 7E). It
should be noted that even under normoxic conditions and after ischemia, 5-HT elevated
the phosphorylation state of p-ERK1/2 (Figure 7F). It should be noted that the experi-
ments with the 5-HT application were performed only with transgenic hearts because from
previous studies [20], it is known that WT hearts did not respond to 5-HT, including the
phosphorylation of PLB. Under basal perfusion conditions (see the scheme Figure 7A), the
mRNA of ANP and BNP was more highly expressed in the 5-HT4-TG mice than in the
WT mice, although the mRNA decreased to similar levels upon ischemia (Supplementary
Materials Figure S3). A similar pattern was seen with the mRNA coding for IL-6, IL-1β
and IκB (Supplementary Materials Figure S3).

Figure 7. Protein phosphorylation after ischemia/reperfusion in isolated perfused hearts of WT and
5-HT4-TG mice. (A) The scheme demonstrates the protocols (Langendorff perfusion: 2 mL/min flow):
(1) 15 min equilibration, 20 min ischemia by stopping the perfusion followed by 15 min reperfusion
or 50 min continuous perfusion with saline buffer as time control; (2) 15 min equilibration, 20 min
ischemia and 15 min reperfusion in the presence of 1 µM serotonin (5-HT) or 35 min perfusion
followed by 15 min perfusion with 5-HT (1 µM) as time control without ischemia. (B) Representative
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Western blots. The loading scheme is shown in the table above the blots. TG = 5-HT4-TG. (C)
Phosphorylation of phospholamban at serine-16 (PS16-PLB) and (D) threonine-17 (PT17-PLB) nor-
malized to cardiac calsequestrin (CSQ). (E) Phosphorylation of the mitogen-activated protein kinases
(MAPK) p38 and (F) ERK1/2 normalized to the non-phosphorylated MAPKs. Ordinates: Ratio of
phosphoproteins to calsequestrin or non-phosphorylated MAPKs in arbitrary imager units. Data
shown are means ± SEM. * p < 0.05 vs. Ctr; § p < 0.05 vs. ischemia; + p < 0.05 vs. Ctr + 5-HT. WT =
wild-type mice, 5-HT4-TG = 5-HT4-transgenic mice; n.d., not determined (As WT preparations did
not respond to 5-HT, perfusion with 5-HT was exclusively done with 5-HT4-TG hearts).

3.4. Influence of 5-HT4 Receptors on a Genetically Induced Hypertrophy

To study hypertrophy, 5-HT4-TG mice were crossbred with PP2A-TG mice (mice
with cardiac overexpression of the catalytic subunit of PP2A) first described in Gergs et al.
2004 [32] to produce PP2A-TG × 5-HT4-TG mice (DT mice). The PP2A-TG mice, 5-HT4-TG
mice and DT mice exhibited increases in the relative heart weight (Figure 8). The body
weights were similar in all groups (Supplementary Materials Table S2). The overexpression
of the catalytic subunit of PP2A in the PP2A-TG mice became apparent by Western blots of
PP2A-TG and DT hearts (Figure 9A) and is summarized in Figure 9B. In addition, express-
ing calsequestrin, the sarcoplasmic reticulum Ca2+ ATPase (SERCA) and phospholamban
(PLB) were measured and found to be unaltered between genotypes (Figure 9). Unfortu-
nately, these kinds of samples were not suitable to measure the phosphorylation of PLB,
namely because the isolation procedure of the hearts could not be controlled as well as for
isolated perfused hearts.

Figure 8. Heart weight. Relative heart weights of 5-HT4-TG, PP2A-TG and double transgenic (DT)
mice at 12 months of age compared to wild-type (WT) mice. Ordinate: heart weight in milligrams
(mg) divided by body weight in grams (g). TG, transgenic mice. Numbers in brackets indicate the
numbers of mice studied. Data shown are means ± SEM. # p < 0.05 vs. WT.

Figure 9. Protein expression in double transgenic mice. Protein expression of SERCA, PP2A, PLB
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and CSQ in hearts of wild-type (WT), 5-HT4-TG, PP2A-TG and double transgenic (DT) mice. (A)
Representative Western blots. (B) Quantification of ventricular proteins. Data were normalized to
CSQ (loading control) and to mean WT expression. TG, transgenic mice. Data shown are means ±
SEM. # p < 0.05 vs. WT; F p < 0.05 vs. 5-HT4-TG.

Cardiac function was measured in vivo using echocardiography. Under unstimulated
conditions, the EF was smaller in the PP2A-TG mice and DT mice than in the 5-HT4-TG
mice and WT mice (Figure 10A, Ctr). An IP injection of 5-HT only increased the EF in
the 5-HT4-TG mice versus the WT mice and in the DT mice versus the PP2A-TG mice
(Figure 10A). A similar pattern was noted concerning the beating rate (Figure 10B). For
comparison, we studied the contractile response to an IP injection of the β-adrenoceptor
agonist isoproterenol. We found that the isoproterenol increased the EF in all genotypes
(Figure 10B), although the effect was less in the PP2A-TG mice and DT mice. It should
be noted that the basal EF was already diminished in the PP2A-TG mice and DT mice
(Figure 10B, Ctr). A similar pattern to that shown in Figure 10A for EF was seen for
the beating rate in the same mice (Figure 10B). As labeled in the original recording in
Figure 11A, the ratio of E-waves and A-waves is plotted and shown in Figure 11B. It
can be seen that the PP2A-TG and DT mice exhibited an elevated ratio compared with
the other genotypes (Figure 11B), but the ratio of E’-waves and A’-waves determined by
tissue Doppler of the left ventricular posterior wall was elevated only in PP2A-TG mice
compared with all other genotypes (Figure 11C). The echocardiographic parameters that
were measured are summarized in the Supplementary Materials Table S3.

Figure 10. Echocardiography of double transgenic mice. Echocardiography of wild-type (WT),
5-HT4-transgenic (5-HT4-TG), PP2A-transgenic (PP2A-TG) and double transgenic (DT) mice. (A)
Basal ejection fraction (Ctr) was reduced in PP2A-TG and DT mice, and 5-HT increased EF only
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in 5-HT4-TG and DT mice. β-adrenergic stimulation by isoproterenol (Iso) increased EF less in
PP2A-TG and DT compared to the other groups. (B) Basal heart rate (Ctr) was not different between
genotypes, and positive chronotropic effects of 5-HT were only noted in 5-HT4-TG and DT mice.
However, β-adrenergic stimulation (Iso) increased heart rate in all groups. Numbers in bars indicate
the numbers of mice studied. Data shown are means ± SEM. * p < 0.05 vs. Ctr; # p < 0.05 vs. WT.

Figure 11. Doppler echocardiography of double transgenic mice. Pulsed wave (PW) Doppler
echocardiography of wild-type (WT), 5-HT4-transgenic (5-HT4-TG), PP2A-transgenic (PP2A-TG)
and double transgenic (DT) mice. (A) A typical pattern of E wave and A wave in mitral flow. The
E wave represents the early filling of the ventricle. The A wave represents the atrial contraction.
(B) E divided by A was increased in PP2A-TG and in DT. (C) By tissue Doppler imaging of the left
ventricular posterior wall, the early (E’) and late (A’) diastolic and systolic maximum tissue velocity
was assessed. The E’ wave corresponds to the motion of the posterior wall during early diastolic
filling of the left ventricle, and the A’ wave originates from atrial contraction during the late filling of
the left ventricle. An increased E’/A’ quotient was noted in PP2A-TG but not in DT mice. Numbers
in bars indicate the numbers of mice studied. Data shown are means ± SEM. # p < 0.05 vs. WT;
F p, <, 005 vs. 5-HT4-TG.

4. Discussion

In the present work, we studied the effect of various stressors like LPS simulating
sepsis or oxygen depletion via cardiac hypoxia and ischemia on cardiac function in vitro
and in vivo in 5-HT4-TG mice. By crossbreeding with PP2A-TG mice, we studied the
influence of 5-HT4 receptors on a genetically induced hypertrophy. The 5-HT4-TG mice
had a cardiomyocyte-specific overexpression of the human 5-HT4 receptor [20]. The
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effects on the 5-HT4-TG mice were compared with the effects on WT mice without any
functional 5-HT4 receptors under appropriate control conditions. For all experiments,
we randomized for gender, although it is known that there are gender differences in
cardiac pathology [42,43]. However, this subject was beyond the scope of the present study.
Moreover, we have not yet seen any gender differences in cardiac function in our transgenic
mouse models [20–22,32].

4.1. Lipopolysaccharide-Simulated Sepsis

Studies have shown that plasma 5-HT levels increase after sepsis in human patients.
The levels also increase in animal models after experimental induction of sepsis using
endotoxins, such as LPS [44]. We do not know whether increased 5-HT levels in plasma
would be accompanied by increased mortality, as this was not within the scope of our
studies.

Sepsis is mediated in part by the NFκB-mediated activation of genes relevant to
inflammatory pathways leading to the release of proinflammatory cytokines [45]. These
cytokines were also increased by LPS in our study. A link to serotonin signaling was
shown when cecal perforation was used to induce sepsis in rats, and researchers found
that the concentration of serotonin in left ventricular cardiomyocytes increased [46]. In
septic rats, the expression level of IL-6 also increased [47]. Interestingly, mice with a
tryptophan hydroxylase one knockout (TPH1-KO)—TPH1 is the rate-limiting enzyme
for the endogenous production of 5-HT in the periphery—that have low levels of 5-HT
in the heart, exhibited lower mortality than WT mice with sepsis. These results could
possibly mean that 5-HT aggravates sepsis [48]. Using this model, researchers noted
increased expression of IL-6 and TNFα in the heart of septic mice, which agreed with our
findings [48].

Another study performed reversible mechanical occlusion and reperfusion of the LAD
in living mice and found increased serum levels of 5-HT in WT mice, but not in TPH1-
KO mice; they also found less cardiac damage in the TPH1-KO mice, which indicated
that released 5-HT had a detrimental effect in these mice [49]. It is not obvious how our
data correlate with the study, as it can be assumed that TPH1-KO mice did not express
functional 5-HT4 receptors in the heart. Regarding cardiac 5-HT effects, TPH1-KO mice
should behave like the WT mice in our study, and we only detected 5-HT4 receptors
in the sarcolemma of 5-HT4-TG mice [20]. Nevertheless, the influence of cardiac 5-HT4
receptors during sepsis may only be marginal, at least limited to the scenario we tested
(Figure 12). On the other hand, we detected reduced 5-HT4 mRNA in transgenic hearts
after LPS treatment, and if this suppression was transmitted to the protein and, therefore,
functional level, it would not be a surprise that 5-HT4-TG mice behave like WT mice after
LPS. Unfortunately, when the study was initiated, we were not aware of the possibility
that LPS may regulate the transgene and afterward, the protein expression of the 5-HT4
receptor cannot be examined because of the missing detection techniques (lack of suitable
antibodies for Western blotting). This limitation should be kept in mind for further studies
that should include longer LPS treatment and 5-HT stimulation of LPS-treated mice.
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Figure 12. Scheme. 5-HT signaling via 5-HT4-receptors and LPS signaling in TG cardiac myocytes.
Stimulation of cardiac 5-HT4-receptors in the sarcolemma of transgenic mice leads to stimulation of
adenylate cyclase (AC) via stimulatory G-proteins (Gs). AC increases cAMP levels in the cytosol,
where it can either directly activate HCN channels and thereby increase the beating rate in sinoatrial
cells or can activate the cAMP-dependent protein kinase (PKA). PKA can increase Ca2+-cycling by
phosphorylation of phospholamban (PLB) on serine 16 or of the L-type Ca2+ channel (LTCC) or of the
ryanodine receptor (RyR). Ca2+ is released via the ryanodine receptor, increasing Ca2+ levels near the
myofibrils, which increases the force of contraction at the beginning of systole. Relaxation is initiated
by sarcoplasmic Ca2+ ATPase (SERCA), which pumps Ca2+ into the sarcoplasmic reticulum at the
beginning of diastole. Phosphorylation of these proteins is reduced in part by the catalytic subunit
of protein phosphatase 2A (PP2A) and, conversely, the action of PP2A is reduced at least in part by
activation of the 5-HT4 receptor. Lipopolysaccharide (LPS) can bind to a complex of TLR4 and CD14.
This leads via intracellular signaling pathways to increased gene transcription in the nucleus. Here,
an interaction between 5-HT4 receptor signaling and LPS signaling appears questionable.

4.2. Ischemia and Hypoxia

5-HT can be released from ischemic hearts of many species, including rats [50], rab-
bits [51] and humans with angina pectoris [49,52–54]. Our studies produced different
results depending on the region of the heart used and the method applied to lower the
partial oxygen pressure in the heart. For example, atrial preparations seemed to benefit
from 5-HT4 receptor overexpression under basal conditions, while 5-HT4 receptor over-
expression had a detrimental effect on whole perfused hearts. Possibly, these data reflect
either a small constitutive activity of the overexpressed 5-HT4 receptor or an endogenous
serotonin production and release [8], leading to a higher energy and oxygen consumption
in transgenic cells compared to WT. It is unclear whether acute ischemia for 20 min would
be adequate stress to alter mRNA levels of regulatory genes. However, there is precedence
for this in the literature. One study showed that after 10 min occlusion of the LAD artery
in anesthetized dogs, the mRNA levels of HSP70 and c-jun increased [55]. Here, it may be
regarded as surprising that serine 16 phosphorylation is selectively attenuated after 5-HT
infusion following ischemia in the isolated perfused hearts of 5-HT4-TG mice. However,
this result was also found in a previous study that reported that after a 10 min LAD artery
occlusion in anesthetized dogs, the cAMP content and, subsequently, the phosphorylation
state of phospholamban at serine 16 was decreased [56]. Thus, these rapid biochemical
regulations are consistent in animal studies in larger experimental animals like pigs. In
addition, studies have found increased ANP levels in mice with acute regional cardiac
ischemia [57]. The overexpression of receptors that stimulate cAMP generation, such as H2
receptors [58] or A2A-adenosine receptors [35], can protect isolated left atria against acute
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hypoxia in the same experimental setup. Other studies have reported that cardiac ischemia
in mice hearts causes increased IL-6 [59,60]. Diastolic contracture in hypoxia is well known
in human atria [61] and mouse hearts [62].

In human end-stage heart failure, the PIE of 5-HT was reduced in human atrial
preparations [63]; in addition, the stimulatory effects of 5-HT on adenylyl cyclase [63] and
on the current through L-type Ca2+ channels were decreased [64]. Moreover, in end-stage
heart failure, the density of 5-HT4 receptors in the human ventricle was elevated, which
may be a compensatory mechanism to reduce β-adrenoceptors in heart failure [11,65]. In
a rat model of cardiac hypertrophy, heart failure and cardiac death, the density of 5-HT4
receptors was elevated, and the PIE of 5-HT4 on the ventricle was unmasked; healthy
rats only showed a PIE via 5-HT2 receptors [66,67]. In addition, the cardiac cAMP was
elevated, and the time parameters of contraction were shortened in the rats [67]. Based on
these findings, researchers speculated that 5-HT4 receptors might be detrimental in human
heart failure because they increase cAMP levels, which can worsen cardiac function in the
long run by leading to cardiac hypertrophy. Therefore, they studied a blockade of 5-HT4
receptors and noted that the EF in patients with systolic heart failure improved [68].

4.3. PP2A-Induced Cardiac Hypertrophy

This study confirmed previously reported results [32]. The cardiomyocyte-specific
overexpression of the catalytic subunit of PP2A (PP2Ac) in PP2A-TG mice led to cardiac
hypertrophy, signs of systolic and diastolic heart failure and increased left ventricular wall
dimensions. We also confirmed that the overexpression of the 5-HT4 receptor in the hearts
of TG mice alone did not lead to cardiac hypertrophy and/or impaired cardiac function to
β-adrenoceptor stimulation [20]. In the present study, the abnormality in diastolic heart
function found in the monotransgenic PP2A-TG mice was somewhat reduced in the DT
mice. If these functional changes are associated with any morphological changes of DT
hearts has not been examined but seems unlikely. Nevertheless, it must be stated that
it is a limitation of the study. Although the differences between PP2A-TG and DT mice
were either small or non-significant, we carefully regard this as an example of a putative
protective role that the 5-HT4 receptors have in the heart. This might mean that the 5-HT4
receptor, which increases protein phosphorylation under basal conditions [20], can reverse
the dephosphorylation of cardiac regulatory proteins (Figure 12). Typically, this is done by
PP2Ac alone [32]. Regrettably, we could not test this hypothesis with the set of samples
generated by our study protocol because to measure differentially phosphorylated proteins,
isolated perfused heart preparations must be prepared and freeze clamped following an
exact protocol. This is a drawback of our study. However, one could speculate that this
beneficial effect would be seen in patients with elevated serotonin levels as an autocrine
way to sustain cardiac contractility. Elevated 5-HT levels have been reported in patients
with heart failure [52]. We speculate that 5-HT might, in part, antagonize reduced protein
phosphorylation in the hearts of patients with heart failure [69]. Heart failure can be
partially explained by increased phosphatase activity [70]. On the other hand, increased
phosphorylation by PKA also can be detrimental. For example, this was summarized in a
review about the ryanodine receptor found to be PKA hyperphosphorylated, resulting in a
defective calcium release in failing human hearts [71]. This once again underlines the need
for the right balance between phosphorylation and dephosphorylation.

However, while this work focused on the imbalance of cardiac phosphorylation by
overexpression of PP2A as a hypertrophy model, it should be kept in mind that cardiac
hypertrophy and/or dysfunction can be experimentally achieved by various methods,
including, for example, ablation of 5-HT2B receptors [72,73]. In these studies, the inter-
dependence of serotonin and β-adrenergic signaling, as well as the role of the vegetative
nervous system and the cardiac fibroblasts for cardiac hypertrophy and dysfunction, was
demonstrated [72,73]. This means that further studies utilizing, for example, other hyper-
trophy models combined with 5-HT4-TG mice are necessary to deepen the knowledge
about the relationship (where this exists) between 5-HT4 receptors and cardiac disorders.
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4.4. Conclusions, Potential Relevance in Clinical Pharmacology and Limitations

In summary, our studies suggested that 5-HT4 receptor expression in the mouse heart
exhibited only marginal effects under pathophysiological conditions like sepsis (Figure 12).
However, under special circumstances like atrial hypoxia and ventricular ischemia, cardiac
5-HT4 receptor expression may be at least in part detrimental. This needs to be studied
further to determine if patients may benefit from treatment with 5-HT4 receptor antagonists.

There are several limitations of the study. For example, potential sex differences were
not addressed, and examining the morphology of the hearts from the hypertrophy model
was excluded in this study. Partially, the study is preliminary and may be regarded as
the beginning of more work concerning the molecular mechanisms involved. More data
must be generated concerning 5-HT-mediated signaling and the expression of certain genes
under pathological conditions. Moreover, the effects of 5-HT4 receptor antagonists must be
analyzed in this context. Nevertheless, 5-HT4-TG mice represent a suitable model to get
deeper insights into the role of 5-HT4 receptors for cardiovascular diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines9050569/s1, Figure S1: Doppler echocardiography of 5-HT4-TG mice before
and after LPS treatment, Figure S2: hypoxia in spontaneously beating right atria, Figure S3: mRNA
expression after ischemia/reperfusion in isolated perfused hearts, Figures S4–S9: unedited Western
blots, Tables S1–S3: Echocardiographic data and heart weights.

Author Contributions: Conceptualization: U.G., J.N.; formal analysis: U.G., T.G., J.W., C.T.S., C.R.,
M.M.; Experiments: T.G., J.W., C.T.S., C.R., M.M., H.E., H.W.; methodology: T.G., J.W., C.T.S., C.R.,
M.M., H.E., H.W.; project administration: U.G., J.N.; writing—original draft: J.N.; review and editing:
U.G., T.G., J.W., C.T.S., C.R., M.M., H.E., H.W., J.N. All authors have read and agreed to the published
version of the manuscript.

Funding: We acknowledge the financial support within the funding program Open Access Publishing
by the German Research Foundation (DFG).

Institutional Review Board Statement: The study was conducted according to the Guide for the
Care and Use of Laboratory Animals published by the National Research Council (2011) [31]. Animals
were maintained and handled according to the approved protocols of the Animal Welfare Committee
of the University of Halle-Wittenberg, Germany. The experimental protocols were approved by the
local committee on the ethics of animal experiments of the state Sachsen-Anhalt (Permit Number:
42502-02-691 MLU (11 May 2005) and 42502-2-1537 MLU (28 June 2019)).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The technical assistance of S. Reber and P. Willmy is gratefully acknowledged.
This paper contains parts of the doctoral theses of FB, TG, CR, CTS and JW.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rapport, M.M.; Green, A.A.; Page, I.H. Serum vasoconstrictor, serotonin; chemical inactivation. J. Biol. Chem. 1948, 176, 1237–1241.

[CrossRef]
2. Baganz, N.L.; Blakely, R.D. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem.

Neurosci. 2013, 4, 48–63. [CrossRef] [PubMed]
3. Erspamer, V.; Ottolenghi, A. Antidiuretic action of enteramine. Experientia 1950, 6, 428. [CrossRef]
4. Shajib, M.S.; Khan, W.I. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol.

2015, 213, 561–574. [CrossRef] [PubMed]
5. Muma, N.A.; Mi, Z. Serotonylation and Transamidation of Other Monoamines. ACS Chem. Neurosci. 2015, 6, 961–969. [CrossRef]
6. Takano, S. Role of 5-hydroxytryptamine in platelet thrombus formation and mechanisms of inhibition of thrombus formation by

5-hydroxytryptamine2A antagonists in rabbits. Arch. Int. Pharmacodyn. Ther. 1995, 330, 297–308.
7. Neumann, J.; Hofmann, B.; Gergs, U. Production and Function of Serotonin in Cardiac Cells. In Serotonin—A Chemical Messenger

between All Types of Living Cells; Shad, K.F., Ed.; InTech: London, UK, 2017.

https://www.mdpi.com/article/10.3390/biomedicines9050569/s1
https://www.mdpi.com/article/10.3390/biomedicines9050569/s1
http://doi.org/10.1016/S0021-9258(18)57136-2
http://doi.org/10.1021/cn300186b
http://www.ncbi.nlm.nih.gov/pubmed/23336044
http://doi.org/10.1007/BF02150126
http://doi.org/10.1111/apha.12430
http://www.ncbi.nlm.nih.gov/pubmed/25439045
http://doi.org/10.1021/cn500329r


Biomedicines 2021, 9, 569 18 of 20

8. Pönicke, K.; Gergs, U.; Buchwalow, I.B.; Hauptmann, S.; Neumann, J. On the presence of serotonin in mammalian cardiomyocytes.
Mol. Cell. Biochem. 2012, 365, 301–312. [CrossRef] [PubMed]

9. Watts, S.W. Oh, The places you’ll go! My many colored serotonin (apologies to Dr. Seuss). Am. J. Physiol. Heart Circ. Physiol. 2016,
311, H1225–H1233. [CrossRef]

10. Watts, S.W.; Morrison, S.F.; Davis, R.P.; Barman, S.M. Serotonin and blood pressure regulation. Pharmacol. Rev. 2012, 64, 359–388.
[CrossRef]

11. Brattelid, T.; Qvigstad, E.; Lynham, J.A.; Molenaar, P.; Aass, H.; Geiran, O.; Skomedal, T.; Osnes, J.-B.; Levy, F.O.; Kaumann, A.J.
Functional serotonin 5-HT4 receptors in porcine and human ventricular myocardium with increased 5-HT4 mRNA in heart
failure. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2004, 370, 157–166. [CrossRef] [PubMed]

12. Sanders, L.; Kaumann, A.J. A 5-HT4-like receptor in human left atrium. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1992, 345,
382–386. [CrossRef]

13. Sanders, L.; Lynham, J.A.; Bond, B.; del Monte, F.; Harding, S.E.; Kaumann, A.J. Sensitization of human atrial 5-HT4 receptors by
chronic beta-blocker treatment. Circulation 1995, 92, 2526–2539. [CrossRef]

14. Pino, R.; Cerbai, E.; Calamai, G.; Alajmo, F.; Borgioli, A.; Braconi, L.; Cassai, M.; Montesi, G.F.; Mugelli, A. Effect of 5-HT4 receptor
stimulation on the pacemaker current If in human isolated atrial myocytes. Cardiovasc. Res. 1998, 40, 516–522. [CrossRef]

15. Workman, A.J.; Rankin, A.C. Serotonin, I(f) and human atrial arrhythmia. Cardiovasc. Res. 1998, 40, 436–437. [PubMed]
16. Kaumann, A.J. Piglet sinoatrial 5-HT receptors resemble human atrial 5-HT4-like receptors. Naunyn-Schmiedeberg’s Arch. Pharmacol.

1990, 342, 619–622. [CrossRef]
17. Hoyer, D.; Clarke, D.E.; Fozard, J.R.; Hartig, P.R.; Martin, G.R.; Mylecharane, E.J.; Saxena, P.R.; Humphrey, P.P. International Union

of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol. Rev. 1994, 46, 157–203. [PubMed]
18. Kaumann, A.J. Do human atrial 5-HT4 receptors mediate arrhythmias? Trends Pharmacol. Sci. 1994, 15, 451–455. [CrossRef]
19. Gergs, U.; Neumann, J.; Simm, A.; Silber, R.-E.; Remmers, F.O.; Läer, S. Phosphorylation of phospholamban and troponin I

through 5-HT4 receptors in the isolated human atrium. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2009, 379, 349–359. [CrossRef]
20. Gergs, U.; Baumann, M.; Böckler, A.; Buchwalow, I.B.; Ebelt, H.; Fabritz, L.; Hauptmann, S.; Keller, N.; Kirchhof, P.; Klöckner, U.;

et al. Cardiac overexpression of the human 5-HT4 receptor in mice. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H788–H798.
[CrossRef] [PubMed]

21. Gergs, U.; Böckler, A.; Ebelt, H.; Hauptmann, S.; Keller, N.; Otto, V.; Pönicke, K.; Schmitz, W.; Neumann, J. Human 5-HT4receptor
stimulation in atria of transgenic mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2013, 386, 357–367. [CrossRef] [PubMed]

22. Gergs, U.; Fritsche, J.; Fabian, S.; Christ, J.; Neumann, J. Desensitization of the human 5-HT4 receptor in isolated atria of transgenic
mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2017, 390, 987–996. [CrossRef]

23. Keller, N.; Dhein, S.; Neumann, J.; Gergs, U. Cardiovascular effects of cisapride and prucalopride on human 5-HT4 receptors in
transgenic mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2018, 391, 975–985. [CrossRef] [PubMed]

24. Gergs, U.; Gerigk, T.; Wache, H.; Neumann, J. β-Adrenergic Function is Attenuated in Double Transgenic Mice Overexpressing
5-HT4 Receptors and PP2A in the Heart. FASEB J. 2017, 31, 1069-6.

25. Gerigk, T.; Gergs, U.; Neumann, J. In 5-HT4-receptor overexpressing mice, diastolic function is partially preserved in a model of
sepsis. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2016, 389, S27–S28.

26. Neumann, J.; Gerigk, T.; Gergs, U.; Wache, H. Potentially beneficial effects of coexpression of 5HT4 receptors and PP2A in the
mammalian heart. Eur. Phosphatases Cell Fates Decis. 2017, 144, P60.

27. Neumann, J.; Gerigk, T.; Mahnkopf, M.; Edler, H.; Gergs, U. Physiological and biochemical alterations of experimental systolic
heart failure in mice overexpressing a serotonin receptor in the heart. Acta Physiol. 2017, 221, 114.

28. Röttger, C.; Gergs, U.; Schmidbaur, C.T.; Neumann, J. Altered signaling and gene expression after ischemia/reperfusion in 5-HT4
receptor overexpressing mouse hearts. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2019, 392, S42.

29. Schmidbaur, C.T.; Mißlinger, N.; Gergs, U.; Neumann, J. Ischemia and reperfusion in the mouse heart overexpressing the 5-HT4
receptor. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2019, 392, S41.

30. Wittschier, J.; Gergs, U.; Neumann, J. Influence of 5-HT4-receptors on the impact of hypoxia in the mouse heart. Naunyn-
Schmiedeberg’s Arch. Pharmacol. 2019, 392, S42.

31. National Research Council; Division on Earth and Life Studies; Institute for Laboratory Animal Research; Committee for the
Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals, 8th ed.; National
Academies Press: Washington, DC, USA, 2011.

32. Gergs, U.; Boknik, P.; Buchwalow, I.; Fabritz, L.; Matus, M.; Justus, I.; Hanske, G.; Schmitz, W.; Neumann, J. Overexpression of the
catalytic subunit of protein phosphatase 2A impairs cardiac function. J. Biol. Chem. 2004, 279, 40827–40834. [CrossRef]

33. Gergs, U.; Bernhardt, G.; Buchwalow, I.B.; Edler, H.; Fröba, J.; Keller, M.; Kirchhefer, U.; Köhler, F.; Mißlinger, N.; Wache, H.; et al.
Initial Characterization of Transgenic Mice Overexpressing Human Histamine H2 Receptors. J. Pharmacol. Exp. Ther. 2019, 369,
129–141. [CrossRef]

34. Neumann, J.; Boknik, P.; DePaoli-Roach, A.A.; Field, L.J.; Rockman, H.A.; Kobayashi, Y.M.; Kelley, J.S.; Jones, L.R. Targeted
overexpression of phospholamban to mouse atrium depresses Ca2+ transport and contractility. J. Mol. Cell. Cardiol. 1998, 30,
1991–2002. [CrossRef] [PubMed]

http://doi.org/10.1007/s11010-012-1270-6
http://www.ncbi.nlm.nih.gov/pubmed/22367115
http://doi.org/10.1152/ajpheart.00538.2016
http://doi.org/10.1124/pr.111.004697
http://doi.org/10.1007/s00210-004-0963-0
http://www.ncbi.nlm.nih.gov/pubmed/15365689
http://doi.org/10.1007/BF00176614
http://doi.org/10.1161/01.CIR.92.9.2526
http://doi.org/10.1016/S0008-6363(98)00198-9
http://www.ncbi.nlm.nih.gov/pubmed/10070482
http://doi.org/10.1007/BF00169055
http://www.ncbi.nlm.nih.gov/pubmed/7938165
http://doi.org/10.1016/0165-6147(94)90058-2
http://doi.org/10.1007/s00210-008-0371-y
http://doi.org/10.1152/ajpheart.00691.2009
http://www.ncbi.nlm.nih.gov/pubmed/20639221
http://doi.org/10.1007/s00210-013-0831-x
http://www.ncbi.nlm.nih.gov/pubmed/23307014
http://doi.org/10.1007/s00210-017-1403-2
http://doi.org/10.1007/s00210-018-1519-z
http://www.ncbi.nlm.nih.gov/pubmed/29947908
http://doi.org/10.1074/jbc.M405770200
http://doi.org/10.1124/jpet.118.255711
http://doi.org/10.1006/jmcc.1998.0760
http://www.ncbi.nlm.nih.gov/pubmed/9799653


Biomedicines 2021, 9, 569 19 of 20

35. Boknik, P.; Drzewiecki, K.; Eskandar, J.; Gergs, U.; Hofmann, B.; Treede, H.; Grote-Wessels, S.; Fabritz, L.; Kirchhof, P.; Fortmüller,
L.; et al. Evidence for Arrhythmogenic Effects of A2A-Adenosine Receptors. Front. Pharmacol. 2019, 10, 1051. [CrossRef]
[PubMed]

36. Kirchhefer, U.; Hammer, E.; Heinick, A.; Herpertz, T.; Isensee, G.; Müller, F.U.; Neumann, J.; Schulte, K.; Seidl, M.D.; Boknik, P.;
et al. Chronic β-adrenergic stimulation reverses depressed Ca handling in mice overexpressing inhibitor-2 of protein phosphatase
1. J. Mol. Cell. Cardiol. 2018, 125, 195–204. [CrossRef]

37. Gergs, U.; Jahn, T.; Werner, F.; Köhler, C.; Köpp, F.; Großmann, C.; Neumann, J. Overexpression of protein phosphatase 5 in the
mouse heart: Reduced contractility but increased stress tolerance—Two sides of the same coin? PLoS ONE 2019, 14, e0221289.
[CrossRef]

38. Gergs, U.; Rothkirch, D.; Hofmann, B.; Treede, H.; Robaye, B.; Simm, A.; Müller, C.E.; Neumann, J. Mechanism underlying the
contractile activity of UTP in the mammalian heart. Eur. J. Pharmacol. 2018, 830, 47–58. [CrossRef] [PubMed]

39. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta
C(T)) Method. Methods 2001, 25, 402–408. [CrossRef] [PubMed]

40. Gergs, U.; Fahrion, C.M.; Bock, P.; Fischer, M.; Wache, H.; Hauptmann, S.; Schmitz, W.; Neumann, J. Evidence for a functional role
of calsequestrin 2 in mouse atrium. Acta Physiol. 2017, 219, 669–682. [CrossRef] [PubMed]

41. Kirchhefer, U.; Baba, H.A.; Kobayashi, Y.M.; Jones, L.R.; Schmitz, W.; Neumann, J. Altered function in atrium of transgenic mice
overexpressing triadin 1. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H1334–H1343. [CrossRef]

42. Asatryan, B.; Yee, L.; Ben-Haim, Y.; Dobner, S.; Servatius, H.; Roten, L.; Tanner, H.; Crotti, L.; Skinner, J.R.; Remme, C.A.; et al.
Sex-Related Differences in Cardiac Channelopathies: Implications for Clinical Practice. Circulation 2021, 143, 739–752. [CrossRef]
[PubMed]

43. Connelly, P.J.; Azizi, Z.; Alipour, P.; Delles, C.; Pilote, L.; Raparelli, V. The importance of Gender to Understand Sex Differences in
Cardiovascular Disease. Can. J. Cardiol. 2021, 37, 699–710. [CrossRef]

44. Morris, K.M.; Moon, R.J. Quantitative analysis of serotonin biosynthesis in endotoxemia. Infect. Immun. 1974, 10, 340–346.
[CrossRef]

45. Alvarez, S.; Vico, T.; Vanasco, V. Cardiac dysfunction, mitochondrial architecture, energy production, and inflammatory pathways:
Interrelated aspects in endotoxemia and sepsis. Int. J. Biochem. Cell Biol. 2016, 81, 307–314. [CrossRef] [PubMed]

46. Liu, Z.-J.; Liu, H.; Wu, C.; Xue, K. Effect of sepsis on the action potential and cardiac serotonin response in rats. Exp. Ther. Med.
2019, 18, 2207–2212. [CrossRef]

47. Liu, Z.; Zeng, Z.; Wu, C.; Liu, H. Tropisetron inhibits sepsis by repressing hyper-inflammation and regulating the cardiac action
potential in rat models. Biomed. Pharmacother. Biomed. Pharmacother. 2019, 110, 380–388. [CrossRef]

48. Zhang, J.; Bi, J.; Liu, S.; Pang, Q.; Zhang, R.; Wang, S.; Liu, C. 5-HT Drives Mortality in Sepsis Induced by Cecal Ligation and
Puncture in Mice. Mediat. Inflamm. 2017, 2017, 6374283. [CrossRef] [PubMed]

49. Mauler, M.; Herr, N.; Schoenichen, C.; Witsch, T.; Marchini, T.; Härdtner, C.; Koentges, C.; Kienle, K.; Ollivier, V.; Schell, M.; et al.
Platelet Serotonin Aggravates Myocardial Ischemia/Reperfusion Injury via Neutrophil Degranulation. Circulation 2019, 139,
918–931. [CrossRef] [PubMed]

50. Du, C.-K.; Zhan, D.-Y.; Akiyama, T.; Inagaki, T.; Shishido, T.; Shirai, M.; Pearson, J.T. Myocardial interstitial levels of serotonin
and its major metabolite 5-hydroxyindole acetic acid during ischemia-reperfusion. Am. J. Physiol. Heart Circ. Physiol. 2017, 312,
H60–H67. [CrossRef] [PubMed]

51. Shimizu, Y.; Minatoguchi, S.; Hashimoto, K.; Uno, Y.; Arai, M.; Wang, N.; Chen, X.; Lu, C.; Takemura, G.; Shimomura, M.; et al.
The role of serotonin in ischemic cellular damage and the infarct size-reducing effect of sarpogrelate, a 5-hydroxytryptamine-2
receptor blocker, in rabbit hearts. J. Am. Coll. Cardiol. 2002, 40, 1347–1355. [CrossRef]

52. Chandra, M.; Gupta, V.; Johri, A.K.; Misra, R.; Kumar, A.; Gujrati, V.; Shanker, K. Serotonergic mechanisms in heart failure. Indian
Heart J. 1994, 46, 153–156.

53. Reid, A.C.; Brazin, J.A.; Morrey, C.; Silver, R.B.; Levi, R. Targeting cardiac mast cells: Pharmacological modulation of the local
renin-angiotensin system. Curr. Pharm. Des. 2011, 17, 3744–3752. [CrossRef]

54. Van den Berg, E.K.; Schmitz, J.M.; Benedict, C.R.; Malloy, C.R.; Willerson, J.T.; Dehmer, G.J. Transcardiac serotonin concentration
is increased in selected patients with limiting angina and complex coronary lesion morphology. Circulation 1989, 79, 116–124.
[CrossRef]

55. Meissner, A.; Lüss, I.; Rolf, N.; Boknik, P.; Kirchhefer, U.; Kehm, V.; Knapp, J.; Linck, B.; Lüss, H.; Müller, F.U.; et al. The early
response genes c-jun and HSP-70 are induced in regional cardiac stunning in conscious mammals. J. Thorac. Cardiovasc. Surg.
2000, 119, 820–825. [CrossRef]

56. Lüss, H.; Meissner, A.; Rolf, N.; van Aken, H.; Bokník, P.; Kirchhefer, U.; Knapp, J.; Läer, S.; Linck, B.; Lüss, I.; et al. Biochemical
mechanism(s) of stunning in conscious dogs. Am. J. Physiol. Heart Circ. Physiol. 2000, 279, H176–H184. [CrossRef] [PubMed]

57. Sergeeva, I.A.; Hooijkaas, I.B.; van der Made, I.; Jong, W.M.C.; Creemers, E.E.; Christoffels, V.M. A transgenic mouse model for
the simultaneous monitoring of ANF and BNP gene activity during heart development and disease. Cardiovasc. Res. 2014, 101,
78–86. [CrossRef] [PubMed]

58. Gergs, U.; Kirchhefer, U.; Bergmann, F.; Künstler, B.; Mißlinger, N.; Au, B.; Mahnkopf, M.; Wache, H.; Neumann, J. Characterization
of Stressed Transgenic Mice Overexpressing H2-Histamine Receptors in the Heart. J. Pharmacol. Exp. Ther. 2020, 374, 479–488.
[CrossRef] [PubMed]

http://doi.org/10.3389/fphar.2019.01051
http://www.ncbi.nlm.nih.gov/pubmed/31619997
http://doi.org/10.1016/j.yjmcc.2018.10.022
http://doi.org/10.1371/journal.pone.0221289
http://doi.org/10.1016/j.ejphar.2018.04.013
http://www.ncbi.nlm.nih.gov/pubmed/29673908
http://doi.org/10.1006/meth.2001.1262
http://www.ncbi.nlm.nih.gov/pubmed/11846609
http://doi.org/10.1111/apha.12766
http://www.ncbi.nlm.nih.gov/pubmed/27484853
http://doi.org/10.1152/ajpheart.00937.2001
http://doi.org/10.1161/CIRCULATIONAHA.120.048250
http://www.ncbi.nlm.nih.gov/pubmed/33587657
http://doi.org/10.1016/j.cjca.2021.02.005
http://doi.org/10.1128/IAI.10.2.340-346.1974
http://doi.org/10.1016/j.biocel.2016.07.032
http://www.ncbi.nlm.nih.gov/pubmed/27477311
http://doi.org/10.3892/etm.2019.7810
http://doi.org/10.1016/j.biopha.2018.11.142
http://doi.org/10.1155/2017/6374283
http://www.ncbi.nlm.nih.gov/pubmed/28694565
http://doi.org/10.1161/CIRCULATIONAHA.118.033942
http://www.ncbi.nlm.nih.gov/pubmed/30586717
http://doi.org/10.1152/ajpheart.00471.2016
http://www.ncbi.nlm.nih.gov/pubmed/27793854
http://doi.org/10.1016/S0735-1097(02)02158-7
http://doi.org/10.2174/138161211798357908
http://doi.org/10.1161/01.CIR.79.1.116
http://doi.org/10.1016/S0022-5223(00)70019-5
http://doi.org/10.1152/ajpheart.2000.279.1.H176
http://www.ncbi.nlm.nih.gov/pubmed/10899054
http://doi.org/10.1093/cvr/cvt228
http://www.ncbi.nlm.nih.gov/pubmed/24104878
http://doi.org/10.1124/jpet.120.000063
http://www.ncbi.nlm.nih.gov/pubmed/32561687


Biomedicines 2021, 9, 569 20 of 20

59. Gu, Y.; Ma, C.-T.; Gu, H.-L.; Shi, L.; Tian, X.-T.; Xu, W.-Q. Sitagliptin improves cardiac function after myocardial infarction through
activation of autophagy in streptozotocin-induced diabetic mice. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 8973–8983. [PubMed]

60. Keppner, L.; Heinrichs, M.; Rieckmann, M.; Demengeot, J.; Frantz, S.; Hofmann, U.; Ramos, G. Antibodies aggravate the
development of ischemic heart failure. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H1358–H1367. [CrossRef]

61. Möllmann, H.; Nef, H.M.; Kostin, S.; Dragu, A.; Maack, C.; Weber, M.; Troidl, C.; Rolf, A.; Elsässer, A.; Böhm, M.; et al. Ischemia
triggers BNP expression in the human myocardium independent from mechanical stress. Int. J. Cardiol. 2010, 143, 289–297.
[CrossRef]

62. Cerniway, R.J.; Morrison, R.R.; Byford, A.M.; Lankford, A.R.; Headrick, J.P.; van Wylen, D.G.L.; Matherne, G.P. A1 adenosine
receptor overexpression decreases stunning from anoxia-reoxygenation: Role of the mitochondrial K(ATP) channel. Basic Res.
Cardiol. 2002, 97, 232–238. [CrossRef] [PubMed]

63. Zerkowski, H.R.; Broede, A.; Kunde, K.; Hillemann, S.; Schäfer, E.; Vogelsang, M.; Michel, M.C.; Brodde, O.E. Comparison of the
positive inotropic effects of serotonin, histamine, angiotensin II, endothelin and isoprenaline in the isolated human right atrium.
Naunyn-Schmiedeberg’s Arch. Pharmacol. 1993, 347, 347–352. [CrossRef] [PubMed]

64. Ouadid, H.; Albat, B.; Nargeot, J. Calcium currents in diseased human cardiac cells. J. Cardiovasc. Pharmacol. 1995, 25, 282–291.
[CrossRef]

65. Brattelid, T.; Kvingedal, A.M.; Krobert, K.A.; Andressen, K.W.; Bach, T.; Hystad, M.E.; Kaumann, A.J.; Levy, F.O. Cloning,
pharmacological characterisation and tissue distribution of a novel 5-HT4 receptor splice variant, 5-HT4(i). Naunyn-Schmiedeberg’s
Arch. Pharmacol. 2004, 369, 616–628. [CrossRef] [PubMed]

66. Läer, S.; Remmers, F.; Scholz, H.; Stein, B.; Müller, F.U.; Neumann, J. Receptor mechanisms involved in the 5-HT-induced inotropic
action in the rat isolated atrium. Br. J. Pharmacol. 1998, 123, 1182–1188. [CrossRef] [PubMed]

67. Qvigstad, E.; Brattelid, T.; Sjaastad, I.; Andressen, K.W.; Krobert, K.A.; Birkeland, J.A.; Sejersted, O.M.; Kaumann, A.J.; Skomedal,
T.; Osnes, J.-B.; et al. Appearance of a ventricular 5-HT4 receptor-mediated inotropic response to serotonin in heart failure.
Cardiovasc. Res. 2005, 65, 869–878. [CrossRef] [PubMed]

68. Kjekshus, J.K.; Torp-Pedersen, C.; Gullestad, L.; Køber, L.; Edvardsen, T.; Olsen, I.C.; Sjaastad, I.; Qvigstad, E.; Skomedal, T.; Osnes,
J.-B.; et al. Effect of piboserod, a 5-HT4 serotonin receptor antagonist, on left ventricular function in patients with symptomatic
heart failure. Eur. J. Heart Fail. 2009, 11, 771–778. [CrossRef]

69. Bartel, S.; Stein, B.; Eschenhagen, T.; Mende, U.; Neumann, J.; Schmitz, W.; Krause, E.G.; Karczewski, P.; Scholz, H. Protein
phosphorylation in isolated trabeculae from nonfailing and failing human hearts. Mol. Cell. Biochem. 1996, 157, 171–179.
[CrossRef]

70. Neumann, J.; Eschenhagen, T.; Jones, L.R.; Linck, B.; Schmitz, W.; Scholz, H.; Zimmermann, N. Increased expression of cardiac
phosphatases in patients with end-stage heart failure. J. Mol. Cell. Cardiol. 1997, 29, 265–272. [CrossRef]

71. Marks, A.R. Ryanodine receptors/calcium release channels in heart failure and sudden cardiac death. J. Mol. Cell. Cardiol. 2001,
33, 615–624. [CrossRef]

72. Nebigil, C.G.; Hickel, P.; Messaddeq, N.; Vonesch, J.L.; Douchet, M.P.; Monassier, L.; György, K.; Matz, R.; Andriantsitohaina, R.;
Manivet, P.; et al. Ablation of serotonin 5-HT(2B) receptors in mice leads to abnormal cardiac structure and function. Circulation
2001, 103, 2973–2979. [CrossRef]

73. Jaffré, F.; Callebert, J.; Sarre, A.; Etienne, N.; Nebigil, C.G.; Launay, J.-M.; Maroteaux, L.; Monassier, L. Involvement of the serotonin
5-HT2B receptor in cardiac hypertrophy linked to sympathetic stimulation: Control of interleukin-6, interleukin-1beta, and tumor
necrosis factor-alpha cytokine production by ventricular fibroblasts. Circulation 2004, 110, 969–974. [CrossRef] [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/30575942
http://doi.org/10.1152/ajpheart.00144.2018
http://doi.org/10.1016/j.ijcard.2009.03.012
http://doi.org/10.1007/s003950200016
http://www.ncbi.nlm.nih.gov/pubmed/12061393
http://doi.org/10.1007/BF00165383
http://www.ncbi.nlm.nih.gov/pubmed/8389986
http://doi.org/10.1097/00005344-199502000-00014
http://doi.org/10.1007/s00210-004-0919-4
http://www.ncbi.nlm.nih.gov/pubmed/15118808
http://doi.org/10.1038/sj.bjp.0701702
http://www.ncbi.nlm.nih.gov/pubmed/9559903
http://doi.org/10.1016/j.cardiores.2004.11.017
http://www.ncbi.nlm.nih.gov/pubmed/15721867
http://doi.org/10.1093/eurjhf/hfp087
http://doi.org/10.1007/BF00227896
http://doi.org/10.1006/jmcc.1996.0271
http://doi.org/10.1006/jmcc.2000.1343
http://doi.org/10.1161/01.CIR.103.24.2973
http://doi.org/10.1161/01.CIR.0000139856.20505.57
http://www.ncbi.nlm.nih.gov/pubmed/15302781

	Introduction 
	Materials and Methods 
	Transgenic Mice 
	Contraction Studies of the Atrium 
	Contraction Studies of the Ventricle (Langendorff Procedure) 
	Quantitative Polymerase Chain Reaction (qPCR) 
	Western Blotting 
	Echocardiography 
	Lipopolysaccharide Treatment 
	Data Analysis 
	Drugs and Materials 

	Results 
	Cardiac Response to LPS-induced Sepsis 
	Atrial Response to Hypoxia in Vitro 
	Ventricular Response to Ischemia In Vitro 
	Influence of 5-HT4 Receptors on a Genetically Induced Hypertrophy 

	Discussion 
	Lipopolysaccharide-Simulated Sepsis 
	Ischemia and Hypoxia 
	PP2A-Induced Cardiac Hypertrophy 
	Conclusions, Potential Relevance in Clinical Pharmacology and Limitations 

	References

