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Circumventing huge volume strain in alloy anodes
of lithium batteries
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Since the launch of lithium-ion batteries, elements (such as silicon, tin, or aluminum) that can be

alloyed with lithium have been expected as anode materials, owing to larger capacity. However,

their successful application has not been accomplished because of drastic structural degradation

caused by cyclic large volume change during battery reactions. To prolong lifetime of alloy

anodes, we must circumvent the huge volume strain accompanied by insertion/extraction of

lithium. Here we report that by using aluminum-foil anodes, the volume expansion during

lithiation can be confined to the normal direction to the foil and, consequently, the electrode

cyclability can be markedly enhanced. Such a unidirectional volume-strain circumvention

requires an appropriate hardness of the matrix and a certain tolerance to off-stoichiometry of

the resulting intermetallic compound, which drive interdiffusion of matrix component and lithium

along the normal-plane direction. This metallurgical concept would invoke a paradigm shift to

future alloy-anode battery technologies.
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Rechargeable batteries are indispensable devices in modern
society and they are continuously improved toward higher
energy density and longer lifetime1,2. In lithium-ion batteries

(LIBs) as a representative rechargeable battery, the combination of
intercalation-type transition-metal-oxide cathode and carbonac-
eous anode materials have achieved a great success and win the
current energy-storage device market3–5. However, as the energy
density of conventional LIBs have gradually reached the theoretical
limit, further approaches are necessary for developing superior
batteries6,7. As a promising approach, high-capacity alloy-anode
materials, such as Si, Sn, or Al, had been expected for the practical
applications in advanced lithium batteries because of their much
(three to ten times) higher capacities than a conventional graphite
anode6,8–11. Compared with the intercalation-type graphite
anode12,13, the alloy anodes must suffer large volume change
during battery reactions11,14,15, e.g., +300% volume expansion
(increase) from Si to Li21Si5 (~4000 mAh g�1

Si ), +250% from
Sn to Li22Sn5 (~ 990 mAh g�1

Sn ), and +100% from Al to AlLi
(~ 990 mAh g�1

Al ), compared with +10% volume expansion from
C6 to LiC6 (372 mAh g�1

C ). Such a huge volume change accom-
panied by lithiation or delithiation is substantially isotropic and
causes critical irreversible damage to the matrix, which would
consequently be fragmented into inactive fine powder drifting in
the electrolyte16–18. Therefore, if a metallic foil (especially, Sn or Al)
could maintain a stable electrode structure during battery reactions,
a heavy Cu current collector currently used would have been
unnecessary, which would have benefited a remarkable increase of
practical anode capacity. However, the application of alloy anodes
has never been succeeded yet. One of effective approaches to avoid
this pulverization problem is to downsize particles of active
material and/or to fabricate porous electrode morphology, by
which the volume change can be tolerated owing to the voids
between the particles19–26. However, the active materials must
be prepared with supporting substances, such as in the form of
composite electrode27–29 or attaching on nanostructures30–35.
Preparation of such supporting materials usually makes the man-
ufacturing process complicated and decreases the practical anode
capacity, which has impeded the development of alloy anodes.

Nevertheless, application of alloy anodes is still strongly
demanded for easy-to-manufacture strategy of large-scale LIBs.
In this work, to establish a concept of “one-material electrode,”
which combines active material and collector, we show an inno-
vative way of how to circumvent such a huge volume strain by
utilizing metallurgical viewpoints such as thermodynamics, elastic
strain, and diffusion. By examining structural stabilities of various
metallic-foil electrodes during lithiation, we demonstrate that Al
foil with appropriate hardness can be used as a self-standing anode
for lithium batteries. An appropriate hardness of the matrix and a
certain tolerance to off-stoichiometry of the resulting intermetallic
compound can drive a two-dimensionally (in-plane) homogeneous
lithiation reaction and one-dimensional (out-of-plane) interdiffu-
sion to hold the Gibbs–Duhem relation, which effectively cir-
cumvent the volume-strain influences during battery reaction and
the fatal pulverization problem of alloy anodes.

Results
Morphology after initial lithiation into various metals. To
examine the structural stability of metal foil anodes, Al, Zn, and
Sn foils were lithiated in coin-type cells with a Li counter-
electrode, in which the electrolyte consisting of 1 M LiPF6
and Ethylene Carbonate (EC) : Dimethyl Carbonate (DMC) in
an equivolume ratio (50:50) was used for all the electrochemical
tests. In general, the hardness of materials should largely affect
the structural stability after lithiation. Thus, as to Al foils, we
prepared three types of samples with different hardness, by

modifying purity and controlling conditions of rolling and heat
treatment. Vickers hardness (HV) of each foil is shown in
Fig. 1a. The foils were lithiated to a cathodic charge of 5 mAh
cm−2 at the current density of 0.5 mA cm−2. As shown in
Fig. 1a, the lithiated foils have distinctively different
appearances.

First, it is interesting to note that soft metals less than
HV 30, Sn (purity 99.9%) foil, and annealed 4N-Al foil
(purity 99.99%, hereafter termed as “Al4N-HT”), are locally
deformed plastically after lithiation. Undulation of the matrix,
which is formed by alloying with Li on the front side
(facing a Li-metal counter-electrode), is spread out the whole
matrix. Besides, the lithiation occurs inhomogeneously, which
indicates that the mechanical (elastic/plastic) deformation
of matrix strongly affects the lithiation process. In contrast
to the soft foils, hard as-rolled 2N-Al foil (purity 99.8%)
shows very different lithiation behavior. On the front side,
protruding AlLi grains are cracked (the phase identification is
later shown in Fig. 2c), which suggests that the growing AlLi
alloy could not deform the Al matrix but was contrary crushed
by the hard Al matrix. Whereas dimple patterns are observed
on the back side, suggesting that ductile fracture occurs due
to the large tensile stress caused by the protruding AlLi grains
on the front side. The morphology details are shown in
Supplementary Fig. 1a.

Most importantly and surprisingly, the as-rolled 4N-Al foil
(purity 99.99%, referred to as “Al4N-AR”) achieves homo-
geneous lithiation on the front side and no-damaged Al matrix
remains on the back side. Thus, it seems that an appropriate
hardness of matrix would prevent the deformation of anode
matrix and the fracture of alloy phase; in the case of Al/AlLi, the
most suitable hardness is eventually found to be ca. HV 35. The
fact that there is no apparent plastic deformation in the matrix
means that the volume expansion during lithiation occurs in the
normal (i.e., out-of-plane) direction, i.e., unidirectional growth
of the lithiated phase is driven. In contrast, although as-rolled
Zn (purity 99.9%) has a similar matrix hardness to Al4N-AR, Li
is almost deposited on the surface of Zn foil rather than forming
a Zn-Li alloy. This difference would be attributed to the
diffusivity of Li in Zn and the activation energy of lithiation,
etc.36,37. With a detailed explanation in Supplementary Note 1,
scanning electron microscopy (SEM) images corresponding
to Fig. 1 are given in Supplementary Fig. 1 and the potential
profiles are shown in Supplementary Fig. 2 for comparison.

Attainment of homogeneous and unidirectional lithiation. To
understand the differences in the degree of homogeneity on
lithiation reaction and in characteristic feature of volume
expansion, we observed the morphology changes accompanied by
Li insertion and extraction, the results of which are summarized
in Fig. 2a–h. Figure 2a shows field-emission SEM (FE-SEM)
images of Al4N-AR in the lithiation process (I, II, and III) and
delithiation after lithiation (IV), and Fig. 2f shows those of Al4N-
HT as well. In the early stage (I–II) of lithiation, AlLi phase forms
on the surface and causes the protrusions due to the volume
expansion (about 100% increase for Al to AlLi). As found from
the energy dispersive X-ray spectroscopy (EDX) mappings, the
intensity of Al Kα is significantly reduced at the protrusions; as Li
element cannot be detected by EDX, the intensity decrease of Al
Kα directly indicates a higher Li composition in such protruded
regions, corresponding to the AlLi formation. It deserves to
note that grain sizes of AlLi are quite different between the two
cases. As found from the electron backscatter diffraction (EBSD)
patterns in Fig. 2a, f, the crystalline size in Al4N-AR is far smaller
than that in Al4N-HT; thus, it seems that the grain size of AlLi in
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each foil may reflect the crystalline size in each in the early stage
of lithiation. Comparing the EDX mappings for Al4N-AR and
Al4N-HT, one can find that there are light-colored areas (gray)
around the protrusions (black) in Al4N-HT, but there is no such
area in Al4N-AR. This indicates that, for the soft Al4N-HT
matrix, lithiated regions can also grow locally starting from the
protruded AlLi grains, which is strongly supported by the
occurrence of large amount of dislocation slip lines observed in
the SEM images.

In the further lithiation (from II to III in Fig. 2a, f), the two
samples show a crucial difference in morphology. In Al4N-AR,
fine AlLi particles are uniformly formed all over the surface, i.e.,
the homogeneous lithiation is successfully attained. On the
other hand, in Al4N-HT, the AlLi phase grows preferentially
from the already swelled regions by lithiation, where the Al
matrix is plastically deformed with a large amount of slips.
Figure 2b, c show the cross-section SEM images of Al4N-AR
before and after lithiation, respectively. It is noteworthy that the
very flat interface of AlLi proceeds along the depth direction
from the front (i.e., facing the Li electrode) to the back side and,

simultaneously, the front surface goes up to increase the foil
thickness. The thickness of the lithiated layer (~80 μm) is about
twice that of the initial foil (~40 μm), i.e., almost of volume
expansion caused by the Al-to-AlLi transformation is realized
only along the out-of-plane direction. Furthermore, by compar-
ing Fig. 2a(II) and 2a(III), one can find that the current density
would affect the nucleation frequency on the Al surface, in that a
large number of AlLi protrusions are formed in (III) at 0.5 mA
cm−2 compared with (II) at 0.05 mA cm−2. The unidirectional
volume expansion, however, would not be affected by the
current density unless the operating potential reaches the redox
potential of Li+/Li. Figure 2d shows that the X-ray diffraction
(XRD) pattern of the 53% lithiated Al4N-AR foil is in good
agreement with the stardard data of AlLi crystal in the inorganic
crystal structure database (ICSD). In extracting Li from the
lithiated Al4N-AR foil (from III to IV in Fig. 2a), the Al matrix
is self-organized to form a columnar structure with cleavages
and micropores following the dealloying porous mechanism24,
whereas in Al4N-HT foil (from III to IV in Fig. 2f),
pulverization proceeds with delithiation, starting from the AlLi
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Fig. 1 Structural stability of various metallic foils after initial lithiation. a Photographs of various metallic foils after lithiation of 5 mAh cm−2. Average
Vickers hardness (HV) of each foil is given in the upper graph. The lithiation was conducted at a current density of 0.5 mA cm−2 with a Li metal counter-
electrode. The original thickness and lithiation percentage of each foil are also denoted in the front-side photo. The percentage figure of lithiation in each
sample is displayed based on the total capacity of each anode depending on the foil thickness. As to Zn, the percentage is not presented, because Li metal
is mainly deposited on the surface instead of the formation of Li-Zn alloy; see also Supplementary Fig. 1c. The as-rolled Al (99.99%) foil shows a
homogeneous lithiation on the front side and a sufficiently retained stable Al matrix on the back side. b Schematic illustrations of lithiation process
reasonably inferred from SEM pictures obtained for respective foils; see Supplementary Fig. 1.
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grains that have precedingly reached the back side of the foil, as
shown in Fig. 2g, h.

Mechanism from metallurgical insight. To realize the uni-
directional AlLi formation that is capable of circumventing huge
volume strain, the Al element of matrix component must flow

from inside to the surface during lithiation. Otherwise, the
volume strain is inevitably caused by the Li compound formation,
which results in significant deterioration of electrodes. Here,
based on the viewpoints of thermodynamics, elasticity, and
atomic diffusion, we consider the reason why such a unidirec-
tional AlLi formation can be driven. Figure 3a illustrates sche-
matically the Gibbs free-energy profiles in Al-Li binary system, in
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which the free-energy curves, Gfcc, Gbcc, and GAlLi, are semi-
quantitatively drawn based on the thermodynamic database
(fcc: Al solid solution, bcc: Li solid solution)38. According to the
Al-Li phase diagram, the insertion of Li into Al matrix undergoes
a two-phase reaction of fcc-Al/AlLi phases, where each chemical
potential in the fcc Al solid solution and AlLi phase must be
equal at equilibrium state; μLi in fccAl= μLi in AlLi and μAl in fccAl=
μAl in AlLi as indicated by yellow line in Fig. 3a. The chemical-
potential difference of Li between AlLi phase and pure Li phase
determines the electromotive force (emf0 in Fig. 3a) of the
lithiation reaction, Al+ Li=AlLi. What we want to discuss here
are the following two points: (i) in-plane homogeneous reaction
of Li on the surface and (ii) transfer of Al toward the surface.

Let us first address the term (i). Difference in matrix hardness
yields different strain effects during the Li compound formation.
When plastic deformation of the Al matrix occurs, large amount
of dislocations are introduced into the matrix, so that the Gibbs
free energy of the deformed Al matrix is increased, as indicated

by the Gfcc
S in Fig. 3a. Then, according to the Gibbs–Duhem

relation, cAldμAl+ cLidμLi= 0, a two-phase equilibrium state must
be shifted, as shown by a pink line in Fig. 3a. Consequently, the
chemical potential of Li is apparently lowered and the electro-
motive force is enhanced more or less. This effect would be a
main reason for the inhomogeneous lithiation in the softer Al4N-
HT electrode. As soft Al matrix in the Al4N-HT electrode cannot
bear the internal stress caused from the electrochemically growing
AlLi phase, the volume expansion induces plastic deformation of
the matrix. Afterwards, Li would prefer to be inserted into such
unstable regions to obtain a chemical-potential gain. In addition,
the plastic deformation involves a large amount of lattice defects,
which would facilitate the Li diffusion in Al matrix. As illustrated
in Fig. 3b (right), these thermodynamic and kinetic effects can
work synergistically and the formation of AlLi easily reaches the
back side, which leads to fracture and pulverization of electrode
upon delithiation. On the contrary, as shown in the Al4N-AR foil
in Fig. 1, appropriate hardness of the matrix can circumvent
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plastic deformation of the matrix, i.e., Li compound cannot
deform the matrix. In this case, the growth of AlLi would be
retarded due to the elastic stress in the Al matrix17. Furthermore,
unlike the case of softer matrix, no preferential region for Li
insertion exists in the appropriately hard matrix, so that the
lithiation can evenly occur in the remaining Al matrix on the
surface, resulting in the homogenous reaction in plane.

Next, we consider the term (ii) why unidirectional diffusion
from the inside to surface of the Al matrix component is driven
after homogeneous lithiation on the surface is completed. The
inset of Fig. 3c shows SEM image and corresponding Li element
mapping for the cross-section of a lithiated Al4N-AR foil, which
was prepared by focused ion beam (FIB) and measured by time-
of-flight secondary ion mass spectrometry (TOF-SIMS). Interest-
ingly, it is found that Li composition in the AlLi phase slightly
decreases from the surface to the inside. As the AlLi phase
tolerates off-stoichiometric composition according to the Al-Li
phase diagram, the composition gradient can be allowed in the
AlLi single phase. Again, revisiting the Gibbs–Duhem relation,
not only the chemical potential of Li but also that of Al is changed
gradually, as shown in Fig. 3c; μAl increases, whereas μLi decreases
from the surface toward inside. The chemical-potential difference
between the surface and inside is estimated to be about 0.25 eV
for each element based on the thermodynamic database38.
This chemical-potential gradient of each element drives the
interdiffusion, JAl=−MAl grad μAl and JLi=−MLi grad μLi,
where MAl and MLi are the mobilities of respective elements;
thereby, Al element flows from the inside to surface, whereas Li
element flows from the surface to inside. Consequently, the Al/
AlLi interface gradually moves toward the inside of the Al matrix,

whereas the AlLi front surface grows toward the counter-
electrode side with moving the surface. This one-dimensional
interdiffusion mechanism can circumvent the huge volume strain
due to the lithiation. In contrast, we previously attempted to
confine the volume expansion of Sn-Li alloy (most of the Sn-Li
intermetallic compounds are line compounds) by embedding
Sn in unidirectional porous Cu39, but lithiation occurred only on
the Sn surface without further infiltration of Li into the Sn
matrix. Thus, it is reasonably inferred that a certain tolerance to
off-stoichiometry of Li intermetallic compounds is crucially
important to yield the driving force of interdiffusion.

Practical application to alloy-anode lithium battery. Finally, we
exemplify a concept of “one-material electrode” combining active
material and collector using a practical collector-free Al anode for
lithium batteries. Figure 4a compares the structure of an Al-anode
lithium battery to that of a conventional LIB. An Al4N-AR foil is
assembled as an anode instead of the conventional graphite
composite; the remaining Al matrix layer, which is indispensable
to maintain the stable structure of the electrode, can also play a
role of current collector and a heavy Cu foil is not needed to be
employed any longer in this type of electrode, which would
markedly simplify the battery manufacturing process. As shown
in Fig. 4b, an Al-foil anode is partially lithiated in the pre-charge
(initial lithiation) process and when Li is inversely extracted from
the lithiated layer in the first discharge (delithiation) process, the
remaining Al matrix shrinks to form columnar structure with
producing some internal pores. This columnar-porous structure
of the active material, which can be formed in-operando in the
initial lithiation/delithiation cycle, plays a significant role for later
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cyclic charge/discharge processes. Figure 4c, d show the battery
performance of a LiCoO2-Al cell; almost 100% Coulomb effi-
ciency is retained and no obvious morphology change is observed
after the 120th cycle. The potential-capacity profiles of the 10, 40,
70, 100, and 120th cycles are plotted in Fig. 4d, where the Al
anode behaves a stable operating potential at 0.3–0.4 V vs. Li,
although a slight degradation is observed on the LiCoO2 cathode.
To confirm whether the active Al layer is maintained or
consumed to fragment out, we compared the cross-section
morphologies of two samples obtained after the initial lithiation
of 2 mAh cm−2 and subsequent tenth lithiation. As shown in
Fig. 4e, except a slight increase of internal spaces between the
columns, the active layer substantially keeps as a bulk without
fragmentation and no obvious difference is observed both in the
thicknesses of active-material layer (higher part of the Al elec-
trode) and current-collector layer (lower part of the Al electrode).

Discussion
In the present work, the hardness of metallic foil is considered as a
key parameter to balance the strengths between matrix and lithi-
ated phase. If the strengths of both phases are comparable to each
other, the high structure stability can be maintained during the first
lithiation as in the case of Al4N-AR. This is because the resultant
lithiated phase (AlLi) cannot deform the Al matrix and, therefore,
the chemical potential of Al remains unchanged everywhere in the
Al matrix. However, if there are locally deformed regions in the Al
matrix, where the Al chemical potential is high (see the pink line in
Fig. 3a), Li atoms preferentially attack and annihilate such unstable
regions (as shown experimentally in Fig. 2f, g). Thus, the local
strain induces the inhomogeneous reaction of Li with the anode
material. Consequently, it is very important that the Al matrix is
not deformed by the AlLi formation. Next, it is indispensable to
drive the Al diffusion from matrix toward surface (interface
between electrolyte/anode) to circumvent the internal volume
expansion. Fortunately, it is possible for Al, because the AlLi
compound tolerates the off-stoichiometric composition, so that the
composition gradient can be formed in the AlLi compound. The Li
composition around the surface is higher than that in the inner
matrix, i.e., the Al composition is lower around the surface. Thus,
the Al diffusion toward the surface can be successfully driven.
Consequently, the volume expansion with lithiation is confined
only to the normal direction. In terms of the tolerance of off-
stoichiometric composition, Al metal is more suitable for the alloy-
anode material than other elements that show stoichiometric
composition in the Li compounds. However, it would be effective
to add a third element for obtaining off-stoichiometric character-
istics due to a certain entropy effect.

Owing to the homogenous lithiation and unidirectional
volume-strain circumvention, a very flat interface is formed
between lithiated phase and Al matrix (see Figs. 2c and 4e), which
conceptually divides a partly lithiated Al foil to an active-material
layer and a current-collector layer. Thanks to this layered struc-
ture, the one-material Al anode is endowed with an excellent
structural stability. Furthermore, as the active layer once lithiated
would be self-organized to form a porous structure during deli-
thiation, the expanded volume with extra space in the columnar-
porous active-material layer can accommodate the volume
expansion by the subsequent lithiation. This prevents the rela-
tively fragile AlLi from impinging with each other in further
reactions and, therefore, circumvents the fatal pulverization
in a similar mechanism as well as in a nanoporous silicon24,
leading to excellent cyclability of the one-material Al anode.
Consequently, focusing on the active-material layer, it shows a
large capacity close to the theoretical value of ~990 mAh g�1

Al and
~2680 mAh cm�3

Al with quite a high cyclability. As shown in

Supplementary Note 2 and Supplementary Fig. 5, benefiting from
the absence of a relatively heavy Cu current collector, this type of
Al anode for lithium batteries can achieve a higher practical
capacity than a conventional carbonaceous anode and even than a
Li metal anode (with a Cu collector), which would lead to future
safe and high-energy-density lithium batteries.

Methods
Materials preparation. Al foils used in the present study were produced by
Sumitomo Chemical Co., Ltd. As-rolled and annealed Al foils of purity 99.99% and
as-rolled Al foil of purity 99.8% were prepared from corresponding Al ingots. As-
rolled Zn foil of 99.9% was purchased from The Nilaco Corporation and as-rolled
Sn foil of 99.9% was purchased from Takeuchi Metal Foil and Powder Co., Ltd. The
electrolyte of 1 M LiPF6 in EC:DMC (50:50) solution was purchased from Sigma-
Aldrich Co. LLC. LiCoO2 powder was purchased from Toshima Manufacturing
Co., Ltd. Composite cathode was prepared by mixing the LiCoO2 powder with
conductive carbon black (Super C65) and polyvinylidene difluoride binder (5%
dispersed in N-methylpyrrolidone, Kureha Corporation) in a weight ratio of 8:1:1.
The mixture was pasted on a 20 μm-thick Al foil with an adjustable film applicator
(BEVS Industrial Co., Ltd) and reached a mass loading of more than 15 mg cm−2

of LiCoO2. The pasted mixture was then dried in a vacuum dryer at 120 °C for 12 h
to obtain a composite cathode sheet. Li metal foil used as the counter and reference
electrodes was purchased from Honjo Metal Co., Ltd.

Electrochemical tests. Electrochemical tests were conducted by a potentiostat
VMP-3 or VSP-300 (Bio-Logic SAS). Three-electrode coin-type cells (SB7, EC-
frontier Co., Ltd) were assembled in glovebox filled with high-purity argon
atmosphere. Working electrodes and counter electrodes had a round shape with a
diameter of 16 mm. A Li metal rod with a diameter of 1 mm was used as a reference
electrode. A polyethylene film or glass fiber filter was employed as the separa-
tor. The cell structure is shown in Supplementary Fig. 6.

Morphology observation. Samples were washed by dropping tetrahydrofuran
(99.5%, FUJIFILM Wako Pure Chemical Corporation) and subsequently dried in
argon atmosphere. Photos of samples were taken with an iPhone Xs Max (Apple,
Inc.). Microstructures of the lithiated and delithiated samples (except the inset in
Fig. 3c) were observed in detail with a FE-SEM JSM-7200F (JEOL Ltd). EBSD
measurement was carried out for the Al foils with a detector (Symmetry, Oxford
Instruments) attached on the FE-SEM. The samples were prepared in argon
atmosphere and transferred to the high vacuum chamber of FE-SEM without
exposure to air. Cross-section samples in Figs. 2 and 4 were prepared with a
trimming cutter (C-4, WISTA Co., Ltd). The sample in the inset of Fig. 3c was
prepared using FIB to obtain a perfect cross-section plane. The subsequent TOF-
SIMS measurement of Li composition was entrusted to Sumika Chemical Analysis
Service, Ltd.

Vickers hardness. Hardness of each metal foil was measured with a micro HV tester
(HMV-G21DT, Shimadzu Corporation). A test force of HV0.05 (490.3mN) was
employed and hold for 15 s. More than six points were measured for each sample
with appropriate intervals. The average hardness value was presented in Fig. 1.

X-ray diffraction. XRD patterns were measured using an automated multipurpose
X-ray diffractometer SmartLab (Rigaku Corporation). For the lithiated sample, an
air-tight stage was used to keep an argon atmosphere throughout the experiment
without exposure to air.

Calculation of free energy. The Gibbs free energies of Al-Li binary phases shown
in Fig. 3a were depicted schematically in the light of a computer calculation using
the software of CaTCalc SE developed by National Institute of Advanced Industrial
Science and Technology, Japan, with a thermodynamic database provided by
National Institute for Materials Science, Japan.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.
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