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Abstract: Emerging studies have reported that functional brain networks change with increasing age.
Graph theory is applied to understand the age-related differences in brain behavior and function,
and functional connectivity between the regions is examined using electroencephalography (EEG).
The effect of normal aging on functional networks and inter-regional synchronization during the
working memory (WM) state is not well known. In this study, we applied graph theory to investigate
the effect of aging on network topology in a resting state and during performing a visual WM task to
classify aging EEG signals. We recorded EEGs from 20 healthy middle-aged and 20 healthy elderly
subjects with their eyes open, eyes closed, and during a visual WM task. EEG signals were used to
construct the functional network; nodes are represented by EEG electrodes; and edges denote the
functional connectivity. Graph theory matrices including global efficiency, local efficiency, clustering
coefficient, characteristic path length, node strength, node betweenness centrality, and assortativity
were calculated to analyze the networks. We applied the three classifiers of K-nearest neighbor
(KNN), a support vector machine (SVM), and random forest (RF) to classify both groups. The
analyses showed the significantly reduced network topology features in the elderly group. Local
efficiency, global efficiency, and clustering coefficient were significantly lower in the elderly group
with the eyes-open, eyes-closed, and visual WM task states. KNN achieved its highest accuracy
of 98.89% during the visual WM task and depicted better classification performance than other
classifiers. Our analysis of functional network connectivity and topological characteristics can be
used as an appropriate technique to explore normal age-related changes in the human brain.

Keywords: EEG; graph theory; aging; working memory; classification

1. Introduction

The human brain is a complex structural and functional network organ in the human
body. Graph theory was introduced to study the complex network organization of the
brain. The structural and functional systems of the brain have the characteristics of a
complex network, such as network modularity, highly connected hubs, and small world
topology [1,2]. Electroencephalography (EEG) studies have shown reduced connectivity
in adults to be influenced by aging in a resting state through a difficult mathematical
calculation [3]. In other EEG studies, network connectivity was reduced in an elderly
group compared to a younger group [4,5]. In order to study the network properties of
brain networks, several network matrices were used to investigate brain aging, such as
characteristic path length, node strength, edge and node betweenness centrality, clustering
coefficient, global efficiency, and local efficiency [6]. The study of brain networks in healthy
aging, especially age-related changes in memory, plays a vital role in understanding the
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deficits created by Alzheimer’s disease (AD). Graph theory is applied to model the human
brain as a complex network represented by nodes or vertices (i.e., brain regions) connected
by edges (i.e., functional connections) [1,7].

The changes in brain networks occur dynamically in response to various contexts
or external stimuli, even in a resting state [8–10]. In eyes-open and eyes-closed condi-
tions, an age-related decrease in reactivity was found in alpha and beta bands [11,12].
In a resting state, EEG study path length and clustering coefficient were decreased in
most of the frequency bands in elderly individuals, which was associated with a more
random network topology [5]. Moreover, the variation in brain network dynamics has been
linked with human learning [13], cognitive function [14], healthy aging [15,16], and mental
disorders [17].

The slowing in cognitive processing speed is associated with age and it reflects cog-
nitive decline in elderly individuals [18]. Working memory (WM) involves the capacity
to temporarily hold information and manipulate it for short period of time. WM can be
divided into three stages: the initial encoding of information, the maintenance of WM
items, and the retrieval of WM items [19]. Prominent age-related differences were seen
in older adults in WM tasks compared to a short-term memory task that required only
the maintenance and storage of information [20]. Several studies have utilized the n-back
test to investigate age-related alterations in the brain, revealing the underlying mechanism
by applying functional magnetic resonance imaging (fMRI) [21,22] and EEG [23,24]. The
brain oscillatory responses vary during the phases of working memory while engaging in
a WM task. Studies using the Sternberg item recognition task found distinct patterns for
activation in the encoding, storage, and retrieval of WM, which were found to be sensitive
to WM load levels [25–28].

Machine learning (ML) approaches have been widely used in bio-signal analysis and
disease classification. ML techniques have been used in emotion recognition [29] and the
prediction of diseases including dementia [30], stroke [31], and AD [32]. Furthermore, ML
techniques have been used on EEG signals to understand their complex electrophysiological
activities and characterize the dynamic features of a complex brain network. Several studies
have utilized traditional machine learning models such as the K-nearest neighbor (KNN),
decision tree (DT), random forest (RF), Naïve Bayes, and regression models to investigate
neurological disorders [33,34]. In a recent study, support vector machines (SVM), KNN,
and Naïve Bayes were used to predict the AD [32] and SVM, correctly classifying 83% of
the subjects using network features. To classify healthy aging EEG signals using network
features, SVM achieved an accuracy above 80% [6]. A low-density device with seven
electrodes was designed for an automated EEG-based AD detection system, and the SVM
obtained 91.1% accuracy [35]. A portable EEG device was used to quantify the mental
workload during the driving and the binary machine learning models achieved high
accuracy (98.2% to 99.6%) between resting state and driving state [36]. Furthermore, a
low-cost EEG system was developed to predict ischemic stroke events, and the SVM model
obtained 92% accuracy [37]. In the automatic detection of epileptic EEG, ML framework
based on RF combined with a grid search optimization technique achieved an accuracy of
96.7% [38].

Network analysis has been used to investigate the network dynamics of neurological
diseases such as AD and mild cognitive impairment [39–41]. Resting state connectivity
and network topology are increasingly being studied to understand the effect of aging
on specific brain regions connected in a resting state. Previous studies have shown that
reduced small world configuration and increased path length reduce clustering in the
resting state network in healthy aging EEG signals [6,18]. It has been recommended that
network indices of graph theory can be used to investigate the age-related characteristic
of functional networks of the brain [42]. Moreover, graph theory has been applied to
investigate age-related alterations during an n-back test using a clustering coefficient,
a small world coefficient, and characteristic path length [43]. In order to explore how
a resting state network configuration involving regions is different from a WM state
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configuration, our current work focuses on age-related differences in networks in a resting
state and under visual working memory conditions. However, to the best of our knowledge,
network analysis has not been applied in a visual working memory task to investigate age-
related changes in middle-aged and elderly populations and understand the mechanism of
cognitive aging.

We hypothesized that simple tasks, both resting and visual WM tasks, and features of
graph theory are useful tools to differentiate between age-related changes in EEG signals
of the human brain. Therefore, this study aimed to investigate the age-related differences
in EEG networks in middle-aged and elderly individuals in a resting state and during a
visual WM task. We recorded EEG from 20 healthy middle-aged subjects and 20 healthy
elderly subjects in eyes-open and eyes-closed states, as well as during a visual WM task. In
our work, several network features based on graph theory, including global efficiency, local
efficiency, clustering coefficient, characteristic path length, node strength, and assortativity,
are extracted from both groups. We additionally applied SVM, KNN, and RF algorithms to
classify healthy aging EEG signals using functional network characteristics. The results
of this study can pave the way on early cognitive aging detection using EEG signals with
simple tasks and features of graph theory.

We organized our study into five sections, including “Introduction”. The methodology
and experimental details are presented in the “Materials and Methods”, the “Results”
demonstrate our findings, and the “Discussion” compares our results with those from other
studies. In the last section, “Conclusions”, we conclude the findings of our study.

2. Materials and Methods
2.1. Participants

The study protocol was approved by the human research ethical committee of our
institution (HSC-HREC-61-006-02-1). All the participants signed informed consent letters,
and the experiment was explained to them. We acquired EEGs from two age groups,
a middle-aged group (age range, 41 to 60 years; mean age= 50.50 ± 5.77 years) and an
elderly group (age range, 61 to 84 years; mean age= 71.03 ± 5.45 years). Each group
consisted of 20 healthy participants who had no previous history of any psychological or
neurological disorder.

2.2. Experimental Task

We acquired an EEG from all participants in an eyes-open state for 5 min, an eyes-
closed state for 5 min, and during a visual WM task. Figure 1 illustrates the experimental
procedure for EEG acquisition. This WM task was suggested to study alterations in a
healthy human EEG [44]. Before the experiment, the task was explained to all participants.
All necessary instructions were shown on a monitor screen. Participants were asked to
focus on a screen displaying a “+” symbol for 30 s. Three major steps were involved in
this WM task. In the first step, 25 images were shown on the screen for 30 s; in the second
step, those images were removed from the screen and the participants had to memorize
the images in 30 s while their eyes remained closed. In last step, the participants were
instructed to open their eyes and recall the images in 30 s. The total number of correct
answers was recorded as the WM performance score.

2.3. EEG Recording and Preprocessing

We used an Ultracortex Mark IV headset (OpenBCI, New York, NY, USA). Eight
electrodes (FP1, FP2, C3, C4, P7, P8, O1, and O2) and reference electrodes on both ear
lobes were applied according to the 10–20 international system for electrode placement.
OpenBCI has been used previously to predict the amplitude modulation of steady-state,
visually evoked potentials signals with a single electrode [45]. OpenBCI has been used
to develop EEG-based applications, including a device for disabled people [46], and to
assess P3, N2, and FRN components for performance monitoring [47]. In a comparison
of dry and wet electrode EEG systems, the dry electrode device was found to be more
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robust to 50 Hz line noise, less sensitive to electromagnetic interference, and useful for
self-application and home usage [48]. The 250 Hz sampling frequency was used to acquire
the EEG. Pre-processing was carried out to remove the noise and artefacts from the data.
We used EEGLAB toolbox for preprocessing and FastICA algorithm was used to remove
the artifacts from the electrooculography (EOG) and electromyography (EMG) artifacts out
of the EEG signals [49]. A 50 Hz infinite impulse response notch filter was used to clean
the AC powerline noise. Impedance was kept below 5 kΩ. EEG data were filtered into a
0.5–45 Hz band using the band pass finite impulse response filter (2nd order Butterworth.
For analysis, MATLAB R2019b (MathWorks Inc., Natick, MA, USA) was used.
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2.4. Network Construction

To construct the functional network, the first step is to obtain the connectivity matrices
representing inter-relations between brain regions. In order to obtain connectivity matrices,
different methods were proposed [50]. In this study, we used Pearson’s correlation, which
has been frequently used in functional network construction. The correlation coefficient
between two electrodes, x and y, can be calculated as [32]:

rx,y =
cov(x, y)√

var(x)var(y)
(1)

where cov(x, y) is the covariance between node x and node y, and var(x) and var(y) are the
variances of node x and node y, respectively.

To reduce the noise level, binary networks are often constructed from weighted con-
nectivity matrices. For this purpose, thresholding of the correlation matrices is utilized. If
the correlation weight between two nodes is greater than a certain threshold, this represents
a relation between the nodes. A certain threshold value is used to threshold the weighted
correlation matrices [51]. In the sparsity thresholding method, all extracted networks have
the same density; thus, the comparison is unbiased in relation to density.

In this current work, seven features of graph theory were calculated for both age
groups. Local efficiency, global efficiency, characteristic path length, clustering coeffi-
cient, node betweenness centrality, node strength, and assortativity were calculated for
the analysis.

These network measures correspond to the communicability of brain regions, the
connectivity structure, segregation phenomena, and synchronization in a weighted graph.
These network features can be computed as shown in the literature [7,32]. Local efficiency
of node i (LocEi) is computed as shown in Equation (2).

LocEi =
1

di(di − 1)∑
j=gi

1
Li,j

(2)
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where di represents the degree of the node (number of nodes connected to node i), Li,j
shows shortest path length between nodes i and j, and gi is a graph of neighbors of node i
excluding node i. The local efficiency of the network is calculated by taking the average of
all nodes, as shown in Equation (3).

LocE =
1
N

LocEi (3)

Here, N is the total number of nodes. The human brain processes information in a
specific manner while each brain region processes a specific kind of information; this is
called the segregation of information. The local efficiency and clustering coefficient are the
network measures used for this purpose. Clustering coefficient (CC) quantifies the intensity
of the neighbors of the connected nodes in a network [6].

CC=
1
N∑

h

∑i,jaijaihajh

dh(dh−1)
(4)

where dh is the degree of the node and aij is a member of the connectivity matrix.
Global efficiency (GlobE) measures communication efficiency in a network, and it is

inversely proportion to its average shortest path length. Global efficiency can be calculated
as in [7,32].

GlobE=
1

N(N−1)∑
i,j

1
Li,j

(5)

while analyzing the weighted networks, the degree of the network was extended to the sum
of the weights in the network [52]. Node strength (S) can be computed as show below [7].

S(i)=
n

∑
j

Mij (6)

M represents the weighted connectivity matrix; Mij is greater than 0 if node j is
connected to node i.

The significance of nodes and edges is measured by calculating the edges and node
betweenness of the centrality features. Node betweenness centrality (NB) is calculated
using the Equation (7) [7,32].

NB(u)= ∑
u=v=w

Pv,w(u)
Pv,w

(7)

where Pv,w is the number of shortest paths between nodes v and w, and Pv,w(u) denotes the
number of shortest paths between nodes v and w passing through node u.

The characteristic path length (CP) measures the mean path length in the network,
and it is computed using the following Equation [6,7].

CP =
1
n∑

i∈N

Li =
1

n(n− 1)∑
i∈N

∑j∈N,i 6=j
dij (8)

where Li is the average path length between node i and all other nodes, and dij is the
distance between node i and node j in the network.

A network may experience random failure in its components. Resiliency against
failures is vital for the proper functioning of the network. The degree–degree correlation
plays a key role in determining the resiliency of the networks and can be measured by
calculating assortativity [7,32,53].

r =
E−1 ∑i jiki − [E−1 ∑i

1
2 (ji + ki)]

2

E−1 ∑i
1
2

(
j2i + k2

i

)
− [E−1 ∑i

1
2 (ji + ki)]

2 (9)
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where ji and ki are the degrees of the nodes, and E represents the total number of edges.
For r = 0, there is no correlation; r < 0 means that the network is disassortative; and r > 0
shows that the network is assortative.

We obtained the epochs with the length of 20 s and extracted 504 features for each
subject by utilizing seven graph theory features with 8 electrodes and 9 sets of EEG features
in each state. The topographical EEG plot was drawn by using the MATLAB code derived
from the code by Víctor Martínez-Cagigal [54].

2.5. Statistical Analysis

In our current work, we used a non-parametric Wilcoxon’s rank sum test to assess the
statistically significant network properties of middle-aged and elderly groups. The results
are considered significant at p < 0.05. The analysis was performed using Prism 9, Windows
version (GraphPad software, San Diego, CA, USA).

2.6. Classification Algorithms and Performance Measures

In order to perform the classification, we used three classifiers: KNN, RF, and SVM.
Three different classification approaches were tested to evaluate the classification model.
Three classifiers were compared in terms of the classification performance parameters to
select a suitable classifier for a provided EEG data set. The KNN classifier, also called
the lazy learner algorithm, assumes similarity between available data and new data and
assigns the most similar class [55]. The KNN algorithm calculates the distance by utilizing
the distance measure, e.g., Euclidean and Manhattan distance measures. In this work, the
Euclidean distance measure was used for K = 1, 3, and 5. The SVM is a commonly used
linear classifier that utilizes the hyperplane technique to maximize the distance from the
nearest training datapoint to easily identify classes [56]. The SVM can predict good accuracy
based on one of its abilities to select a suitable kernel function. We used the Pearson VII
function-based universal kernel function. The RF is an ensemble learning technique that
utilizes the concept of bagging, constructs a collection of decision trees, and takes the
average to predict the output. The RF classifier builds a forest based on uncorrelated
trees by using decision tree learning, and it is useful for both regression and classification
tasks [57]. The graph theory features extracted from the EEG of both groups were used
as input for the classifiers. Classification was performed for eyes-open, eyes-closed, and
WM tasks. A normalization technique was also used to improve the performance of the
classifiers. Classification was performed using WEKA software (Version 3.8.4, Waikato
University, New Zealand).

We used 10-fold cross validation to evaluate the classification models. The performance
of classifiers is evaluated with overall accuracy (Acc), sensitivity (Sen), specificity (Spe),
Kappa statistics (Ks), precision, and F-score, as shown in Equations (10)–(15).

Acc =
(TP + TN)

(TP + TN + FP + FN)
× 100% (10)

Sen =
TP

TP + FN
× 100% (11)

Spe =
TN

TN + FP
× 100% (12)

Ks =
Pa−Pb
1−Pb

(13)

F− Score =
2× TP

(2× TP + FP + FN)
× 100% (14)

Precision =
TP

TP + FP
× 100% (15)
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where TP is a true positive, TN is a true negative, FP is a false positive, and FN is a false
negative. Pa shows the observed proportion of agreement, and Pb indicates the proportion
of agreement expected by chance in Equation (13).

3. Results

We analyzed the network properties of the middle-aged and elderly groups during a
resting state and while performing a WM task. Figure 2 presents a comparison of graph
theory features of middle-aged vs. elderly individuals. Global efficacy, local efficiency,
clustering coefficient, and node strength were found to be significantly lower in elderly
subjects in the eyes-open state. In the eyes-closed state, all investigated parameters are
shown in Figure 3, including global efficiency, local efficiency, characteristic path length,
clustering coefficient, and node strength. Significant changes in global efficiency, local
efficiency, clustering coefficient, and node strength were found to be lower in elderly
subjects, but not characteristic path length. In a WM state, six network features showed
significant changes, including global efficiency, local efficiency, characteristic path length
clustering coefficient, assortativity, and node strength, as presented in Figure 4. Compared
to the middle-aged group, the elderly group showed decreased network properties in all
six significant features. Local efficiency, global efficiency, and clustering coefficient were
significant in eyes-open, eyes-closed, and WM tasks.
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Significant changes in global efficiency, local efficiency, clustering coefficient, and node
strength were found lower in the elderly subjects, but not characteristic path length. In
the visual WM task, six network features showed significant changes, including global
efficiency, local efficiency, characteristic path length clustering coefficient, assortativity, and
node strength, as presented in Figure 4. Compared to the middle-aged group, the elderly
group showed decreased network properties in all six significant features. Local efficiency,
global efficiency, and clustering coefficient were significant in eyes-open, eyes-closed, and
visual WM tasks.
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We used three classification algorithms to classify the middle-aged and elderly EEG,
and the extracted features were used as input for these classifiers. KNN achieved its
highest accuracy in the resting state (eyes open and eye closed) and during the WM task to
classify the EEG signals obtained from middle-aged and elderly groups. KNN achieved
87.80% accuracy for K = 3 with a Euclidean distance measure in an eyes-open state, 93.33%
accuracy with K = 3 in an eyes-closed state, and 98.89% accuracy for K = 5 in the WM
task, as shown in Tables 1–3. The value of K in KNN was evaluated for 1, 3, and 5. In an
eyes-open state for K = 1 85.50%, K = 5 achieved 76.66% accuracy. In an eyes-closed state,
we achieved an accuracy of 91.11% with K = 1 and achieved 87.77% accuracy for K = 5. In
the visual WM task, classification accuracies of 94.40% and 97.78% were obtained for K = 1
and K = 3, respectively.



Brain Sci. 2022, 12, 218 10 of 22

Table 1. Classification parameter results in the eyes-open state.

Accuracy (%) Sensitivity Specificity Kappa Statistics F-Score

KNN 87.80 0.927 0.829 0.756 0.878
RF 85.36 0.902 0.805 0.707 0.853

SVM 86.67 0.911 0.822 0.733 0.866

Table 2. Classification parameter results in the eyes-closed state.

Accuracy (%) Sensitivity Specificity Kappa Statistics F-Score

KNN 93.33 0.956 0.911 0.867 0.935
RF 91.11 0.889 0.933 0.822 0.911

SVM 91.10 0.978 0.844 0.822 0.911

Table 3. Classification parameter results in the visual WM task.

Accuracy (%) Sensitivity Specificity Kappa Statistics F-Score

KNN 98.89 0.978 0.998 0.956 0.989
RF 97.78 0.980 0.976 0.889 0.978

SVM 94.44 0.956 0.933 0.978 0.944

Figure 5 shows the topographical map of mean global efficiency, local efficiency, and
mean clustering coefficient values of middle-aged and elderly groups in the eyes-open state.
All three network parameters show differences in the whole brain network in different
brain regions. In the eyes-closed state, mean local and global efficiencies and clustering
coefficients clearly show differences, as shown in Figure 6. During the visual WM task,
differences can be seen in local efficiency, global efficiencyas well as in clustering coefficient,
as shown in Figure 7.

Table 1 shows the good sensitivity and specificity values of KNN, and the highest
Kappa value of 0.756 and an F-score of 0.878 confirm better performance in an eyes-open
state. In an eyes-closed state, the highest Kappa value of 0.867 and an F-score of 0.935
confirm the best performance of KNN, as shown in Table 2. In the visual WM task, KNN
obtained an excellent Kappa value of 0.956 and an F-score of 0.989 (Table 3). The sensitivity
and specificity measures in the visual WM task validate the overall excellent performance
of the classification model based on KNN.

Table 4 shows the weighted average precision and the area under the curve (AUC)
for ROC curve of all classifiers in resting and visual working memory task states. KNN
achieved the highest precision value of 0.989 during the visual WM task, while the highest
AUC for ROC curve was achieved by RF (AUC = 0.988), followed by KNN with 0.979.

Table 4. Results of classification and performance of all classifiers.

Activity
Precision AUC

KNN RF SVM KNN RF SVM

Eyes-Open 0.883 0.858 0.870 0.878 0.952 0.867
Eyes-Closed 0.934 0.912 0.919 0.935 0.658 0.912

Visual WM Task 0.989 0.978 0.945 0.979 0.988 0.944
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The confusion matrices of all classifiers are presented for eyes-open, eyes-closed and
visual WM task states in Figures 8–10, respectively. Furthermore, Figures 8–10 demonstrate
the correctly classified and incorrectly classified instances.
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The Figures 11–13 show the ROC plot of all three classifiers in eyes-open, eyes-closed
and during the working memory task state.
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Table 1. Classification parameter results in the eyes-open state. 
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Table 2. Classification parameter results in the eyes-closed state. 

 Accuracy (%) Sensitivity Specificity Kappa Statistics F-Score 
KNN 93.33 0.956 0.911 0.867 0.935 

RF 91.11 0.889 0.933 0.822 0.911 
SVM 91.10 0.978 0.844 0.822 0.911 

Table 3. Classification parameter results in the visual WM task. 

 Accuracy (%) Sensitivity Specificity Kappa Statistics F-Score 
KNN 98.89 0.978 0.998 0.956 0.989 

RF 97.78 0.980 0.976 0.889 0.978 
SVM 94.44 0.956 0.933 0.978 0.944 

Table 4 shows the weighted average precision and the area under the curve (AUC) 
for ROC curve of all classifiers in resting and visual working memory task states. KNN 
achieved the highest precision value of 0.989 during the visual WM task, while the highest 
AUC for ROC curve was achieved by RF (AUC = 0.988), followed by KNN with 0.979. 
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Visual WM Task 0.989 0.978 0.945 0.979 0.988 0.944 

The confusion matrices of all classifiers are presented for eyes-open, eyes-closed and 
visual WM task states in Figures 8–10, respectively. Furthermore, Figures 8–10 
demonstrate the correctly classified and incorrectly classified instances. 
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4. Discussion

In this work, a middle-aged group was compared with an elderly group in eyes-open
and eyes-closed states, as well as during a visual WM task, to determine network matrices.
Several network features were calculated from all subjects, and a statistical analysis was
performed. The statistical analysis showed differences in a resting state and in working
memory state networks. We further extended our described technique by combining the
machine learning classification with three well-known classifiers (RF, KNN, and SVM).
Our classification model achieved 98.89% accuracy with KNN during a WM task, thus
corroborating the efficacy of our technique using EEG network features. In a resting state,
the eyes-closed state of KNN achieved 93.33% accuracy, which was higher than in the
eyes-open state.

Our results indicate reduced network characteristics in terms of local efficiency, global
efficiency, clustering coefficients, and node betweenness centrality in a resting state. In line
with our work, a recent study found decreased local and global efficiency and clustering
coefficients in middle-aged subjects compared to young adults [6]. In the previous study, a
decrease in clustering coefficients confirmed age-related differences in oscillatory networks
in young adults and elderly individuals, thus reinforcing our findings [18]. An increased
path length indicates a less organized network characterized by less power in older adults,
which confirms our results for the eyes-closed state [11]. With the eyes open, functional



Brain Sci. 2022, 12, 218 17 of 22

connectivity was decreased in alpha and beta frequency bands [58,59]. The opening or
closing of the eyes can result in the functional connectivity of the brain being turned into
an interoceptive or exteroceptive state [60]. Evidently, eyes-open and eyes-closed states
have an impact on brain functional connectivity and network communication, implying
that aging can generate more random brain networks in line with eyes-open and eyes-
closed states [18,61,62]. Furthermore, our results confirm age-related differences between
middle-aged and elderly individuals in terms of oscillatory networks

Our results in Figures 5 and 6 show the transition from middle-aged to older age in
the configuration of brain network topology in a resting state, which is in line with the
previous literature [6,62]. In healthy aging and an eyes-closed state, the global and lobal
efficiency and clustering coefficient decreased with increasing age, in accordance with
our study results (Figure 6) [6]. Our study shows that significant differences in occipital
networks in older adults corroborate previous findings in a healthy aging, resting state
network [18]. Working memory is considered to be dependent on a functional brain network
to communicate efficiently and maintain a degree of modularity, and it can be disrupted by
aging [63]. Additionally, our work shows a reduction in local and global efficiencies in a
WM task, which is consistent with previous findings [64]. The age-related task induced
changes, including a reduced clustering coefficient and network efficiency, in the elderly
subjects, aligning our results with previous studies on performing a visual WM task [43].
Cognitive decline has been associated with structural and functional reorganization, with
aging affecting cognitive performance in elderly populations [65,66]. WM has also been
shown to be advantageous in increasing connectivity efficiency, and it is also useful for
network reconfiguration to applying WM training in elderly subjects [43].

Neuroanatomical changes are considered to cause cognitive decline during the process
of aging. We analyzed age-related differences in tasks that evoked alterations in EEG
inter-regional synchronization in a healthy aging network topology. We conducted a cross-
sectional comparison of middle-aged and elderly subjects, and multichannel EEG was
analyzed in a resting state and during a visual WM task. Compared to the resting state, the
visual WM task showed more significant differences in terms of network measures. Local
efficiency, global efficiency, clustering coefficient, characteristic path length, node strength,
and assortativity were found to be found lower in elderly subjects. Age-related differences
were reported during audiovisual processing using network topology parameters in a
study in young vs. older adults [67]. In an n-back WM task, significant alterations were
observed in older adults in network topology parameters such as clustering coefficient and
path length, which supports our findings from the visual WM task [43]. Furthermore, we
also found reduced assortativity in elderly compared to middle-aged subjects, and there
was less resiliency among elderly networks compared to middle-aged networks.

The measure of assortativity showed significant differences in functional networks
between healthy and AD networks, which confirms the efficacy of the assortativity measure
in our work [32]. Network topology parameters were used in recent studies to distinguish
between healthy elderly and AD subjects [68–70]. As far as we know, most recent studies
focus on local and global efficiency clustering coefficients and path length to investigate
age-related differences in functional brain networks. Hence, our work proposed to examine
the efficacy of node strength betweenness centrality, and assortativity to analyze age-related
differences in connectivity and network topology of the human brain. Our study provides
additional support for the investigation of the effect of natural aging on memory by utilizing
the proposed network features.

It has been suggested that the band works as a communication mechanism in cor-
tical areas [71]. Beta band activity plays a vital role in inter-neuronal communication in
functional networks in working memory [72]. The beta band is associated with attention
deficiency in elderly individuals in terms of working memory [73,74], and task-evoked al-
terations were observed in a beta band network topology [43,73]. A recent study suggested
that age-related alterations in EEG network connectivity are correlated with age-related
slowing in attention tasks [42]. Therefore, our results of network indices under a visual
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working memory task are in line with those of previous studies. Furthermore, our clas-
sification results reinforce the usefulness of machine learning techniques to distinguish
between age-related differences in aging brain networks.

The graph indices show significant differences in the efficiency and clustering of
networks in the resting state, as well as in the WM state. We further used these network
features for the classification of middle-aged and elderly subjects. Three classifiers (KNN,
RF, SVM) were used to evaluate the classification problem of middle-aged vs. elderly
individuals. In an eyes-closed resting condition, to classify the young vs. middle-aged
subjects, SVM achieved an accuracy greater than 82% using graph theory features. In
our study, we obtained an accuracy of 87.80% in the eyes-open state and an accuracy of
93.33% in the eyes-closed state using KNN. Our study shows excellent values of sensitivity,
specificity, Kappa statistics, and F-measure values of KNN (Tables 1 and 2).

Table 5 shows previous work based on graph theory features and the application
of machine learning classification using EEG in different scenarios. Our classification
result shows improved classification accuracy, which also corroborates the efficacy of the
features. In our work, the KNN algorithm achieved the highest accuracy compared to
the previous studies in which SVM was applied. To distinguish between younger and
older adult brain networks, using functional connectivity in a resting state, SVM obtained
an accuracy of 94% in classifying the brain by age group [75]. In the present work, the
highest classification accuracy was 98.89% with KNN during a visual WM task state when
classifying middle-aged and elderly EEG brain networks (Table 3). We also obtained a
higher classification accuracy during the WM task than in the resting state. It is clear from
the classification performance measures that the KNN classifier performed better compared
to SVM and RF. The best sensitivity and specificity achieved by KNN confirm the validity
of the classification model. Our classification results clearly exhibit increased accuracy in
the WM task. To the best of our knowledge, the performance of classification measures
confirms the robustness of our methodology, as well as the highest accuracy obtained with
KNN in the classification of brain aging using a graph theory network. The age-related
differences in EEG networks reflect the process of normal aging. However, the absence
of age-dependent changes in elderly individuals can probably render them vulnerable to
cognitive decline, dementia, and AD. This study highlighted the potential of a working
memory-based technique to evaluate age-related alterations in a functional brain network
and its associated mechanism, thus affecting memory in elderly populations.

Table 5. Comparison of current work with related EEG studies.

Study Application State Features Classification Results

Jalili, M [32] Alzheimer’s disease
(AD vs. healthy)

Resting state
(Eyes-open and

eyes-closed)

Local efficiency, transitivity,
global efficiency, node and

edge between centrality,
assortativity, and modularity

SVM = 82%

Bahar Moezzi et al. [75] Healthy aging
(young vs. old)

Resting state
(Eyes-open)

Power spectra, functional
connectivity, and

electrode-to-
electrode distance

SVM = 94%

Petti, Manuela et al. [6] Healthy aging
(young vs. middle-aged)

Resting state
(Eyes-closed)

Node strength, local
efficiency, global efficiency,

clustering coefficient,
weight, and characteristic

path length

SVM = 82%

Lotfan, Saeed et al. [76] Social stress measurement
(healthy young)

Before, right after, and
20 min after stress

Transitivity, modularity,
characteristic path length,

and global efficiency
SVM = 84.14%

Proposed work Healthy aging
(middle-aged vs. elderly)

Eyes-open, eyes-closed,
and visual WM task

Global efficiency, local
efficiency, clustering

coefficient, characteristic
path length, node strength,

and assortativity

KNN = 98.89%
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5. Conclusions

This study presents a method for investigating the differences in elderly and middle-
aged EEG functional networks in eyes-open and eyes-closed states, as well as during a
simple working memory task. Seven graph theory features were used, including local
efficiency, global efficiency, clustering coefficient, characteristic path length, node strength,
node betweenness centrality, and assortativity. Our analysis showed significant differences
in both resting and working memory states. The seven network features were utilized as
inputs for the classification models to distinguish between middle-aged and elderly EEG
networks. In a resting state, a maximum accuracy of 93.33% was obtained in the eyes-closed
state using KNN. In addition, KNN obtained the highest accuracy of 98.89% in the WM
task state, with all seven features used in this study. The local and global efficiency, as
well as the clustering coefficient, were the common features showing significant results in
the eyes-open and eyes-closed states, as well as under a WM task condition. Our findings
underscore the efficacy of working memory in investigating changes in brain network
topology in relation to healthy aging. The eye blinks and eye movements in working
memory may distort the results of coherence. Furthermore, in the future, the addition
of young adults in our studies (<40 years) and the increase of number of electrodes will
clarify the impact of brain aging and age-related issues on pathological conditions such as
mild cognitive impairment and the preclinical stages of Alzheimer’s disease. The proposed
technique can be extended further with advanced forms of research to develop a biomarker
of aging using EEG signals.
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