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ABSTRACT
In mid-November 2020, deaths of whooper swan were reported in the Yellow River Reservoir Area, China. In the present
study, we describe the genetic characterizations and phylogenetic relationships of four clade 2.3.4.4b H5N8 highly avian
influenza viruses (HPAIVs) identified from a sick whooper swan and environmental samples collected in the Yellow River
Reservoir Area in late November 2020. They were closely related to recent H5Nx HPAIVs causing outbreaks in Eurasia in
the 2020-2021 influenza season, suggesting these isolates might be imported into China via migratory birds. The newly
identified H5N8 HPAIVs possessed Q226 and G228 (H3 numbering), indicating that they prefer to avian-like receptors.
However, they had three mutations falling within known antigenic regions, including T144A in antigenic region A,
T192I in antigenic region B, and N240D in antigenic region D. Our study highlights the risk of the rapid global spread
of H5N8 HPAIVs and the necessity for continuous monitoring of avian influenza viruses in wild birds.
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Wild birds, in particular certain species of waterfowl
and shorebirds, are considered the natural reservoirs
for avian influenza viruses [1]. Long-distance spread,
especially intercontinental spread of AIVs, such as
H5N1 [2,3], H5N6 [4], and H5N8 [5] HPAIVs, is clo-
sely associated with wild bird migration. More impor-
tantly, the hemagglutinin (HA) gene of the H5Nx
AIVs has evolved into multiple phylogenetic clades
and subclades (https://www.who.int/influenza/gisrs_
laboratory/201101h5n1evoconceptualdiagram.pdf?ua=
1), some of which have shown propensity of global
spread [6,7]. The ongoing surveillance of live bird
markets in China revealed that clade 2.3.4.4 H5Nx
HPAIVs were first detected in poultry in 2008, and
have gradually become dominant both in domestic

poultry [8,9] and wild birds [4,5,10] from 2014
onwards. In 2010, the first identification of clade
2.3.4.4 H5N8 HPAIV in poultry was documented in
China, and H5N8 HPAIV caused outbreaks in South
Korea in early 2014 [11]. In autumn/winter of 2014/
2015, clade 2.3.4.4 H5N8 HPAIVs were extensively
transmitted among eastern Asia, Europe and North
America via the migration of wild birds. In the
2016/2017 influenza season, clade 2.3.4.4 H5Nx
HPAIVs, particularly the H5N8 and H5N6 subtypes,
repeatedly invaded Europe, causing numerous out-
breaks in poultry and wild birds [11].

To date, clade 2.3.4.4 H5Nx AIVs have further
diversified into eight subclades, namely clades
2.3.4.4a to 2.3.4.4h [12]. Clade 2.3.4.4 H5N8 HPAIVs

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group, on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

CONTACT Weifeng Shi shiwf@ioz.ac.cn Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong,
Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, People’s Republic of China; School of Public Health, Shandong
First Medical University & Shandong Academy of Medical Sciences, Taian 271000, People’s Republic of China; and Yuhai Bi beeyh@im.ac.cn CAS Key
Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS
Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, People’s Republic of China; University of
Chinese Academy of Sciences, Beijing 101409, People’s Republic of China
†These authors contributed equally to this study.

Supplemental data for this article can be accessed https://doi.org/10.1080/22221751.2021.1968317

Emerging Microbes & Infections
2021, VOL. 10
https://doi.org/10.1080/22221751.2021.1968317

https://www.who.int/influenza/gisrs_laboratory/201101h5n1evoconceptualdiagram.pdf?ua=1
https://www.who.int/influenza/gisrs_laboratory/201101h5n1evoconceptualdiagram.pdf?ua=1
https://www.who.int/influenza/gisrs_laboratory/201101h5n1evoconceptualdiagram.pdf?ua=1
http://crossmark.crossref.org/dialog/?doi=10.1080/22221751.2021.1968317&domain=pdf&date_stamp=2021-09-13
http://orcid.org/0000-0002-9330-7022
http://orcid.org/0000-0001-6530-5794
http://orcid.org/0000-0002-3869-615X
http://orcid.org/0000-0002-8717-2942
http://orcid.org/0000-0002-5595-363X
http://creativecommons.org/licenses/by-nc/4.0/
mailto:shiwf@ioz.ac.cn
mailto:beeyh@im.ac.cn
https://doi.org/10.1080/22221751.2021.1968317
http://www.iom3.org/
http://www.tandfonline.com


re-emerged and have caused >640 outbreaks in wild
birds and domestic poultry in ∼20 European and
Asian countries including China during 2019–2021
(https://www.oie.int/en/disease/avian-influenza/). In
this study, we described the genetic characterizations
of clade 2.3.4.4 H5N8 HPAIVs causing an outbreak
in whooper swan (Cygnus cygnus) in November
2020, China.

On 18 November 2020, two dead whooper swans
were found in the Yellow River Wetland of Pinglu
(https://news.cgtn.com/news/2020-12-03/H5N8-bird-
flu-found-among-wild-swans-in-N-China-VV8nR4R
hSM/index.html). The Yellow RiverWetland of Pinglu
is adjacent to the Sanmenxia Reservoir Area, both of
which are located along the East Asian-Australasian
(EA) flyway [13–15]. There are more than 200 bird
species wintering or stopping over at the Yellow River
Reservoir Area (including the wetland of Pinglu and
Sanmenxia Reservoir Area), including whooper swan,
Pochard, Crested Pochard, Red Duck, and so on. Gen-
erally, these birds arrive at the wetland in November
from Mongolia and Siberia [14] and leave in next
May. In January 2015, clade 2.3.2.1cH5N1HPAIVs cir-
culating in wild birds among Eurasia and Africa [2]
were reported to kill tens of whooper swans [14] in
the Sanmenxia Reservoir Area. However, in recent
years, the number of wintering whooper swan in the
YellowRiverReservoirArea has beengradually increas-
ing, and has reached ∼10,000 in the winter of 2020.

On 28 November 2020, one dying whooper swan
was found in the Yellow River Reservoir Area (Sup-
plementary figure 1). The visible clinical signs
included weakness, cloudy eyes, and shallow breath-
ing. Oropharyngeal and cloacal swabs from the bird
and 23 feces from the environment were collected
for pathogen identification. The samples were main-
tained at 4°C in the viral-transport medium before
use. Total viral RNA was extracted from each swab
and fecal sample according to the instructions of the
MagaBio plus Virus RNA Purification Kit (BIOER,
China), then was tested by qRT-PCR kit for influenza
A virus (Mabsky Biotech Co., Ltd.). Two swabs from
the sick whooper swan and eleven fecal samples
from environment were tested positive. Full-length
AIV genome sequences of the qRT-PCR positive
samples were obtained using both Sanger and Next
Generation Sequencing (NGS) [9]. The bird species
of the fecal samples was further confirmed through
nested PCR and Sanger sequencing of the cytochrome
oxidase I (COI) gene as described previously [16]. The
partial COI sequences of the environmental samples
CAS002-F17 and CAS002-F18 were identical and
they shared the highest nucleotide identity (99.85%)
with the whooper swan (Cygnus cygnus) COI gene
across the aligned regions (680 bp). The partial
sequences of the COI gene of CAS002-F17 have
been deposited into China National Microbiology

Data Center (NMDC; https://nmdc.cn/coronavirus;
accession No. NMDCN0000Q29).

A total of four genomes of H5N8 HPAIVs were
obtained, including two from the same sick bird (A/
whooper swan/Henan/CAS001-G/2020(H5N8)
(CAS001-G), A/whooper swan/Henan/CAS001-K/
2020(H5N8) (CAS001-K)), and two from environ-
mental feces (A/whooper swan/Henan/CAS002-F17/
2020(H5N8) (CAS002-F17) and A/whooper swan/
Henan/CAS002-F18/2020(H5N8) (CAS002-F18)),
respectively. The four genomes have been deposited
into NMDC (accession Nos. NMDCN0000IP1-
NMDCN0000IS8) and the Global Initiative on Shar-
ing Avian Influenza Data (GISAID) database
(https://www.gisaid.org; accession Nos. EPI1843651-
EPI1843682).

High nucleotide identities between the four strains
resolved in this study and other Autumn/Winter 2020
H5N8 HPAIV genomes were revealed (>99.5% in all
eight gene segments). The HA gene of the Asian strain
(A/mallard/Korea/WA820/2020(H5N8) (Korea-
WA820), the NA, PB2, PB1, NP and NS genes of A/
whooper swan/Inner Mongolia/w1-1/2020(H5N8)
(IM-w1-1)), the PA gene of the European strains (A/
chicken/Omsk/0119/2020(H5N8) (EU-0119), and the
M gene of A/chicken/Kostroma/304-10/2020(H5N8)
(EU-304-10)) shared the highest nucleotide identities
with CAS001 described in this study (Supplementary
Table 1).

To better understand the evolution of these H5N8
AIVs, complete genomes of 1625 H5N8 strains were
phylogenetically analysed, including the four H5N8
viruses sequenced in this study and all global H5N8
viruses (n = 1621) available in GISAID and GenBank
databases. In the HA phylogeny (Figure 1 and
Supplementary Figure 2), 65.5% of the H5N8 strains
(n = 1065) fell within clade 2.3.4.4b, mainly from the
2016/2017 and 2020/2021 seasons, while 33.0% in
clade 2.3.4.4c (n = 536) mainly from the 2014/2015
season. In clade 2.3.4.4b, the Eurasian H5N8 viruses
during 2020/2021 (n = 372) were further divided into
two separate groups (Group I and Group II) in the
phylogenetic tree and the mean genetic distance
between the two subclades was >4.0% (Supplementary
Table 2), far greater than 1.5% used to propose a novel
clade/subclade of H5Nx AIVs (https://www.who.int/
influenza/gisrs_laboratory/201101h5n1evoconceptual
diagram.pdf?ua=1). 28.5% strains (n = 106) fell within
Group I, including 64 European isolates from
Hungary, Poland, Germany and Czech Republic
since January 2020 (relating to outbreaks in the Spring
of 2020), and 42 Asian isolates circulating in Korea
and Japan from October 2020 [17–19]. The four
strains in this study belonged to Group II, together
with 70.0% H5N8 strains during 2020/2021 (n =
262). This group includes a strain from Iraq in May
2020; strains from the Russian Federation from July
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2020 onwards; Asian strains include those from Inner
Mongolia (October 2020), Korea (November 2020–
January 2021), Japan (January 2021). European
Group II strains include those from Netherlands,
Germany and England (October 2020 onwards), and
other European countries from November 2020
onwards [20]. Notably, the strain, A/Astrakhan/
3212/2020, which caused the first human infection
with H5N8 and was identified in Russia in December
2020 [21] was also clustered into Group II.

We further analysed the phylogenetic relationships
of the remaining seven genes of the Groups I and II
H5N8 AIVs classified according the topology of the
HA gene (Supplementary Figures 3–9 and Sup-
plementary Data 1). Generally, most of the Group II
strains were clustered together in the trees of the

eight genes, except several strains with few internal
genes (e.g. PA) presenting a separate source (Figure
1). Likewise, all the four new H5N8 strains fell within
Group II in the eight gene trees, respectively (Figure
1). For Group I strains, their HA, NA and M genes
were always grouped together. However, for other
internal genes, some strains (n = 29) in this group ori-
ginated from other sources, suggesting likely reassort-
ment events. Apart from a few Group II strains (n = 3)
possessing Group I-like NP gene sequences, no fre-
quent reassortment events between Groups I and II
were observed in our study (Figure 1).

The HA protein of the four newly resolved H5N8
HPAIV strains contained a cleavage site motif of
REKRRKR↓GLF and Q226 and G228 (H3 numbering)
at the receptor binding site, indicating that these

Figure 1. Phylogenetic analysis of H5N8 HPAIVs. Line colour in the topology of the HA phylogenetic tree represents the collection
date of all H5N8 strains with whole genomes isolated before 2014, or from 2014 to 2021. Maximum likelihood trees in this study
were performed using RAxML (version 8.1.6) under GTRGAMMA nucleotide substitution model with 1000 bootstrap replicates. The
four strains in this study were colored in magenta, and the representative Eurasian isolates in 2020/2021 season were colored in
black. The red pentagram represents the human-infecting H5N8 strain, A/Astrakhan/3212/2020(H5N8). In the right panel, different
colours represent the different classified lineages for the HA, NA, PB2, PB1, PA, NP, MP, and NS genes, which have been shown in
the figure.
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H5N8 HPAIVs prefer to avian-like receptors. How-
ever, they also contained the amino acid substitution
T160A in the HA protein, which has been reported
to enhance the binding capacity to human-like recep-
tors [10]. Amino acid substitutions of the antigenicity-
associated amino acids in the HA protein, particularly
in the HA1 protein, are considered a major evolution-
ary force driving antigenic variation of influenza A
virus via impairing antibody recognition and prompt-
ing escape from immune responses [22–24]. In com-
parison with A/duck/Jiangsu/k1203/2010(H5N8)
(K1203) [25], the four H5N8 HPAIVs described here
belonging to Group II (2020–2021) of subclade
2.3.4.4b, possess three amino acid substitutions in
the antigenic regions on HA including T156A (144,
H3 numbering) in antigenic region A, T204I (192,
H3 numbering) in antigenic region B, and N252D
(240, H3 numbering) in antigenic region D. Notably,
these antigenicity-associated amino acid substitutions
were also seen in HA gene sequences of Group II
H5N8 of subclade 2.3.4.4b. Therefore, the variations
of antigenicity-associated amino acid sites in Group
II might indicate the potential antigenic drift of
these H5N8 viruses, including our strains.

We further summarized all the key amino acid
changes in the four H5N8 strains (Supplementary
Data 2). Amino acids Q591, E627 and D701 were
observed in the PB2 protein of these strains,
suggesting a low replication ability of these H5N8
AIVs in mammals [10]. No drug-resistance-associated
mutations (Q136 K, G147 V, H274Y and R292 K in
NA, N2 numbering; S31N in M2) were found in
these strains, and therefore they may be sensitive to
the NA and M2 inhibitors [14,26].

In conclusion, we identified and described the gen-
etic and phylogenetic characteristics of four clade
2.3.4.4b H5N8 HPAIV genomes causing an outbreak
in whooper swan in the Yellow River Reservoir Area,
China in November 2020. These H5N8 HPAIV strains
exhibited close genetic relationships with recent strains
circulating in Asia and Europe. In fact, H5NxHPAIVs,
particularly the H5N8 subtype, have swept Eurasia in
the 2020–2021 influenza season of the NorthernHemi-
sphere, causing hundreds of outbreaks in tens of
countries and more than 20 million domestic poultry
have been culled in South Korea and Japan (https://
www.oie.int/en/disease/avian-influenza/). Our results
once again highlight the probability of rapid global
spread of HPAIVs. Due to the antigenicity-associated
molecular variations and pandemic potential, continu-
ous monitoring of AIVs is urgently needed both in
migratory birds and domestic poultry.
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