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The sulfate anion (SO4
2–) is known as an endmetabolite of cysteine andmethionine, and its

proper concentration is associated with the expression of key functions in the physiological
system. Thus, maintaining sulfate concentration at a precise level is of great significance for
biology, environments, and industrial productions. Fundamental research for sulfate anion
chemistry can help understand sulfate-associated physiological processes and related
applications, for example, remediation. In this minireview, we summarized recent research
progresses in sulfate recognition and separation using crystallization and liquid–liquid
extraction. We focused on the studies wherein molecular recognition is the key element
and is considered the driving force for selective sulfate separations from aqueous solution.
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INTRODUCTION

Sulfur-containing inorganic anion, mostly present as sulfate (SO4
2−), is of great significance in

biological, environmental, and industrial processes (Hofmeister, 1888; Markovich, 2001), for
instance, sulfate is the fourth most abundant anion in human plasma and is involved in many
biological processes, including biosynthesis and detoxification (Markovich, 2001). For all these
processes, one of the most important factors is to control the concentration of sulfate anion. Based on
the standards of drinking water from theWHO (WHO, 2017), the concentration of sulfate content in
drinking water is restricted to less than 250 ppm, and excessive intake of sulfate anion may cause
diarrhea. The other known example is that sulfate anion has a big impact on the vitrification process
in nuclear waste treatment because of low solubility of sulfate in borosilicate glass (Moyer et al.,
2012). Thus, successful technologies to separate sulfate anion are essential to maintain the
concentration of sulfate anion at a proper level. Current sulfate separation techniques in
industry mainly rely on precipitation (as BaSO4) (Benatti et al., 2009), bioreduction (Whitmire
and Hamilton, 2005) or chemical reduction (Kinnunen et al., 2018), membrane technology (Wang
et al., 2007), adsorption (Priyantha and Perera, 2000), and liquid–liquid extraction (Moyer et al.,
2012; Ravikumar and Ghosh, 2012). However, the efficiency of sulfate separation still cannot meet
the current requirement and selective separation of sulfate anion from aqueous solution remains a
big challenge.

Recognition chemistry (Gale et al., 2016), originating from supramolecular chemistry (Lehn,
1985), offers a good way to achieve selective sulfate separation by custom-designing receptors.
The programing of complementary binding sites in receptors allows for sulfate binding within
well-organized binding geometry. Unlike spherical halides, sulfate is characterized by
tetrahedral shape, large hydration (ΔGhyd = −1080 kJ mol−1), and pH-dependent speciation
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(mostly present as HSO4
− when pH < 1, Figure 1A). (Stern and

Amis, 1959; Smith, 1977; Gao and Liu, 2004) These made the
designs of sulfate-binding receptors complicated. To achieve

selective sulfate separation, the designer receptors need to bind
sulfate with strong affinity, thus overcoming its hydration
(Yan et al., 2022). To achieve the results and inspired by

FIGURE 1 | (A) pH-dependent nature between sulfate and bisulfate anions and representative receptors developed recently for sulfate recognition: (B) linear
receptor, (C) tripodal receptors, and (D) macrocyclic receptors.
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the structure of sulfate-binding proteins (SBPs) in nature
(Pflugrath and Quiocho, 1985; Pflugrath and Quiocho,
1988), chemists endeavor themselves to develop a variety of
receptors with programed hydrogen-binding sites for sulfate
recognition. Previous studies before 2011 have been well-
summarized by Ghosh Ravikumar and Ghosh (2012) and
Moyer Moyer et al.(2012). In this minireview, we focus on
the progresses made in the last decade and highlight the
representative studies for sulfate separation from water
using crystallization and liquid–liquid extraction (LLE).
Notably, we also comment on the correlations between
sulfate recognition and separation, which would help us
understand design principles of synthetic receptors for
selective sulfate separation governed by recognition chemistry.

SULFATE RECOGNITION USING
SYNTHETIC RECEPTORS

Anion coordination chemistry (Dietrich et al., 1984), known as
anion receptor chemistry, was proposed by Lehn Lehn (1978) and
further defined and elucidated by Bowman-James Bowman-
James(2005). Most studies of anion receptor chemistry focus
on developing receptors for commonly seen anions (Gale
et al., 2016), for example., halides and nitrates. In contrast,
studies on sulfate anions and other oxyanions are largely
unexplored, which are restricted by their relatively large
hydration and pH-dependent speciation (Figure 1A). In early
examples, receptors used for bisulfate anion (HSO4

−) binding are
widely developed because of bisulfate’s relatively less hydration
energy (Fatila et al., 2016; Fatila et al., 2017). However, the
bisulfate anion only presents in acidic solution (pH ≤ 4), thus
limiting related applications. Up to date, various sulfate-binding
receptors have been designed and synthesized (Ravikumar and
Ghosh, 2012). Among recently reported studies, the designed
receptors can be classified into three types based on their
structural geometries: linear chelators, tripodal receptors, and
macrocyclic receptors.

Linear chelators and tripodal receptors are first used for
sulfate recognition through hydrogen bonding or electrostatic
interactions that are deliberately programed into the main
backbone of receptors. Typical electrostatic binding sites are
ammonium and guanidinium, hydrogen-binding moieties
which include amine, amide, and urea (Gale et al., 2016).
Given the large dipole moment (~4.1 D) and rigidity of the
urea unit, Wu et al. developed ortho-phenylene spaced tetra-
urea receptor 1 (Figure 1B) that can fold in helical
conformation when binding to sulfate through eight
hydrogen bonds, based on an X-ray crystal structure (Wu
et al., 2008; Jia et al., 2010). Nuclear magnetic resonance
(NMR) titration suggests that the tetra-urea receptor 1
binds to sulfate anions with > 104 M−1 in 10% (v/v) D2O
with DMSO-d6, and the binding affinity for the naphthyl-
substituted version of receptor 1 is suggested to be 106.27 M−1

based on fluorescent spectroscopic titration. Other oligoura-
based linear chelators with selective sulfate bindings are also
developed by Bowman-James (Jia et al., 2015).

Compared to linear chelators, tripodal receptors provide extra
arms for sulfate binding with better complementarity and
stronger binding affinity. The studies on these tripodal tris-
urea and hexa-urea receptors have been documented in the
previous review (Moyer et al., 2012; Ravikumar and Ghosh,
2012). Representative tripodal receptors mostly consisting of a
C3 symmetric bridging spacer and hydrogen binding site, mono-
urea, and ortho-phenylene bis-urea are typically used
(Figure 1C). For the C3 symmetric spacer, tris (2-aminoethyl)
amine (TREN) (Ravikumar and Ghosh, 2012) and cyanuric acid
are commonly utilized (Dutta and Ghosh, 2013; Dutta et al.,
2015). According to the principle of anion coordination
chemistry, the coordination number for sulfate anion is 12
(Bowman-James, 2005) because sulfate consists of four oxygen
atoms that can accommodate up to 12 hydrogen bonds to satisfy
the binding geometry. In particular, in the cases of tripodal tris-
urea receptors, two receptors are essential to bind one sulfate
anion by forming a 2:1 sandwich complex. In contrast, a single
hexa-urea receptor is sufficient to bind one sulfate anion.

A pioneer work from Custelcean reported a 2:1 receptor-to-
sulfate sandwich complex using a TREN-based tris-urea receptor
with a terminal cyano-substituted phenyl ring (Custelcean et al.,
2005). This 2:1 complex shows the highest coordination number
(12 hydrogen bonds) of sulfate anion, which can also be achieved
using the hexa-urea receptor (Figure 1C). The hexa-urea receptor
developed by Wu et al. provides exceptional and complementary
tetrahedral space for sulfate encapsulation (Jia et al., 2011).
Compared to tris-urea receptors, the hexa-urea receptors are
indicated to bind sulfate stronger because of the favorable
entropic contribution from pre-organized conformation. The
X-ray crystal structure confirms the sulfate binding through 12
hydrogen bonding. 1H NMR titration suggests a strong binding
constant of over 104 M−1 in 25% (v/v) D2O with DMSO-d6.
Hossain et al. found that the hexa-urea receptors bearing the
meta-nitrophenyl group or pentafluorophenyl group bind to
sulfate in DMSO with binding affinities of 105.78 M−1 and
105.55 M−1, respectively (Portis et al., 2017). By changing the
TREN spacer to a relatively rigid cyanuric acid spacer, the
corresponding tris-urea and hexa-urea receptors display
comparable binding properties for sulfate.

Transition from linear and tripodal receptors to macrocyclic
shape benefits from the reduced entropy cost for the pre-
organization of receptors with enhanced sulfate binding
affinity (Dietrich et al., 1984). Electrostatics offers a stronger
contact than hydrogen bonds and is widely programed into the
macrocyclic backbones for sulfate binding. In 2013, You et al.
designed a highly rigid tetrakisimidazolium macrocycle 4 with
two positive charges (Zhou et al., 2013). This receptor shows
selective turn-on fluorescence upon sulfate binding with an
exceptionally strong binding affinity of 8.6 × 109 M−2 in water.
The X-ray crystal structure shows that one sulfate anion is
stabilized by two macrocycles through electrostatics, hydrogen
binding, and π–π interactions. The hexaazamacrocyclic receptor
5 with four positive charges, developed by Hossain et al., also
displays selective sulfate binding in water (Rhaman et al., 2014). A
1:1 complex is seen in crystal, and the binding affinity is
determined to be 104.43 M−1 in water.
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FIGURE 2 | Sulfate separation using (A) crystallization and (B) liquid–liquid extraction. Representative receptors used in liquid–liquid extraction: (C) cationic
receptors, (D)macrocyclic receptors, (E) tripodal receptors, and (F) di-topic receptors. It is to be noted that the cyclic shape of the receptor seen in figure (2b) does not
represent the actual shape for receptors used for sulfate separation.
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Neutral macrocycles consisting of hydrogen bond donors
have also been developed for sulfate recognition. Kubik et al.
developed a series of cyclopeptide-based macrocycles showing
selective anion binding in an aqueous medium (Kubik, 2010).
By cooperating gold nanoparticles with the cyclopeptide 6,
they observed selective sulfate sensing (co-precipitation of
sulfate-bound nanoparticles) in water (Bartl et al., 2020).
The cyclopeptide 6 is suggested to form a 2:1 sandwich
complex similar to that for tetrakisimidazolium macrocycle
4. Calix [4]pyrrole is a classic macrocycle for anion
recognition; Sessler, Moyer, and co-workers have developed
a family of calix [4]pyrrole–based macrocycles for anion
recognition and separation (Eller et al., 2007; Moyer et al.,
2010; Borman et al., 2011). Very recently, Wang designed a
calix [4]pyrrole strapped benzenebistriazole bis-cycle 7 that
displays strong sulfate-binding affinity of > 106 M−1 in an
aqueous medium (He et al., 2020). According to the X-ray
crystal structure, this bis-cycle binds to the sulfate anion in a 1:
1 stoichiometry, stabilizing by multiple N–H and C–H
hydrogen bonds.

Other recently developed macrocyclic receptors use urea
units as the hydrogen-binding sites for sulfate recognition
(Kaur et al., 2020; Zhao et al., 2021). In 2020, Bowman-
James et al. developed a semirigid tetra-urea macrocycle 8
displaying 1:1 sulfate binding based on the X-ray crystal
structure (Kaur et al., 2020). The binding affinity is
determined to be 9.0 × 104 M−1 according to 1H NMR
titration in 0.5% (v/v) D2O with DMSO-d6. Very recently,
we developed a family of tetra-urea– and octa-urea–based
macrocycles that can be readily prepared using a modular,
two-step strategy from commercially available building blocks
(Zhao et al., 2021). The monomer sequences for these
macrocycles rely on the flexibility of chosen spacers. In
particular, tetra-urea macrocycles are selectively formed
using rigid diphenyl methylene and diphenyl ether spacers,
which show interesting sulfate-binding channels in solid state.
The sulfate anions bind to macrocycles and water molecules
through hydrogen bonding for the formation of 1D sulfate
channels. A relatively flexible tetra-urea macrocycle 9 can also
be prepared using a bottom-up strategy and shows full
encapsulation of the sulfate anion in the central cavity. By
comparison, octa-urea macrocycles 10 and 11 are prepared
using both relatively rigid and flexible spacers. Notably, these
two octa-urea macrocycles display unusual encapsulation of
two sulfate anions with significantly different binding
geometries. The octa-urea macrocycle 10 binds sulfate with
a “figure-eight” conformation, and the other octa-urea
macrocycle 11 forms a mesocate conformation.

The use of molecular receptors provides an effective and
achievable way for selective sulfate binding that can be further
utilized for sulfate separation. To separate sulfate anion from
water, synthetic receptors with strong sulfate binding affinity
and selectivity are essential. In the following sections, we will
discuss the progresses made recently for sulfate separation that
are based on recognition chemistry (Moyer et al., 2012). Here,
we focus on the methods of crystallization and liquid–liquid
extraction.

SULFATE SEPARATION USING
CRYSTALLIZATION

The crystallization of sulfate anion was performed using water-
soluble receptors to bind sulfate and form water-insoluble
complexes, thus precipitating out (Custelcean et al., 2008;
Custelcean and Remy, 2009; Custelcean et al., 2010; Rajbanshi
et al., 2011; Rajbanshi and Custelcean, 2012; Custelcean et al.,
2015a). The receptors utilized for crystallization need to bind the
sulfate anion with strong binding affinity, and the formed sulfate
complexes should be able to build contacts with neighboring
complexes, thus forming aggregates. The key element is that the
formed aggregates arrange with well-defined arrays in the solid
state, which is not soluble in a given aqueous solution. Pioneer
works from Custelcean and others developed a series of tripodal
tris-urea receptors functionalized with terminal pyridyl groups
showing selection sulfate separation from aqueous alkaline
solutions (Wu et al., 2008; Custelcean et al., 2005; Custelcean
et al., 2008; Custelcean and Remy, 2009; Custelcean et al., 2010;
Rajbanshi et al., 2011; Rajbanshi and Custelcean, 2012;
Custelcean et al., 2015a). In crystal structure, it is the terminal
pyridyl groups that allow connecting the discrete complexes
through metal coordination or hydrogen bonding.
Alternatively, by using bis(guanidinium)-based linear
receptors, 12 and 13 (Custelcean et al., 2015b; Custelcean
et al., 2016), the sulfate anions can also be separated from the
nitrate-rich solution by crystallization (Figure 2A). The X-ray
crystal structures suggest that sulfate anions are clustered with
water molecules and co-stabilized by receptors through
electrostatics and hydrogen bonding. The receptors can be
recovered by being treated with sodium hydroxide solution
and consequently acidified with hydrochloric acid for the next
cycle. The receptor-assisted crystallization of sulfate is one of the
most effective techniques for sulfate separation. Compared to
precipitation of inorganic salts (BaSO4) (Benatti et al., 2009),
receptor-assisted crystallization shows better selectivity.
However, the current methods usually take more time (days)
to complete the full process of crystallization, which may limit its
application in the industry.

SULFATE SEPARATION USING
LIQUID–LIQUID EXTRACTION

Liquid–liquid extraction is another widely used technique for
sulfate separation that can be readily integrated with actual
infrastructures in the industry (Moyer et al., 2012). Compared
to crystallization, LLE is more dependent upon receptor designs,
yet requires less operating time for all-liquid handling. The
desirable receptor (or extractant) needs to be soluble in a
water-immiscible solvent, hydrophobic, and binds sulfate with
strong affinity in a selective manner. The transport of sulfate from
water into the other immiscible solvent can be defined as the
competition between the hydration and binding affinity, which is
akin to the design principles for the crystallization process. The
difference is that LLE can complete in seconds, but the overall
charges across two layers need to be leveraged either by the
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receptor or extra reagents, for example, ammonium (Borman
et al., 2011). Based on the receptors adapted for LLE, there are
three major types: cationic or di-topic receptors without phase
transfer–assisted reagents and neutral receptor with phase
transfer–assisted reagents (Figure 2B). In particular, for
cationic receptors, their corresponding counter-anions (mostly
Cl− or NO3

−) can move into water for charge neutrality. Similarly,
the counter-anions of ammonium salts (R4N

+) are used when
using neutral receptors (Kim et al., 2014). In the case of di-topic
receptors, both sulfate anion and the corresponding cations (Na+

or K+) can be extracted into the organic layer simultaneously. In
all these cases, recognition of sulfate anions by the designer
receptor is the driving force for extraction.

Moyer et al. have made significant contributions to the field of
sulfate separation, especially in separating sulfate from nuclear
waste (Moyer et al., 2012). Recently, they found that the use of
simple guanidinium-based receptors 14 and 15 can also extract
sulfate anion from water (Seipp et al., 2018; Williams et al., 2018).
Electrostatics between positively charged guanidinium and
sulfate anion in a 1:2 stoichiometry is the driving force for
binding and separation. By comparison, better selectivity of
sulfate separation is observed for receptor 15 owing to the
formation of reverse-micelles. In addition, 15 is of better
synthetic feasibility, higher sulfate separation efficiency, and
process compatibility for industrial use. In these studies,
counter-anions of guanidinium receptors move into the water
layer for charge neutrality.

As an alternative to cationic receptors, macrocyclic receptors
with pre-organized conformations can also be used for sulfate
separations. Recently, Moyer, Sessler, and co-workers developed
cage-type bipyrrole-strapped calix [4]pyrroles 16 and 17 showing
selective sulfate extraction from water (Kim et al., 2014). Unlike
cationic receptors, a phase transfer reagent is required for neutral
receptors to leverage the overall charges across two layers. In their
studies, the commercially available methyltrialky (C8-10)
ammonium (A336+) as a chloride salt was used. Taking the
design principles for sulfate recognition, pro-organized
conformations for macrocyclic receptors can save the entropic
cost, thus retaining strong binding affinity and efficient sulfate
extraction. The complexed sulfate structures are demonstrated by
X-ray diffraction analysis, and the well-defined 3D cage-type
conformation enables strong sulfate binding affinity and selective
extraction.

Another typical macrocyclic receptor recently developed for
sulfate extraction is macrocyclic squaramide (Qin et al., 2016; Qin
et al., 2019; Qin et al., 2020). Given the high dipole moment (~7.4
D) of the squaramide unit, Jolliffe et al. developed a series of
squaramide-based macrocycles (Qin et al., 2016; Qin et al., 2019;
Qin et al., 2020). The meta-phenylene–spaced tris-squaramide
macrocyclic receptor is demonstrated to selectively bind sulfate
with over 103 M−1 in a highly competitive aqueous solution of 1:1
v/v H2O:DMSO (Qin et al., 2016). By changing the phenyl spacer
to the pyridyl version, the corresponding receptor was found to
retain the selective sulfate binding across a wide pH range (3.2‒
14.1) (Qin et al., 2019). With further modification of using the
aliphatic chain, the designer receptor 18 can extract sulfate from
water (pH = 3.2‒9.4) into a chloroform phase (Qin et al., 2020).

The protonation of the isonicotinamide unit in the receptor is
proposed to offer extra electrostatics for sulfate binding.
Interestingly, the Cram U-tube experiment suggests that the
dynamic transport of sulfate can be realized through the
chloroform liquid membrane from the source phase to the
receiving phase (BaCl2 solution). The sulfate anion is
precipitated out as BaSO4, and the receptor is recycled for
next use.

In addition to the aforementioned characteristic sulfate-
binding properties, tripodal receptors are suggested to be good
extracts for sulfate separation. Ghosh et al. developed a series of
tris-thiourea– and tris-urea–based receptors, 19, 20, and 21,
showing selective sulfate extraction (Dutta and Ghosh, 2013;
Dutta et al., 2014; Dutta et al., 2015). The tripodal hexa-urea
receptor 3 is demonstrated to be able to extract sulfate from water
into chloroform (Jia et al., 2011). For these studies, phase transfer
reagents are essential for two reasons: maintaining charge
neutrality and improving the solubility of un-complexed
receptors that are typically insoluble in less polar solvents. To
avoid the use of phase transfer reagents and maintain charge
neutrality, the di-topic receptor that can simultaneously bind
anion and the counter-cation is ideal.

The di-topic receptor comprises anion-binding sites and
cation-binding sites, which is well-known in anion recognition
chemistry yet rarely used for sulfate recognition and exaction.
Recently, Romański et al. developed a new family of di-topic
receptors based on squaramide and crown ether moieties for
sulfate extraction from alkaline solutions (Figure 2F). (Jagleniec
et al., 2019; Zaleskaya et al., 2020a; Zaleskaya et al., 2020b;
Jagleniec et al., 2021) The linear di-topic receptors 22 and 23
are demonstrated to bind sulfate in a 4:1 receptor: sulfate
stoichiometry as suggested by X-ray crystal structures
(Jagleniec et al., 2019; Zaleskaya et al., 2020b). Akin to the
structure of SBP, four squaramide units combine together to
support binding with one sulfate anion through eight hydrogen
bonding. The transport of sulfate anions in a U-tube has also
demonstrated and indicated that 31% of sulfate is delivered in
14 days. Evolving from linear di-topic receptors, tripodal versions
24 and 25 were also developed and suggested to extract sulfate
with 49 and 72% efficiency, respectively (Zaleskaya et al., 2020a;
Jagleniec et al., 2021). These studies are the first examples of
separating the sulfate anion as alkaline salts from water, which
open the opportunity to develop new sulfate separation receptors
that do not need to rely on phase transfer reagents in
liquid–liquid extraction.

CONCLUSION AND FUTURE OUTLOOK

In this minireview, we summarized recent studies for sulfate
recognition and separation using crystallization and liquid–liquid
extraction. We observe that significant progresses have been
made in developing synthetic receptors for sulfate recognition,
which are thus utilized for sulfate separation. The fundamental
challenge is still in understanding the design principles of the
receptor with strong binding affinity and selectivity for sulfate.
More studies on receptor designs for sulfate recognition and
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separation are needed that can help accumulate sufficient
examples for understanding of receptor designs. Future studies
include but are not limited 1) to design receptors with size-
complementary geometry and characteristic hydrogen-bonding
donors for sulfate binding, for example, ortho-phenylene spacer
bis(urea) (Zhao et al., 2021), squaramide (Qin et al., 2016), and
directional halogen bond (Pancholi and Beer, 2020); 2) to design
new receptors for sulfate recognition in pure water (Langton et al.,
2016); 3) to design new receptors with strong sulfate binding
affinity, for example, bicyclic cage-type receptor (Liu et al., 2019);
4) to design new receptors for efficient sulfate extraction (Dietrich
et al., 1984); 5) to understand the dynamic process in
liquid–liquid extraction, for example, phase–phase transfer and
equilibria across multilayers (Moyer et al., 2012); 6) to understand
the correlation of recognition and separation, for example,
correlation of binding affinity and extraction efficiency, and 7)
to develop new sulfate-related application, for example, direct

absorption of SOx-containing gas by receptor solutions
(Martínez-Ahumada et al., 2021).
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