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Abstract: Raster projectors are commonly used in many various measurement applications where
active lighting is required, such as in three-dimensional structured light scanners. The effect of
temperature on the raster projector, in some conditions, can lead to significant deterioration of the
measurements performed with such a scanner. In this paper, the outcomes of several experiments
concerning the effects of temperature on raster projectors are presented. The described research is
focused on the thermal deformations of projected images caused by common thermal effects observed
in projectors: those caused by the warming-up process and changes in ambient environmental
temperature. A software compensation method is also presented. It is suitable for implementation in
any existing measurement method that uses raster projectors. The results of performed verification
experiments show that the developed compensation method can decrease the thermal drift of the
projected images by up to 14 times in the ambient temperature range 14–42 ◦C.

Keywords: temperature effect; 3D imaging; raster projector; 3D structured-light scanner;
temperature compensation

1. Introduction

Three-dimensional (3D) structured light (SL) scanners are currently used in many scientific,
industrial and engineering fields. In order to meet the high requirements of the modern market,
SL scanners need to be better, faster, and more accurate [1–7]. Consumers require scanners that
carry out metrologically correct measurements. Their measurement uncertainty can be described
by a dedicated parameter [3,6,8–13] called the Maximum Permissible Error (EMPE) [6,9–11,14];
methods for its calculation have been described in the ISO 10360-8 [14] standard and the
VDI/VDE2634 [10] recommendations. The error EMPE can be determined using dedicated validation
artefacts. Scanner calibration and its metrological validation (which involves the estimation of EMPE) is
performed in a laboratory using a stabilized environment (i.e., constant temperature, low and constant
humidity, no vibrations, and no external light sources) [3,6,9,10,12–15]. Further measurements are
often performed outside the laboratory, where the environmental conditions can vary. In particular,
the temperature is one of the most critical factors that can cause significant measurement errors [3,6,13,15].
Some research has shown that the temperature range in which a 3D SL scanner maintains its metrological
properties can be relatively small, up to 5 deg [15–17]. The effects of temperature on a 3D SL scanner
can be observed in three main fields: the effect of temperature on the field detector (most often a digital
camera with lens), the effect of temperature on the mechanical base of the scanner, and the effect of the
temperature on the raster projectors.

Some papers have described the effects of temperature on the digital cameras used in 3D SL
scanners. Handel, in [18–20], described a method for the compensation of temperature on the image
drift of the camera. Handel proposed a linear model that can be used for compensation of the effect of
temperature on the intrinsic parameters of the camera. Podbreznik and Potočnik described similar
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studies in [21]. Extensive studies in this field and another compensation method were described in [22].
The influence of temperature changes on the geometric stability of smartphone and cheap Raspberry Pi
cameras was described in [23], in which the authors proposed a compensation method. In [24], I also
proposed a compensation method that can be used in any camera calibration model (i.e., not only a
pinhole camera model).

When studying the effect of temperature on the uncertainty of the 3D SL scanner, the effect of
the temperature on digital cameras is not the only factor that needs to be considered. The effects of
temperature on another two 3D SL scanner units—the mechanical base and the raster projector—also
need to be investigated. The compensation method of the effect of temperature on the scanner base
was the scope of my previous study, described in [25]. At the same time, no papers have described
the impact of temperature on the thermal image drift and the deformation of images displayed by
the raster projector. There are available papers that have described the effect of temperature on the
ageing process of a projection matrix [26–29]. There also can be found papers that have described the
effect of temperature on the intensity of projected images, color reproduction, color temperature or
signal-to-noise ratio [28–31]. The point is that there is no available literature that reports the effect of
temperature on the image drift and deformation of the images projected by raster projectors.

In the construction of 3D SL scanners, commercial, business-class projectors are often used
(Figure 1a) [1,5,15,32–37]. This is due to their relatively low price, high image quality, and easy
integration with other scanner components. Business projectors are usually equipped with an HDMI,
DisplayPort, or VGA input, which allows for their easy integration with a computer and scanner
control software. The drawback of using commercial business projectors is the fact that their design
has not been optimized for use in 3D scanners [8,15]. Consequently, their lenses and the optical path
are often not rigid enough. Some projectors have a cooling system that vibrates the optical system.
These vibrations do not affect the perception of the image when using the projector for standard usage
but, when using the projector as a source of projected images in a 3D scanner, such vibrations are
unacceptable. Another disadvantage is additional hardware improvements which, in 3D scanners,
may lead to deterioration of the quality of scans or scanner de-calibration. These are all kinds of image
correction functions (e.g., keystone correction or resolution interpolation), as well as functions related
to the adaptive change in image intensity depending on external light. These types of functions can
affect the intensity, contrast, and linearity of projected images. An additional feature, which is not
always desired in the projectors used in 3D scanners, is the fact that color images are displayed. In 3D
SL scanners, raster images are most often monochrome [2,3,8,38–40]. The use of all three projection
channels may cause deterioration of the quality of the designed rasters, due to the chromatic aberrations
between the R, G, and B channels. For this reason, often, only one color channel is used to project
fringe images.

Development kit projectors are an alternative to business projectors; for example, the Texas
Instruments Digital Light Processing (DLP) LightCrafter family projectors (Figure 1b) [41–45]. These are
projectors equipped with a DLP system and a Digital Micromirror Device (DMD) matrix. They allow
for the projection of fringe images to be directly implemented in the memory (i.e., an external signal
source is not required for image projection), which allows for quick measurements by significantly
facilitating the synchronization of the display with image registration by the camera. The projector
has no housing; it is delivered as a so-called evaluation board, on which the user can test various
hardware and software solutions. The advantage of this projector is that it does not come with any of
the previously mentioned features dedicated to business projectors.

Business projectors and development-kit projectors have one more important feature that should
be taken into account when selecting a projection unit for a 3D SL scanner: the effect of temperature
changes on the displayed image is not compensated for.
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Figure 1. The projectors used in the experiments: (a) business-class projector DLP Casio XJ-A252; and 
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Figure 1. The projectors used in the experiments: (a) business-class projector DLP Casio XJ-A252;
and (b) development kit projector DLPLightCrafter 4500.

The compensation of thermal effect on projectors is a crucial issue when talking about 3D SL
scanners equipped with one camera. When 3D SL scanner is equipped with at least two (or more)
cameras, then there is a possibility to recalibrate the phase values for every single measurement,
which allows for the “natural” compensation of the effect of temperature on the projector. It requires
a more complicated approach to the measurement sequence, and not every multi-camera scanner is
equipped with this feature. The condition that must be fulfilled is the stability of the camera calibration
and the stability of mutual calibration between cameras. However, there are still available 3D scanners
that are equipped with only one camera (HP 3D Structured Light Scanner Pro S3 [46], Smarttech3D [47]),
where the phase values are calibrated during the calibration process.

This paper presents the outcome of research in the field of thermal effect observed in digital
projectors; also, the temperature compensation method is proposed. It can significantly decrease
the thermal drift and deformation of the projected image. This paper is also the continuation of the
studies described in [15,24,25], where the effects of temperature on the digital cameras, mechanical
base, and the whole 3D SL scanner were introduced.

The following section (Section 2) describes the test stand setup used in the experiments. In Section 3,
the results of preliminary studies and the thermal image drift caused by the warming-up processes
of two commonly used in SL scanner projectors—DLP Casio XJ-A252 (Figure 1a) [48] and DLP
LightCrafter 4500 Figure 1b [41] are described. In Section 4, the outcomes of studies using varying
ambient temperatures on the DLP LightCrafter 4500 projector are presented, and the compensation
model is introduced. The results of the experiment and from applying the compensation model are
provided in Section 4.4.

2. The Test Stand

A dedicated test stand was designed to conduct experiments with varying ambient temperatures,
analyzing the consequent effect on the raster projector (Figure 2a). The test stand was designed
as follows: the projector and the validation artefact (which was also a projection screen) were
mounted on a dedicated stand made of Robax glass (with a coefficient of thermal expansion
α20−700°C = (0± 0.5) × 10−6[1/K]) [49,50]. The stand was athermalized by specialized keys made
from Robax, which prevented the glued connections from deforming due to varying temperature
(Figure 2b). One side of the stand (where the projector was mounted) was hidden inside the thermal
chamber. The validation artefact was placed in front of the projector. It was mounted on the
rotary-translation stage and placed outside the thermal chamber. An additional camera unit (PtGrey
Grasshopper 2.0 GS2-GE-50S5M-C [51]) was used to register the frames projected by the projector
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onto the artefact. The thermal chamber was equipped with an automatic flap, which was opened only
during the time needed to capture the image with the additional camera.
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way that the varying ambient temperature acted only on the projector unit; that is, the validation 
artefact and the additional camera were not exposed to temperature changes. The validation artefact 
was composed of a flat glass plate with a pattern of black markers on a white surface printed onto it 
(Figure 2c). In order to detect the thermal image drift caused by the temperature changes, the 
projector projected an image with a matrix of markers onto the validation artefact (Figure 2d). Such 
a solution allowed for detecting and quantitively estimating of the image drift of the projected image 
and for checking whether the positioning between the camera, projector, and validation artefact 
remained the same during the experiment. The test stand was also equipped with a FLIR E40 thermal 
camera [52] and a temperature registration unit MultiCon CMC by Simex Ltd. [53] with a set of Pt100 
sensors (class A, four wires). 

Figure 2. Test stand and the validation artefact: (a) overview of the test stand, with the Robax stand
and the thermal chamber: (b) the athermalized design of the stand—the Robax keys preventing the
thermal deformation of the glued connection of the stand; (c) the validation artefact with the matrix of
printed markers; and (d) the same validation matrix (markers printed on the artefact are marked with
yellow dots) with the projected matrix of projector-related markers (marked with red dots).

The whole test stand (including the additional camera unit) was placed in the laboratory, in which
an air conditioning system controlled the temperature. The test stand was designed in such a way that
the varying ambient temperature acted only on the projector unit; that is, the validation artefact and the
additional camera were not exposed to temperature changes. The validation artefact was composed
of a flat glass plate with a pattern of black markers on a white surface printed onto it (Figure 2c).
In order to detect the thermal image drift caused by the temperature changes, the projector projected
an image with a matrix of markers onto the validation artefact (Figure 2d). Such a solution allowed
for detecting and quantitively estimating of the image drift of the projected image and for checking
whether the positioning between the camera, projector, and validation artefact remained the same
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during the experiment. The test stand was also equipped with a FLIR E40 thermal camera [52] and a
temperature registration unit MultiCon CMC by Simex Ltd. [53] with a set of Pt100 sensors (class A,
four wires).

3. Preliminary Studies

In the preliminary studies, the warming-up processes of the two projectors were investigated.
These studies were focused on determining the time that was needed to achieve thermal equilibrium,
and the maximum observed temperature on the projector surface and the effect of projector warming-up
on the deformation of the projected image. Therefore, two kinds of experiments were conducted:

- The first experiment was related to registration of the temperature and time to reach the projector’s
thermal equilibrium; and

- The scope of the second experiment was to register the thermal drift and the deformation of the
projected image.

3.1. The Warming-Up Process—Thermal Equilibrium

This experiment was conducted twice: in the first test, the projector displayed a uniform white
frame (all pixels were set to 255 intensity level) and, in the second one, each projector displayed a
uniform black frame (all pixels were set to 0 intensity level). This test was conducted on the test stand
introduced in the Section 2, but the thermal chamber was turned off, and the automatic flap was left
open. The validation artefact was not used in this experiment.

Figure 3 shows the warming-up process of the DLP LightCrafter 4500 projector, as registered by
the thermal camera Flir E40. The experiment lasted about 120 min (only the first 71 min are shown on
the thermal camera). In Figure 3, the temperature sensor PT100 can also be seen, attached near the
LED light sources (near the measuring point sp1). The temperatures registered by this sensor during
the two experiments (i.e., displaying white and black frames) are presented in Figure 4.
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Figure 3. The warming-up process of the DLP LightCrafter 4500 projector, registered with thermal
camera Flir E40. The colors on the presented images show the projector temperature in the first 71 min
after turning on the power supply. The LED source is the warmer place on the projector (measuring
point sp1).
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Figure 4. The temperature registered during the warming-up experiment of the DLP LightCrafter 4500
projector displaying white and black frames. The temperature was measured by the PT100 sensor
attached to the LED light sources.

In Figure 5, the warming-up process of the projector DLP Casio XJ-A252, registered by the thermal
camera Flir E40, is shown. The experiment lasted about 50 min. One measurement point was defined,
placed near the optical system. For this experiment, the top plate of the projector housing was removed.
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Figure 5. The warming-up process of the DLP Casio XJ-A252 projector, registered with the thermal
camera Flir E40. The top plate of the projector was removed to show the inside of the projector.
The measuring point is located on the housing of the optical system.

The conducted experiments show that the heat distribution on the surface of the projectors was
not uniform. The LightCrafter 4500 reached its thermal equilibrium about 50–55 min after power-up,
while that for the Casio XL-A252 projector was after about 20 min. The difference in the registered
temperature while displaying black and white frames was caused by the fact that, during the projection
of the white frame, all micro-mirrors from the DMD sensors reflected light to the projection lens
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but, during the black frame projection, all micro-mirrors reflected light to the absorber. For the DLP
LightCrafter 4500, the difference in temperature during the projection of black and white frames
reached up to 5–6 °C. In the Casio projector, the difference was not as significant, about 1 °C (Figure 6).
This difference in projector behavior was caused by the adaptive cooling system implemented in the
Casio XJ-A252 projector.
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Figure 6. The temperature registered during the warming-up experiment of the DLP Casio XJ-A252
projector displaying white and black frames. The temperature was measured by the PT100 sensor
attached to the optical system housing.

The most important conclusion from these experiments is that the temperature of the projector
may be related to the displayed image. This could be crucial information when considering the usage
of a particular projector in the 3D SL scanner. When conducting measurements with a 3D SL scanner,
displaying a sequence of measurement images takes up only a certain period of the entire scanning
cycle [1–3,8,35,36]. Depending on the detector used and the number of displayed frames, the projection
time usually ranges from a fraction of a second up to several dozen seconds. Outside of these periods,
the projector in the scanner can project any image and, in practice, full black frame projection is often
used. The conducted tests showed that, when the black frame was displayed, the temperature of the
projector may rise by several degrees due to the light beam being directed into the absorber.

3.2. The Warming-Up Process—Thermal Drift and Deformation of the Projected Image

The scope of this experiment was to register the thermal drift and deformation of the projected
image. The thermal chamber was turned off, and the automatic flat was left open, but the validation
artefact and the external camera were used to capture the projected images. Immediately after turning
on the projector and projection of the prepared image, the external camera began to register the frames.

In Figure 7, the thermal image drift caused by the warming-up process of the LightCrafter4500
projector is shown. The first registered frame is the background of this figure (it was captured
immediately after the projector was turned on at the beginning of the warming-up process). There are
two types of markers visible: thirty-five large black markers (marked with their trajectories), which were
projected by the projector, and nine smaller black markers (marked with bright green color), which were
printed on the validation artefact. In order to obtain the trajectory of projected markers, their coordinates
are extracted from each captured frame and marked on the background image with the colored indicator
(the color denotes the temperature of the projector). The shift of each marker canter is multiplied
20 times. The image drift presented Figure 7 shows that the projected image had shrunk around
the center-bottom point of the image. The maximum drift of the projected markers was equal to
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Imax = 8.319 px horizontal and Jmax = 9.224 vertical, which is equal to 1.89 mm horizontal shift and
2.1 mm vertical shift in the artefact plane. The markers printed on the validation artefact remained
stable during the whole experiment. Its maximum drift was no higher than 0.156 px, which means that
the positioning between the external camera and the validation artefact remained stable during the
whole experiment and that image drift and deformation were caused only due to thermal effects in
the projector.
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Figure 7. Thermal image drift of the LightCrafter 4500 during the warming-up process. The background
frame is the first registered frame (immediately after turning on the projector). There are two types
of markers: thirty-five big black markers, displayed by the projector, and nine smaller black markers
(marked with bright green color), printed on the validation artefact. The marker trajectories are
multiplied 20 times. The colors show the temperature of the projector (blue dot: temperature around
24 °C, red dot: temperature around 43 °C).

In Figure 8, the thermal image drift of the Casio XJ-A252 projector is presented. All markings and
the test method were the same as for the LightCrafter 4500 warming-up experiment. The maximum
drift of the projected markers was equal to Imax = 4.334 px horizontal and Jmax = 2.065 vertical,
which is equal to 1.05 mm horizontal shift and 0.51 mm vertical shift in the artefact plane. The markers
printed on the validation artefact remained stable during the whole experiment, with maximum
drift no higher than 0.203 px. All marker trajectories were similar. In Figure 9, the trajectory of a
single marker is shown. In the first stage of the warming-up process, a global shift in the vertical
direction can be observed. After a while of warming-up (at around 37 °C), the trajectories turned to
the left. This type of temperature drift was most likely due to the uneven heating of the projector.
During the initial warming-up phase, the nature of the thermal drift was caused by some particular
part of the projector. When the heat generated by the projector began to flow to other parts of the
projector, they also began to deform, and the nature of the drift changed. Another conclusion from the
analysis of Figure 9 is that the drift progressed, even though the projector temperature did not change.
The reason for this phenomenon was the heterogeneous temperature distribution on the projector’s
surface and that the external temperature sensor was located in a place where the projector locally
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reached its thermodynamic equilibrium much faster. However, this state was not the same as the state
of thermodynamic equilibrium of the entire projector. Thus, in the approach to building a compensation
model for this projector model, one should choose a different place to measure the temperature.
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Figure 9. The trajectory of a single marker during the warming-up process of the Casio XJ-A252 projector.

4. Compensation

4.1. Tests in the Thermal Chamber

In order to determine the effect of external temperature changes on the projector, only the
LightCrafter 4500 projector model was used, as it was the most representative and most suitable for
usage in a 3D SL scanner. The experiments were conducted on the test stand described in Section 2.
The chamber inspection flap remained closed while the set temperature inside the chamber was
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established. At the beginning of the test, the projector and external camera were turned on and left
for about 120 min, in order to achieve a stable temperature. At this temperature (called the reference
temperature), the external camera collected a series of reference frames. Then, the temperature inside
the chamber was changed and left for at least 3 h for the temperature of the projector and the chamber
to stabilize again. For each stabilized temperature, the inspection flap of the chamber was opened for a
very short time, only necessary for the external camera to capture images of the artefact illuminated by
the projector. The projector was positioned in such a way that it projected through the inspection flap.
This setup allowed the temperature of the projector to be maintained constant (i.e., the time needed for
the acquisition of images was so short that it did not affect the temperature of the projector) and, at the
same time, to isolate the influence of varying temperature only on the projector. The temperatures of
the validation artefact, external camera, and other elements of the test stand were not affected, being
outside the chamber. The entire experiment lasted about 63 (continuously) h.

Figure 10 presents the projector temperature during the tests in the thermal chamber.
The temperatures shown in the graph represent the actual temperatures of the projector (measured
by an external sensor located near light sources) when the external camera was capturing frames to
determine the thermal drift of the projected images. The projector reference temperature Tre f = 42 °C
corresponded to an ambient temperature of 24 °C (inside the chamber). The lack of symmetry in the
temperature function, as visible in the graph, resulted from the fact that used thermal chamber did
not have enough cooling power, in relation to the heating power of the projector. Hence, the lowest
temperature of the projector was 32 °C (corresponding to 14 °C ambient temperature), and the highest
was 60 °C (42 °C ambient).
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Figure 10. Projector temperature during the tests in the thermal chamber. The horizontal blue line
indicates the reference temperature Tre f = 42 °C.

Figure 11 presents the registered thermal drift of the projected images. The maximum drift of
the projected markers was equal to: Imax = 9.763 px horizontal and Jmax = 13.04 px vertical, equal to
2.22 mm horizontal shift and 2.96 mm vertical shift in the artefact plane. The markers printed on the
validation artefact remained stable during the whole experiment, with maximum drift no higher than
0.195 px. The image thermal drifts presented in Figures 7, 8 and 11 are presented in the coordinates of
the external camera. Therefore, the coordinates had to be transformed into the coordinates relative to
the displayed image (i.e., the projector coordinates). Polynomial fitting was used to approximate the
functions that describe the relationship between projector and camera coordinates. Figure 12 shows
the image thermal drift recorded during the experiment, in the coordinates related to the displayed
image. The background of the image is the bitmap displayed by the projector, and subsequent shifts of
the marker centers are marked with colors (the shifts were scaled 20×). The maximum values of the
thermal drift of the image were Imax = 3.13 px horizontal and Jmax = 2.16 px vertical.
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Figure 11. Thermal image drift registered during tests performed in the thermal chamber. The marker
trajectories are multiplied 20 times. The marker colors show the temperature of the projector,
corresponding to the colors in Figure 10.
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Figure 12. Thermal image drift of the DLP LightCrafter4500 projector, presented in the coordinates of
the projector. The marker colors show the temperature of the projector and correspond to the colors in
Figure 10.
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4.2. The Compensation Model

The coordinates of the centers of the markers (in the projector coordinate system) at different
temperatures were used to determine the compensation model. The independent variables utilized
in the compensation model included the set of calculated marker center coordinates Iuncomepnsated and
Juncompensated for various projector temperatures. The dependent variables were the calculated centers of
the markers Ire f and Jre f for the reference temperature. The compensation model function was an nth
degree polynomial, Pn, which describes the thermal image drift caused by varying the temperature of
the projector. Polynomial fitting was used to determine the coefficients associated with the model [54].

The best fitting results were observed when using a 5th degree polynomial. Figure 13 shows
histograms presenting the values of the coordinates of the projector markers at different temperatures
relative to the coordinates at the reference temperature before and after compensation. The presented
histograms show that, after application of the compensation model, the projector marker coordinate
deviations decreased significantly. The mean absolute value before compensation was equal to
Imean = 0.892 px and Jmean = 0.299 px and those after compensation decreased to Imean = 0.218 px
and Jmean = 0.095 px. The thermal image drift range before compensation was Irange = 6.039 px and
Jrange = 7.503 px and that after compensation was Irange = 0.906 px and Jrange = 0.641 px. The reduction
in the deviation of projector marker coordinates confirmed that the calculated compensation model
allowed for a reduction in image deformation caused by changes in the external temperature of
the projector.

Sensors 2020, 20, x FOR PEER REVIEW 13 of 20 

 

4.2. The Compensation Model 

The coordinates of the centers of the markers (in the projector coordinate system) at different 
temperatures were used to determine the compensation model. The independent variables utilized 
in the compensation model included the set of calculated marker center coordinates 𝐼௨௦௧ௗ 
and 𝐽௨௦௧ௗ for various projector temperatures. The dependent variables were the calculated 
centers of the markers 𝐼 and 𝐽 for the reference temperature. The compensation model function 
was an 𝑛th degree polynomial, 𝑃, which describes the thermal image drift caused by varying the 
temperature of the projector. Polynomial fitting was used to determine the coefficients associated 
with the model [54]. 

The best fitting results were observed when using a 5th degree polynomial. Figure 13 shows 
histograms presenting the values of the coordinates of the projector markers at different temperatures 
relative to the coordinates at the reference temperature before and after compensation. The presented 
histograms show that, after application of the compensation model, the projector marker coordinate 
deviations decreased significantly. The mean absolute value before compensation was equal to 𝐼 = 0.892 𝑝𝑥 and 𝐽 = 0.299 𝑝𝑥 and those after compensation decreased to 𝐼 = 0.218 𝑝𝑥 
and 𝐽 = 0.095 𝑝𝑥. The thermal image drift range before compensation was 𝐼 = 6.039 𝑝𝑥 
and 𝐽 = 7.503 𝑝𝑥  and that after compensation was 𝐼 = 0.906 𝑝𝑥  and 𝐽 = 0.641 𝑝𝑥 . 
The reduction in the deviation of projector marker coordinates confirmed that the calculated 
compensation model allowed for a reduction in image deformation caused by changes in the external 
temperature of the projector. 

 

Figure 13. Histogram of deviations of projector marker coordinates before and after the application 
of the compensation model. 

4.3. The Verification Experiment 

Another validation experiment was performed in order to prove the correctness of the 
constructed compensation model. Using Matlab [55] and a function that applies geometric 
transformations to images, the projected bitmap was deformed according to the calculated 
compensation model. The imwarp [56] function was used where linear interpolation was used to 
generate TransformedImage. The ImageToTransform was the reference bitmap originally projected 

Figure 13. Histogram of deviations of projector marker coordinates before and after the application of
the compensation model.

4.3. The Verification Experiment

Another validation experiment was performed in order to prove the correctness of the
constructed compensation model. Using Matlab [55] and a function that applies geometric
transformations to images, the projected bitmap was deformed according to the calculated compensation
model. The imwarp [56] function was used where linear interpolation was used to generate
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TransformedImage. The ImageToTransform was the reference bitmap originally projected by the
projector, and DisplacementField was determined using the calculated compensation polynomials.

TransformedImage = imwarp (ImageToTransform, DisplacementField) (1)

The transformed images were calculated for the entire temperature range of the projector, from
32 °C to 60 °C with a step of 0.1 °C. This resulted in a set of 271 images for the entire temperature range.
Another set of images, projected by the projector in varying ambient temperature (Figure 14a), was
collected. At each stabilized temperature, two kinds of frames were captured by the external camera:
one frame with the projector displaying the original (undeformed) bitmap and another frame with the
bitmap transformed by the imwarp function with respect to the corresponding projector temperature.
Figure 14b presents the trajectories of the markers calculated for projection using the undeformed
(uncompensated) bitmap. The maximum image drift was equal to Imax = 9.578 px horizontal and
Jmax = 10.692 px vertical. Figure 14c presents the trajectories of the markers calculated for the projection
using the deformed (compensated) bitmaps. The maximum image drift was equal to Imax = 0.716 px
horizontal and Jmax = 0.576 px. The positions of the markers printed on the artefact remained the same
during the whole experiment (maximum shift was no higher than 0.168 px).
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Figure 14. Results of the verification experiment: (a) the stabilized projector temperatures; (b) the
trajectories of the markers calculated for the projection of the undeformed (original) bitmap; and (c) the
marker trajectories calculated for the projection of the bitmaps deformed using the calculated
compensation model.
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The whole process of compensation is presented in Figure 15. The process starts after the projector
and camera reaches its thermal equilibrium. Then the compensation data needs to be collected: the
set of images with the pattern described in Section 3.2 (Figure 2d) in various ambient temperatures
(Figure 10). The next thing is to extract the feature points (centers of projected markers) from collected
data (Figure 11) and transform them into the projector coordinates system (Figures 1 and 12). Then the
compensation model can be calculated, and the displacement map for a particular temperature (from
the temperature range determined in stage 2, Figure 15) can be estimated. The last thing to do is to
apply the displacement map to the projected image in the corresponding ambient temperature.
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4.4. Results

The presented results confirm that the calculated compensation model allows for a significant
reduction in image deformation caused by changes in the external temperature of the projector. For the
calculated coordinates of the markers, the deviation values achieved a 92% decrease for the horizontal
direction and a 94% decrease for the vertical direction after compensation. Figure 16 shows the effects
of the application of the compensation model more realistically and qualitatively. Figure 16a was
created by subtracting the frame collected at the reference temperature and the frame collected at the
temperature of 55 °C with the projection without compensation, where a black and white chessboard
pattern (field width 25 px) was used as the projected image. In order to improve visibility, the intensity
of the output image was additionally inverted. The edges associated with the image shift and its
deformation caused by the temperature change of the projector can be observed. In the central and
bottom parts of the projected image, the shifts are the smallest and propagate radially towards the
image corners. This corresponds to the trend observed in the experiment described in Section 4.1.
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Figure 16. Qualitative demonstration of the effect of the calculated compensation model on the
LightCrafter 4500 projector: (a) The presented image is the result of subtracting (and intensity inversion)
two frames collected at reference temperature 42 °C and the temperature of 55 °C when projecting a
black and white checkerboard pattern, without compensation of the projected image; and (b) the same
frame subtraction, but with compensation of the projected image.
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Figure 16b shows the image resulting from the same subtraction of two frames captured at
different temperatures (reference temperature 42 °C and 55 °C) when using the proposed compensation
model. It can be seen that the edges of the chessboard resulting from the subtraction of images are
much less visible and that their thickness is the same over the entire area. Edges are clearly visible
only at the edges of the projected image, which illustrates the difference between projection with and
without compensation. The area where edges can be seen, however, is minimal, occupying a frame
approximately 4–5 pixels thick at the edges of the image.

5. Discussion and Conclusions

This paper presented the results of research on the effects of temperature on the types of
projectors which are commonly used in 3D SL scanners. The research was carried out using two
models of projectors. It was shown that, during the projector warming-up process, as well as due
to exposure to varying ambient temperatures, the projected image suffered significant deformation.
These deformations reached values of up to several pixels in the projected image. Therefore, a model
for compensation of the influence of changing temperature on projectors was also presented in this
paper. Application of the developed compensation model led to a significant reduction in the thermal
drift of the projected image. However, the presented compensation model also has disadvantages.
One limitation is that it only works correctly in thermodynamically constant states. Thus, it cannot
be used to compensate for the effect of temperature on the projected image during the warming-up
process. Another fact that is crucial for the results of compensation is the repeatable behavior of
the projector unit exposed to the varying thermal conditions. If the thermal drift of projected image
changes in various experiments, the results of applying the proposed compensation model may not be
as good.

Another limitation is the fact that, in order to develop a compensation model, it is necessary to
have an appropriate test stand equipped with a thermal chamber. This can be a serious limitation,
as access to a laboratory equipped with such an apparatus is relatively expensive and complicated.
Proposed compensation model can be used in any raster projector, nevertheless, taking into account the
complexity of the thermal issues, there is a need to calculate dedicated compensation model parameters
for each projector unit.

The proposed method of compensation for the effect of changing temperature on projectors can
be successfully used in 3D SL scanners. In order to integrate it with the existing 3D SL scanner, there is
a need to equip the projector unit with the temperature sensor and implement the image deformation
function in the software responsible for preparation of the measurement images. The calculations
needed for the compensation are relatively simple, and it should not affect the speed of measurement
of any 3D SL scanner. The presented verification experiments showed that, for the used projector,
the thermal image drift could be reduced by over 90%. The proposed method does not require any
interference in the construction of the projector; it is only necessary to equip the projector with an
adequately positioned temperature sensor.
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