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Abstract: The raw EEG signal is always contaminated with many different artifacts, such as muscle
movements (electromyographic artifacts), eye blinking (electrooculographic artifacts) or power line
disturbances. All artifacts must be removed for correct data interpretation. However, various noise
reduction methods significantly influence the final shape of the EEG signal and thus its characteristic
values, latency and amplitude. There are several types of filters to eliminate noise early in the
processing of EEG data. However, there is no gold standard for their use. This article aims to
verify and compare the influence of four various filters (FIR, IIR, FFT, NOTCH) on the latency and
amplitude of the EEG signal. By presenting a comparison of selected filters, the authors intend to
raise awareness among researchers as regards the effects of known filters on latency and amplitude
in a selected area—the sensorimotor area.
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1. Introduction

The EEG-ERP has become very popular, especially in the last 20 years, due to its many
advantages: The examination is inexpensive, safe and easy to carry out. The modern EEG
is considered to be an excellent alternative to magnetic resonance imaging or computer
tomography because of its outstanding high temporal resolution [1]. The signal is widely
applied in cognitive science and psychophysiological research, providing helpful clues
about cognitive development and general mental functions [2]. The EEG is often used in
neurological clinical trials to identify and treat various diseases, such as epilepsy [3], sleep
disorders [4,5] and Alzheimer’s disease [6]. The EEG can also provide plenty of useful
information about various mental dysfunctions or mental illnesses [7,8]. This is why it is
gaining ground in psychological and psychiatric research and diagnosis in areas such as
schizophrenia [9,10], Internet addiction [11], bipolar disorder [12], depression [13], binge
eating disorder [14], different personality disorders [15,16] and many others.

Owing to the growing popularity of the EEG over the past two decades, researchers
have definitely been using more instruments. In turn, the development of new tools and
software has made it possible to conduct more complex and methodologically advanced
research. This is closely related to the demand for knowledge about data processing.
There is growing pressure on developing more advanced statistical and signal processing
methods. In addition, scientific practice is currently undergoing tremendous changes
to improve the transparency of data collection, documentation and analysis, research
reproducibility and manuscript review [17]. Thus, a unified approach must be applied
to data recording, artifact control and signal processing, and the procedures must be
reported transparently.
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However, a review of the literature shows that this is not an evident approach. As
summarized by Robbins et al. [18], to date, studies have differed significantly already at
the stage of data pre-cleaning methods, and EEG preprocessing approaches have not been
standardized. Basically, the preprocessing phase is essential because a raw EEG signal is
always contaminated with many different artifacts. They are related to the subject, e.g., as
muscle movements, eye blinking, cardiac activity or breathing, or to other external and
environmental factors, such as powerline disturbances [19]. Different methods are used to
remove each type of artifact.

The methods are available as built-in options in various toolboxes or as dedicated
overlays which support the preprocessing phase. EEG signals recorded by a single electrode
are a superposition of signals from multiple sources (e.g., assigned to other electrodes);
therefore, so-called spatial filters have come into use. There are also methods based on
the principle of source signal estimation. An example of such a method is Blind Signal
Separation (BSS) and, in particular, Independent Component Analysis (ICA) (Delorme
2004). One of the more popular environments used for preprocessing is MATLAB software
together with open packages, i.e., EEGLAB, ERPLAB [20], SPM or Fieldtrip, or commercial
ones, i.e., Curry or BESA. The aforementioned filters have been widely described in
scientific papers both in technical terms, FIR [21,22], IIR [23,24], FFT [25,26], NOTCH, and
in clinical applications or in typical research, FIR [27], NOTCH [28], FFT [29].

There is a recommendation for a package like EEGLAB that continuous EEG data
should be filtered before being epoched or before the artifacts are removed. The process of
filtering continuous data minimizes the need to filter artefacts at epoch boundaries (the use
of FIR [30] is “recommended”). In the absence of the MATLAB Signal Processing toolbox
(the EEGLAB legacy filter), a simple filtering method by means of the inverse Fourier
transform can be applied. However, there are more filtering options. There is no ideal
filter for the EEG data, either. For example, the effect of high-pass filters on ERP data is
currently under discussion. Consequently, different solutions can be found in the literature:
Both without filtering (e.g., VanRullen, [31]) or with very careful filtering [32]. There is
an ongoing discussion in the literature [30,32–34] on how to avoid suboptimal practices
resulting in regularly distorted or even false results.

External noises are removed at the first stage of data processing with the use of filters
designed for this purpose. However, it is by no means easy to choose the right filters, as
there is no adequate research into comparing the filtration effect by means of different filters.
While several guidelines for best practices in signal preprocessing have been released [17],
the procedures are relatively broad and give researchers considerable leeway to choose the
appropriate filters or to create processing pipelines (in some parts, manual) consistent with
best practices [18].

The absence of specific standards at the stage of preliminary signal purification and
preparation is a cause for concern. To maintain a specific frequency, the signal needs to be
cleaned with filters that should meet strict requirements. Any distortion of the original
EEG signal can have fatal consequences, both for research purposes and in clinical use, at
the stage of diagnosis and medication. Unfortunately, for the time being, little is known
about the extent to which the use of different filters ultimately makes a difference in the
obtained data. This refers in particular to latency and amplitude, which are important
parameters for neuroscience and clinical diagnostics. There is not enough literature to
compare various techniques used for artifact rejection. A standard methodology for perfect
artifact removal has not been defined [35]. What is more, even those studies that strictly
adhere to guidelines exhibit significant differences in the application of the recommended
methods. This is a serious issue if the results between different studies are compared [18].
Another issue is that few researchers are familiar with certain artifact detection and removal
methods [36], even though they are universally available [37].

The paper attempts to determine the influence of the filters on the EEG-ERP study,
in particular the influence of the selected filters on the amplitude and latency in the
sensorimotor area.
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2. Materials and Methods

The data for the analyses were reused and the experiment itself was described in an
earlier paper by Karpiel and Drzazga [38].

2.1. Participants

Seven healthy participants (4 males and 3 females) aged 20 to 35 (mean = 24.14,
SD = ±4.99) without any neuromuscular or cerebral diseases took part in the study as
volunteers. They were university students or alumni. All participants were right-handed,
had normal color perception and normal visual acuity. All of the participants were healthy
and had no neurological medical history. Information about their health and lifestyle was
collected via a survey. The study was approved by the institutional ethics committee of the
University of Silesia.

2.2. Experimental Design

Raw EEG signal data were taken from an experiment conducted in the laboratory.
Participants were shown three Arabic numerals: 2, 3 and 4. Their task was to look at the
center of the screen and respond to these numerals by pressing the appropriate keys on
the keyboard with the index finger, middle finger and ring finger, respectively. A total
of 450 right-hand and 300 left-hand trials were made. The stimulus interval was set at
800 ms. Each complete trial (stimulus + response + pause) lasted 2 s. Therefore, it took
15 min to complete the task for the right hand and 10 min for the left hand. Scenarios were
created with Eevoke software (ANT Neuro running on PC desktop—MS Windows 7 OS).
The experiment was carried out with a commercial ANT Neuro amplifier (AMP-TRF40AB
model) in DC with 20,000 amplification gain and 256 Hz sampling rate, as well as ASA
v.4.8 software. The stimuli included the Arabic numerals: 2, 3 and 4. The raw EEG signal
and reaction times were recorded during the process for later analyses. The participants
were seated in a comfortable chair, in front of a computer screen, at a distance of 1 m.

2.3. Experimental Procedure

Digits 2, 3 or 4 were shown in the center of the screen until a key was pressed, or until
the digit automatically disappeared after 1200 ms. The subjects were required to respond
by pressing the key with their index finger when “2” appeared, the middle finger when
“3” appeared and the ring finger when “4” appeared. A new stimulus arrived 800 ms after
the previous one. The order of all attempts was randomized. There were 150 attempts for
each of these three arrangements for the right hand, and 100 attempts for the left hand. The
order of these attempts was randomized.

2.4. Electroencephalogram Acquisition and ERP Recording

The EEG signal was recorded according to the standard 10–20 system, using an ANT
Neuro amplifier and the ASA software, v.4.8. However, only eight electrodes were selected
for the filtering process: Two frontocortical (F3, F4), two centrocephalic (C3, C4), two
parietal (P3, P4) and two occipital (O1, O2). These channels were chosen because the visual
perception and motor response had to be analyzed.

The raw EEG signal from 450 measurements for the right hand and 300 measurements
for the left hand was refined four times; a different filter was used each time. Subsequently,
the ICA analysis was intended to remove the artifacts, divided into 450 and 300 epochs,
respectively, and averaged. The maximum amplitude and latency were determined from
the averaged signals. At the final stage, the amplitude and latency values of the raw signal
and the signals purified by filters were compared. The raw signal was filtered with the
use of four different filters (FIR, IIR, FFT (0, 5–40 Hz) and NOTCH (lower passband edge
46.5 Hz, upper passband edge 127.5 Hz)) and processed. Two parameters are used to
compare the effect of the filter on the EEG signal: Latency and amplitude. All analyses
were performed in Python using the MNE toolkit on a PC. All analyses were performed
using PC Dell Latitude E7270 with CPU Intel Core i5-6300U, Intel HD Graphics 520, 8 GB
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RAM and Windows 10 64 operating system. The data will be used to propose a model
which uses machine learning [39,40].

2.5. Statistics

A statistical analysis was performed with the Statistica 13.1 software. For all measures,
descriptive statistics were calculated. The Shapiro–Wilk test was used to check the normal-
ity of distributions of the studied variables. The homogeneity of variances in the analyzed
groups was verified by Levene’s test. If the data failed to fulfill the assumptions required
for a parametric test, a nonparametric Friedman’s ANOVA test was applied. The level of
significance was set at p < 0.05.

3. Results

First, P100 and P300 refractions were located to verify the brain region in which
the highest values were obtained. To present the results, we focused on selected elec-
trodes/areas and the maximum and minimum values of both latency and amplitude.
Several comparisons were made to show the differences between the selected approaches.

Figure 1 shows the averaged ERP curves of all three fingers from the O1, O2, Oz
leads for seven tests. In the early visual phase (P75-120), the mean amplitude of O1 was
the strongest. In the pre-execution phase (N175-260), the mean amplitude of O2 was the
strongest. In the execution phase (P310-420), the strongest mean amplitude was for Oz (see
Figure 2). The plot shows the envelopes (i.e., the min and max values, over all channels, at
each time point), where the displayed topomaps of the average field in 50 ms time window
centered at 129 ms, 172 ms and 375 ms. On the basis of the collected waveforms and
topomaps, the highest values of amplitudes and latencies were selected. The figure shows
that in the range between 0.1 and 0.2, the highest amplitude values of ~9 µV were obtained
in the visual and motor cortex areas.

Figure 1. Examples of waveforms. Butterfly plot of somatosensory evoked potentials for all EEG
channels (colored lines, 32 channels). The averaged EEG channels are marked in the drawing of the
scalp next to the y-axis. Below: Topographical distribution of each component on the scalp. Red and
blue indicate the maximum and minimum EEG amplitude at each time point, respectively.
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Figure 2. The averaged signal for electrodes O1 (green line), Oz (purple line) and O2 (yellow line).

Figure 2 depicts the averaged curves of all three fingers from O1, O2 and Oz leads for
seven tests. In the early visual phase, the highest mean amplitude value can be observed
for the O1 lead with a slight advantage over the Oz and O2 leads.

Based on statistical analyses, there were no significant age-related differences for either
latency or amplitude. By combining these topographical and temporal amplitude analyses,
we confirmed the presence of differential responses to touch.

3.1. Latency and Amplitude—Influence of the Filters

EEG–ERP recordings were analyzed in order to identify the evoked potentials. On
the basis of signal recordings obtained from seven subjects, tables were prepared with the
values of amplitudes and latencies for the electrodes. Table 1 contains information on the
analysis. Details concerning the group are included in Table 2. In the table for each subject
there is a division into the first and second paradigm (I and II), type of filter and maximum
and minimum values of latencies and amplitudes for selected electrodes.

Table 1. Latency values for seven subjects, for selected electrodes (C3, C4, P3, P4, F3, F4).

No Time Filter Latency
max (ms) Electrode Latency

min (ms) Electrode Amplitude
max (µV) Electrode Amplitude

min (µV) Electrode

1 I
/before 12 a.m. raw 593 C4 250 C3 4.16 P4 −4.48 P3

pass band 648 C4 250 C3 4.10 P4 −4.41 P3

notch 648 C4 250 C3 4.09 P4 −4.41 P3

II
/after 12 a.m. raw 371 P4 250 C3 4.01 C4 −2.18 P3

pass band 371 P4 250 C3 3.86 C4 −2.18 P3

notch 371 P4 250 C3 3.89 C4 −2.16 P3

2 I
/after 12 a.m. raw 445 C4 371 P3 21.4 F4 −20.5 C3

pass band 441 C4 371 P3 21.1 F4 −20.2 C3

notch 441 C4 371 P3 21.1 F4 −20.2 C3

II
/after 12 a.m. raw 542 P4 312 C3 10.7 F4 −9.29 C4

pass band 398 F4 328 C3 10.6 F4 −9.27 C4

notch 398 F4 328 C3 10.6 F4 −9.26 C4
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Table 1. Cont.

No Time Filter Latency
max (ms) Electrode Latency

min (ms) Electrode Amplitude
max (µV) Electrode Amplitude

min (µV) Electrode

3 I
/before 12 a.m. raw 597 F3 296 C3 9.66 C4 −11.1 P4

pass band 382 F3 312 C3 9.32 C4 −10.7 P4

notch 382 F3 316 C3 9.36 C4 −10.7 P4

II
/before 12 a.m. raw 648 C4 328 C3 5.22 F3 −4.65 C3

pass band 519 F4 328 C3 5.10 F3 −4.14 C3

notch 648 C4 328 C3 5.25 F3 −4.20 C3

4 I
/after 12 a.m. raw 0.66015625 C3 250 F4 15.4 P4 −8.43 C3

pass band 664 F3 250 F4 15.4 P4 −8.35 C3

notch 664 F3 250 F4 15.4 P4 −8.37 C3

II
/after 12 a.m. raw 371 F3 250 C3 24.2 C4 5.68 F3

pass band 367 F3 250 C3 24.1 C4 5.59 F3

notch 367 F3 250 C3 24.2 C4 5.63 F3

5 I
/after 12 a.m. raw 644 F3 296 C4 7.42 P3 −12.0 P4

pass band 644 F3 296 C4 7.38 P3 −11.9 P4

notch 644 F3 296 C4 7.37 P3 −12.0 P4

II
/after 12 a.m. raw 546 C4 304 P4 6.99 P4 −4.33 C4

pass band 550 C4 304 P4 6.88 P4 −4.30 C4

notch 546 C4 304 P4 6.91 P4 −4.27 C4

6 I
/after 12 a.m. raw 406 C3 265 F3 2.14 F3 −2.05 C3

pass band 433 C3 257 C4 1.97 F3 −1.58 C3

notch 433 C3 257 C4 1.98 F3 −1.58 C3

II
/after 12 a.m. raw 664 F3 335 P3 5.52 P4 −2.22 C3

pass band 660 F3 250 P4 5.20 P4 −2.07 C3

notch 660 F3 250 P4 5.29 P4 −2.11 C3

7 I
/after 12 a.m. raw 507 P3 285 F3 8.17 C4 0.363 P3

pass band 507 P3 281 F3 8.10 C4 0.371 P3

notch 507 P3 281 F3 8.16 C4 0.360 P3

II
/after 12 a.m. raw 355 F3 289 P3 6.03 P4 −2.10 P3

pass band 359 F3 289 P3 6.04 P4 −2.07 P3

notch 363 F3 289 C3 6.06 P4 −2.08 P3
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Table 2. Specification of the group selected for further analysis which takes into account age, gender
and whether the person is right- or left-handed.

No Age Sex Hand

1 20 M R
2 22 F R
3 35 M R
4 27 F R
5 20 F L/R
6 21 F R
7 24 M R

It should be emphasized that among a considerable amount of data, only maximum
and minimum values were chosen for the selected number of electrodes. In the first row,
the highest amplitude value (for further consideration) is presented, which is associated
with electrode C4 and exhibits the value of 250 ms. The latency was handled in the same
way. Electrodes O1 and O2 were omitted in the presentation to narrow down the selected
area to the sensorimotor area in the best possible way.

Our analyses showed that the lowest latency obtained was 250 ms (C3, C4, P3, P4)
and the highest latency value was 664 ms (F3). The highest latency value was observed in
the signal row for electrode F3, for the test performed with the left hand. The lowest band
pass latency obtained was 250 ms (C3, C4, P3, P4) and the highest was 664 ms (F3). The
analysis for “notch” also showed the lowest latency value of 250 ms (C3, C4, P3, P4). In
contrast, the highest value was 664 ms (F3) (Tables 1 and 2).

3.2. Differences between Filters

The analysis was divided into a first paradigm analysis (for the right hand) and a
second paradigm analysis (for the left hand), respectively.

First paradigm. If analyzed sequentially, for one patient, the maximum value of
latency changed/increased, the lowest was for raw, and the same for pass band and notch
(648 ms). In patient 2, no difference was seen in the filters used; the latency value did not
change. For the next one (3), the lowest latency value was 296 ms (C3) for raw, higher
for pass band and even higher for notch, while the maximum latency value, interestingly,
was the highest for raw (597 ms) and much lower for the other filters (382 ms). In case
4, the minimum latency value was the same for all. The maximum latency value for raw
was obtained for C3 and was slightly higher for the other filters (664 ms) and in F3. In
the analysis of patient 5, no difference was noticed in the filters used; the latency value
did not change. In the analysis of patient 6, an increasing trend was observed, both for
the minimum and maximum latency value. However, in the analysis of patient 7, the
minimum value of latency (raw signal) for three electrodes (F3, C3, C4) was obtained, and
it was exactly the same value, slightly bigger than for the applied filters. The maximum
latency value for raw and filters was the same.

Second paradigm. A detailed analysis for each individual is as follows: For patient 1
the minimum and maximum latency value for all analyses is the same. For patient 2, the
minimum latency value is 312 ms (C3), while for the filters it is the same at 328 ms. Taking
into account the maximum value of latency for raw, it is much higher at 542 ms (P4), and for
the analysis using selected filters it is only 398 ms (F4). For patient 3, the minimum latency
value for raw and filter is the same, while the maximum is the same for raw and notch at
648 ms (C4), and lower for band pass at 519 ms (F4). An analysis of patient 4 indicates that
the minimum latency value for raw and filters is the same at 250 ms (C3, C4, P3, P4), while
the maximum is the same for band pass and notch. The raw signal analysis is marginally
higher. It can be seen in the case of patient 5 that the minimum latency value for raw and
filter is the same, while the maximum latency value for pass band is slightly higher than
the other values. For patient 6, the minimum and maximum latency value for raw signals
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is the highest. Patient 7 exhibited no difference in the values between the minimum latency
values for the analyses, while the maximum was the highest for notch.

Summary: Filters can affect the final latency time. They can change the latency values
in comparison with the raw signal. In five out of seven patients, greater maximum latency
values were observed for the first paradigm used compared to the second paradigm used
for the left hand (filters). For raw signals: For four out of seven cases, higher maximum
latency values were observed for the first paradigm used compared to the second paradigm
used for the left hand.

3.3. Amplitude and Latency for Fingers 2, 3 and 4

Next, a more detailed analysis was performed. For each of the eight electrodes, data
concerning the amplitude and latency were gathered. The values concerned all fingers, 2, 3
and 4, focusing on the raw signal, FIR, IIR, FFT and NOTCH. The analysis was performed
both for the right and left hand. Table 3 exhibits data for the right hand for one patient.

Table 3. Numerical values (latency and amplitude) for finger 2, for the right hand, for one person.

Filter Electrode Latency (ms) Amplitude (µV)

RAW O1 148 5.3
RAW O2 156 2.38
RAW F3 265 3.78
RAW F4 347 −1.23
RAW C3 535 −2.75
RAW C4 265 −1.95
RAW P3 253 1.51
RAW P4 351 −1.95
FIR O1 152 4.66
FIR O2 152 2.22
FIR F3 269 2.98
FIR F4 359 −1.34
FIR C3 433 −2.09
FIR C4 250 −1.64
FIR P3 320 1.44
FIR P4 324 −1.69
IIR O1 152 4.02
IIR O2 152 2
IIR F3 269 2.57
IIR F4 359 −1.09
IIR C3 429 −1.72
IIR C4 250 −1.45
IIR P3 320 1.28
IIR P4 324 −1.55
FFT O1 152 4.66
FFT O2 152 2.22
FFT F3 269 2.98
FFT F4 359 −1.34
FFT C3 433 −2.09
FFT C4 250 −1.64
FFT P3 320 1.44
FFT P4 324 −1.69

NOTCH O1 148 4.6
NOTCH O2 156 2.18
NOTCH F3 265 3.1
NOTCH F4 359 −1.2
NOTCH C3 464 −2.18
NOTCH C4 250 −1.57
NOTCH P3 320 1.45
NOTCH P4 324 −1.7
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As shown in Table 3, for all electrodes, different values were obtained for the unfiltered
signal compared to the other filters. Each record under analysis produced a fairly large
numerical database. It can be inferred from Table 3 that for the IIR filter the amplitude
for electrode O1 was 4.02 and for the rest 4.66. A slightly higher amplitude, considering
the selected electrodes, is noticeable for the NOTCH filter. On the other hand, slightly
lower latency (for all electrodes) has been detected for the NOTCH filter in comparison to
the other presented filters. FIR, IIR and FFT in this particular case have the same values
of latency and amplitude. Interestingly, no regularities were observed to predict how
amplitude or latency would change.

Figures 3–7 exhibit comparisons of amplitude and latency values for each filter (di-
vided into the left and right hand). Figures 4 and 5 give a full picture of how latency and
amplitude change. The presentation of the graphs includes data for both paradigms, i.e.,
for the right and left hand. Both Figures 4 and 5 are box and whisker plots, showing the
results for the applied FIR filter and its effect on the data averaged for all fingers, and for
fingers 3 and 4, respectively. When analyzing the amplitude for the right hand movement
(left panel), we can see the biggest scatter for electrode P4 and the smallest for O1. For the
left hand, the largest scatter was obtained for electrode C4 and the smallest for electrodes
F4 and P4. A graph was drawn for electrodes F3 and F4 showing the difference in the
obtained latency values. The smallest differences were found for the right and left hands
for the FFT, FIR and NOTCH filters (Figure 3).

The latency analysis in Figure 5 shows the smallest scatter for electrodes O1 and O2
and a much larger scatter for the other electrodes. There is a noticeable difference between
the latency values for finger 4. If we compare the two paradigms, a smaller scatter is
observed for electrodes P3 and P4 for the left hand compared to the right hand.

Figure 3. Presentation of the average latency values for the F3 and F4 electrodes for the right and left hands for selected filters.

Comparisons of all selected filters were made. The graphs can be read twofold. Latency
and amplitude values can be compared for each of the fingers, for the right and left hands
for the selected electrodes. In addition, the values for the selected filters are presented.
Consequently, (comparing the results for individual fingers) for the right hand, the largest
scatter was noticed for finger 4. The difference between the filters used was negligible. For
the left hand, the largest scatter was for finger 3. Interestingly, in this analysis there were
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differences in the filters used. For example, for FIR there was relatively little scatter for
finger 2 compared to the IIR used.

For the FIR filter, the amplitudes and latencies can be seen from the individual
electrodes. In the case of O1 and O2 electrodes, the lowest latency values can be seen
(Figures 6 and 7).

Figure 4. Wave amplitude values (V) FIR filter: Top drawing for all and individual fingers: a—all fingers, b—“2” fingers,
c—“3” fingers, d—“4” fingers and electrodes P4. Middle drawing for finger 3 and all electrodes. Bottom drawing for finger
4 and all electrodes. Right hand (left in the photo) and left hand (right panel).

The differences between the right and left hand are noticeable; for example, the FIR
filter, both for finger 3 and finger 4. For finger 3 in the left hand, the scatter is significantly
larger compared to the right hand; the same goes for finger 4.

For the right hand, the largest scatter can be seen for finger 4, while for the left hand,
the largest scatter is discernible for finger 2. When considering the right hand, there is not
much difference between the filters used. For the left hand there are noticeable differences
between the filters used. In particular, a larger scatter can be observed for fingers 2 and 3
compared to the other filters. If we compare the latencies for the right hand (movement of
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all fingers) and the chosen electrodes, the selected significance level is less than p < 0.05
and amounts to p = 0.00009 (for notch). For the analysis performed on the second finger
p = 0.00006, third p = 0.00004 and fourth p = 0.00004. However, taking into account the
amplitude (movement of all fingers, and only electrode C3), p = 0.03.

Figure 5. Latency values (s) FIR filter: Top drawing for all and individual fingers: a—all fingers, b—“2” fingers, c—“3”
fingers, d—“4” fingers and electrodes P4. Middle drawing for finger 3 and all electrodes. Bottom drawing for finger 4 and
all electrodes. Right hand (left in the photo) and left hand (right panel).
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Figure 6. Box and whisker plot depicting latency values for averaged values, fingers 2, 3 and 4. From the left: Right hand
and left hand.
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Figure 7. Box and whisker plot depicting amplitude values for averaged values, fingers 2, 3 and 4. From the left: Right
hand and left hand.

4. Discussion

There are more and more tools and possibilities for data analysis. The methods
used can significantly affect the results and thus the subsequent diagnosis. Therefore,
more papers should be published on different comparisons of software, methods and
algorithms in use. This would make it much easier for young researchers at the beginning
of their medical career to learn how to analyze and interpret the obtained results. There
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are over 150,000 publications on ERPs alone in the pub med database and over 17,000
on sensorimotor ERPs. This vast amount of information shows that it is often difficult
to compare the results because they may depend on the methods used. The EEG itself is
a relatively broad topic, yet new papers are published, related to the study of motor or
speech areas, which are also key to understanding the motor planning of speech [41] or
more broadly discussed sensory attenuation and the involved phenomena [42,43]. A few
years ago, papers were also published with a focus on presenting bioelectrical results in the
area of sensorimotor cortex not only for diseased subjects [44], but also for healthy/control
subjects [45].

It seems to the authors that far too few papers have been published with a focus on
comparing several methods of analysis, or based on several different parameters. This
seems to be a niche among the original papers. The impact of filters on data interpretation
is not always fully appreciated. This paper reviews this issue and explains how a particular
filter affects the ERP data if at all. The theoretical part related to the construction and
description of filters, and to the problems that can be expected when using them, to the
method of choosing the right filter and how to avoid filtering by using alternative tools has
been elaborated on in the paper by Alain de Cheveigne and Israel Nelken [46].

Filters are ubiquitous in brain data measurement and analysis. All data scientists
involved in the analysis of both ERP and other signals deal with preprocessing and in
particular with the choice of a filter for a specific analysis. It is important to improve the
SNR, but it must also be remembered that filters affect the target signal. The authors have
tried to point this out in this work.

Obvious as this should be, most papers provide incomplete information about the
filters used and the “methodology” in general due to journal restrictions. Another issue
is the “arbitrariness” of the procedure and analysis, since the preprocessing alone can be
done arbitrarily, with different parameters.

The literature provides examples related to the use of filters, where it is indicated that
their role is to suppress noise and enhance target activity. Yet, they can have detrimental
effects that the researcher should be aware of.

Considering the overall number of emerging publications related to image prepro-
cessing (or based on image preprocessing) or even signals, relatively few papers present
a comparison of results. By this we mean a comparison involving exactly the same data,
but including a comparison of different types of analysis, or a change of one or more
parameters. The results are more often presented using one of the adopted models of the
preprocessing analysis.

The question remains, can changes in amplitude or latency be crucial to the perfor-
mance of EEG-based systems? Rhythms are divided primarily by their frequency range, but
also by their amplitude, shape, duration and the location of the brain activity that accompa-
nied their generation. Therefore, any change in amplitude or latency due to preprocessing
or later postprocessing can have a significant impact on the medical expert’s assessment.

The authors focus on presenting the results concerning the sensorimotor area, which
is of great importance in the diagnosis related to neurodegenerative diseases, such as
patients with multiple sclerosis [47,48], Parkinson’s or Alzheimer’s disease [49]. The value
of both amplitude and latency is of great significance as attention is paid to each value
in the context of a given disease. For example, the usefulness of evoked potentials in the
diagnosis and monitoring of MS is widely described in the literature [47,50]. Considering a
prolongation of P100 latency or a decrease in amplitude below 5 µV, it significantly changes
the diagnostic process. Moreover, visual evoked potentials are useful neurophysiological
methods in the diagnosis of subclinical demyelinating foci in the central nervous system
(CNS) and the presence of changes in somatosensory evoked potentials indicates the need
for a thorough diagnosis of spinal localization in MS.

Some of the waveforms, particularly P50, N100, MMN, P300 and N400, are proposed
as biomarkers of schizophrenia [51]. A distinction is made between state markers (episodic,
relating to symptoms) and traits (persisting independently of the clinical status) [52]. Based
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on the results of the study, it is proposed that visual P300 potentials may be a marker
of the clinical condition of schizophrenia (research results indicate i.a. that visual P300
potentials are an indicator of the severity of clinical symptoms) [53–55], while auditory
P300 potentials—a marker of trait or susceptibility to schizophrenia [56].

Somatosensory evoked potentials permit objectification and determination of the
location of sensory disturbances. They can complement electronurography and electromyo-
graphy (EMG, electromyography) in the diagnosis of peripheral nervous system lesions
(carpal tunnel syndromes, brachial plexus injuries, upper chest syndrome). They are also
used in the diagnosis of spinal cord injuries (trauma, myelopathy, demyelinating disorders).
Moreover, they play an important role in intraoperative monitoring of the integrity of sen-
sory pathways (spine and spinal cord procedures) [57]. Similar to BAEP, somatosensory
evoked potentials are used to assess brainstem function in unconscious patients [58].

5. Conclusions

Filters form an important part of any research methodology. They are designed to
amplify the signal and suppress noise but, apart from their undeniable advantages, they
can cause harmful effects. The user should be aware of the impact of filtering, particularly
in the field of neuroscience. Based on seven research examples, it can be concluded that
significant differences in both amplitude and latency values can occur due to the filter
used and the preprocessing performed. It seems that there is a need to “standardize”
preprocessing and filtering for individual disease entities in order to avoid erroneously
prepared data, which, in turn, may result in a wrong medical diagnosis. The reader,
researcher or expert should be aware of the potential effects, therefore more reports should
be provided for different areas and selected potentials.

In conclusion, it seems that each analysis should be performed at least twice to verify
the results and to minimize the likelihood of misdiagnosis. To the best of our knowledge,
the preprocessing of applied filters and other values is not structured yet, and there are
simply some recommendations related to, e.g., the software used. Therefore, the literature
exhibits quite a lot of freedom in the way that the selected methods are used. Each method
has its supporters and opponents. Even an expert is unable to make a proper diagnosis
without reliably prepared data. Hence, the influence of the filters on the amplitude and
latency calls for a detailed analysis.
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