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Abstract. The most common gram-negative, Escherichia coli, 
and gram-positive bacteria, Bacillus spp., have evolved different 
mechanisms that have caused the emergence of multi-drug 
resistance. As a result, drugs that block the bacterial growth 
cycle are needed. Here, in silico and in vitro studies were 
performed to assess compounds in the Pluchea indica leaf 
extract, a medicinal plant, that can inhibit bacterial proteins. 
Briefly, P. indica leaves were extracted using ethanol. The 
crude extract was then subjected to gas chromatography-mass 
spectrometry for metabolite screening. Molecular docking 
simulations with rhomboid protease (Rpro) (Protein data bank 
ID number: 3ZMI from E. coli and filamenting temperature-
sensitive mutant Z (FtsZ) protein data bank ID number: 2VAM 
from Bacillus subtilis were performed. Moreover, the well 
diffusion method was used to confirm the antibacterial activity 
of P. indica leaf extract. A total of 10 compounds were identi-
fied in the P. indica extract and used for computational analysis. 
Based on drug-likeness prediction, P.  indica compounds 
may be drug-like molecules. Binding affinity tests indicated 
that 10,10-Dimethyl-2,6-dimethylenebicyclo(7.2.0)undecan-
5.β.-ol and 11,11-Dimethyl-4,8-dimethylenebicyclo(7.2.0)
undecan-3-ol had the most negative values. Accordingly, these 

compounds may be potential ligands that bind to bacterial 
proteins. The root mean square fluctuation values was <2 Å, 
indicating stable fluctuation binding for the ligand-protein 
complex. According to in vitro antibacterial assays, a high 
concentration (50%) of the P. indica extract markedly inhib-
ited E. coli and B. subtilis, with inhibitory zone diameters 
of 31.86±1.63 and 21.09±0.09 mm, respectively. Overall, the 
compounds in the P.  indica leaf extract were identified as 
functional inhibitors of E. coli and B. subtilis proteins via 
in silico analysis. This may facilitate development of antibac-
terial agents.

Introduction

Humans are surrounded by microorganisms, such as bacteria, 
fungi, protozoa, parasites and viruses (1,2). Commensal bacte-
rial flora, such as Escherichia coli, also reside in the human 
digestive system; however, the spread of this bacteria to other 
body parts, including the bloodstream, induces pathoge-
nicity (3,4), which ultimately causes pathogenic infections.

Pathogenic microorganisms invade living organisms with 
rapid self‑division and acquire adaptability in new environ-
ments, including the human body, and cause contagious 
diseases. Antibiotics have been used worldwide to cure bacte-
rial infections (2,5). However, bacteria can evade antibiotics 
via mutations, leading to resistance (6).

Commercial antibiotics are a major risk factor for antimi-
crobial resistance (AMR) due to overused and other reason was 
microorganism mutations has taken place spontaneously (7). 
Other associated external factors contribute to AMR, such as 
overcrowded living conditions and the consumption of live-
stock treated with antibiotics (3,4). Most external infections 
that occur due to Bacillus spp. are known as food poisoning (8).

The development of new antibacterial agents can address 
the AMR crisis (5). However, antimicrobial consumption must 
first be monitored as prolonged use may trigger the occur-
rence of AMR (9). The discovery of novel antibacterial agents 
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from natural products, particularly plants, must be sustained. 
Many reports on plant‑derived compounds serve as a basis for 
new drug development (1,10). Notably, the use of whole herbs 
induces an enhanced effect compared with single compounds; 
for example the combination compounds of Ziziphus jujuba 
polysaccharide and ginger 6‑gingerol has synergistic effect on 
antioxidant and anticancer, than their dose alone (11,12).

Pluchea indica (L.) Less from the Asteraceae family is a 
native Indonesian plant also found in India and Thailand (13,14). 
P. indica exerts beneficial effects, including antidiabetic (14), 
antifungal (15), anti‑Mycobacterium tuberculosis (16), anti-
microbial (17) and wound healing (18) effects. In the present 
study, a computational pharmacology network analysis was 
performed with molecular docking of P. indica compounds 
as potential antibacterial agents against E. coli and B. subtilis. 
The present study aimed to highlight promising compounds in 
the ethanolic extract of P. indica that can be explored in drug 
discovery.

Materials and methods

Plant collection and identification. Dry P.  indica was 
obtained from the Medicinal Plant Garden (Surabaya, 
Indonesia) and validated at the Plant Systematic Laboratory 
(Universitas Airlangga, Surabaya, Indonesia). A voucher 
specimen was deposited at the Plant Systematic Laboratory 
(no. PI0126012024).

Extraction. The leaves of P. indica were air‑dried, ground into 
a powder (20 mesh size) and macerated in absolute ethanol 
(Pro Analysis; Merck KGaA) at a ratio of 1:10. The macera-
tion process was performed at room temperature (28±2˚C) for 
24 h. The extracted products were filtered using a filter paper, 
evaporated using a rotary evaporator at 60˚C, weighed to deter-
mine the yield and stored at 4˚C, as previously described (19).

Compound profiling via gas chromatography‑mass spectro‑
photometry (GC‑MS). Compound profiles of ethanolic extracts 
of P. indica leaves were determined using GC‑MS. GC‑MS 
analysis was performed using an Agilent GC‑MSD (Agilent 
Technologies Deutschland GmbH; cat. no. 19091S‑433UI) 
equipped with a capillary column (30.00 m x 250.00 µm x 
0.25 µm) and a mass detector in electron impact mode with full 
scan (50,550 atomic mass unit). Helium was used as the carrier 
gas at a flow rate of 3 ml/min (total flow rate, 14 ml/min). The 
injector temperature was 280˚C and the oven temperature 
ranged from 60 to 250˚C. Peaks in the chromatograms were 
identified using the mass spectra. Chemicals were identified 
by comparing mass spectra to those in a Standard Reference 
Database (version 02. L, National Institute of Standards and 
Technology). Components with quality scores >80% were 
selected. The relative proportion of each component was esti-
mated from the overall peak area in the chromatograph, as 
previously described (20).

In silico pathway analysis of antimicrobial compounds
Sample retrieval. The following compounds were 
collected via GC‑MS: Limonene oxide, cis‑, ethyltetra-
methylcyclopentadiene; hexadecanoic acid, methyl ester; 
10,10‑dimethyl‑2,6‑dimethylenebicyclo(7.2.0)undecan‑5.β.‑ol; 

11,11‑dimethyl‑4,8‑dimethylenebicyclo(7.2.0) undecan‑3‑ol; 
8,11‑octadecadienoic acid, methyl ester; 9,12,15‑octadeca-
trienoic acid, methyl ester; phytol; silane, [(methylsilyl)
methyl](silylmethyl)‑ and n‑hexadecanoic acid. PubChem 
database (pubchem.ncbi.nlm.nih.gov/) was used to retrieve the 
compound ID number (CID), simplified molecular input line 
entry system (SMILE) Canonical and 3D files in sdf format 
for the ligands (21). The Protein Data Bank (PDB) file was 
input in Research Collaboratory for Structural Bioinformatics 
Protein Data Bank (RCSB PDB) database (rcsb.org/) for target 
preparation, which involved B. subtilis‑Filamenting tempera-
ture‑sensitive mutant Z (FtsZ) (Z ring) and E. coli‑Rhomboid 
protease (Rpro). Water molecules and native ligands on targets 
were removed using PyMOL software v.2.5.2 (Schrödinger, 
Inc.) under an academic license (21,22).

Drug‑likeness prediction. Compounds were assessed 
as drug‑like molecules by referring to drug‑likeness rules, 
such as Lipinski (23), Ghose (24), Veber (25), Egan (26) and 
Muegge (27). Bioavailability score was used to identify the 
ability of candidate drug molecules to circulate in the body. 
Drug‑likeness analysis was performed using SwissADME 
(swissadme.ch/) (20,28).

Ligand‑protein docking. The binding activity of the ligand 
to the target and the interaction pattern were identified using 
molecular docking. Docking was performed to determine 
the antibacterial potential and inhibitor mechanism between 
P. indica compounds and targets. Of note, the grid covered 
the entire surface of the target. In addition, the docking grid 
consisted of FtsZ: Center(Å) X:28.189 Y: ‑7.627 Z: ‑4.629 
dimensions (Å) X: 26.235 Y: 21.066 Z: 29.239 & Rpro: Center 
(Å) X:15.407 Y: ‑11.974 Z: 43.963 dimensions (Å) X: 28.085 Y: 
21.013 Z: 38.783. The docking simulation was performed using 
PyRx 0.9.9 software (Scripps Research) under an academic 
license (29,30).

Chemical interaction. The molecular interactions between 
the molecular complexes from docking simulation were iden-
tified using Discovery Studio Visualizer™ v.16.1 (Dassault 
Systèmes SE). Weak bond interactions, such as van der Waals, 
hydrogen, hydrophobic, π‑alkyl, and electrostatic interactions, 
were formed in the ligand‑protein complex. These interactions 
contribute to initiation of an inhibitory response of the ligand 
toward specific target domains (31).

Molecular dynamic simulation. Molecular stability analysis 
or docking validation was conducted using molecular 
dynamics simulations in CABS‑flex‑2 (biocomp.chem.uw.edu.
pl/CABSflex2). Molecular stability was displayed using a root 
mean square fluctuation (RMSF) graph. To achieve molecular 
stability, the protein‑ligand complex must have RMSF value 
<3 Å (32,33).

Antimicrobial activity assessment
Media and inoculum preparation. Two bacterial strains, 
B.  subtilis (cat. no.  1248) was purchased from Thailand 
Institute of Scientific and Technology Research and E. coli 
(cat. no. 25922) was purchased from The American Type 
Culture Collection, were tested using antimicrobial assays. 
Solid and liquid media were used to conduct antimicrobial 
experiments and maintain bacterial cultures. Nutrient agar 
(NA; Merck, Germany) was used as the solid medium to test 
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antibacterial activity. NA was used in the reaction tubes to 
maintain the microbial culture. Nutrient broth (NB, Merck, 
Germany) was employed as liquid media for bacterial strain 
subcultures and precultures. The bacterial strains were 
pre‑cultured in culture bottles containing sterile NB in a 
37˚C incubator for 24 h, then diluted to 10% cultures before 
inoculation. The absorbance of the 10% bacterial culture was 
adjusted with sterile water using a spectrophotometer to meet 
the 0.5 McFarland standard (19).

Well diffusion assay. Well diffusion assay was performed 
to determine the antimicrobial activity based on diameter 
of the inhibitory zone (DIZ) on the surface of NA. A total 
of 10 ml NA was placed in a sterile Petri dish and allowed 
to harden. Thereafter, 30  ml NA was added. Following 
cooling (25±2˚C) of the second layer, 1 ml bacterial culture 
was added to the NA and the second layer was allowed to 
completely solidify. A total of four wells was created on the 
second layer of the film for samples and controls. Extracts 
diluted in 10% DMSO (250 and 500 mg/ml) served as the 
samples, 10% DMSO served as the negative control and 
chloramphenicol (1000 µg/ml) served as the positive control. 
Each well received 10 µl diluted samples; four replicates 
were prepared. The plates were incubated at 37˚C for 24 h. 
DIZ was measured using Vernier calipers and the mean was 
calculated and compared with that of the positive control, 
as previously described (20). The percentage of inhibition 
(PI) was calculated as follows: PI (%)=mean DIZ of the 
extract/DIZ of positive control x 100% (1). The antimicrobial 
data were obtained from three independent experiments and 
are expressed as the mean ± standard deviation.

Results

Extraction product and compound identification. The etha-
nolic extraction of P.  indica dried leaves yielded ~17.79% 
crude extract from 88.8  g raw material (dried leaves). A 
total of 12 compounds, was identified via GC‑MS. (Table I). 
Hexadecanoic acid methyl ester, 11,11‑dimethyl‑4,8‑di-
methylenebicyclo(7.2.0)undecan‑3‑ol, phytol, silane and 

n‑hexadecanoic acid had a quality score >80% and higher peak 
area than other compounds identified via GC‑MS (Fig. 1).

Computational analysis using molecular docking. The 
compounds were confirmed using CID, with information on 
canonical SMILE and 2‑dimentional (2D) structures from 
the PubChem (Table II). Two targets, FtsZ from B. subtilis 
and Rpro protein from E. coli, were employed (Fig. 2). Before 
compound processing with the target via molecular docking, 
all compounds were checked for drug‑likeness to assess simi-
larity to an existing drug. Rules, such as Lipinski's Rule of Five 
(Ro5), Ghose, Veber, Egan and Muegge, were also applied. 
Notably, all compounds in the P. indica extract were predicted 
to be drug‑like molecules with a bioavailability score of 0.55, 
except n‑hexadecanoic acid (Table III).

Interactions of targets from bacterial proteins and 
ligands from all P.  indica compounds were subjected to 
computational analysis using molecular docking. P. indica 
compounds with the most negative binding affinities were 
10,10‑dimethyl‑2,6‑dimethylenebicyclo(7.2.0)undecan‑5.β.‑ol 
and 11,11‑dimethyl‑ 4,8‑d imethylenebicyclo(7.2.0)
undecan‑3‑ol (both‑6.0 kcal/mol) on FtsZ (PDB ID: 2VAM) for 
B. subtilis and 10,10‑dimethyl‑2,6‑dimethylenebicyclo(7.2.0)
undecan‑5.beta.‑ol on Rpro (PDB ID: 3ZMI) for E.  coli 
(‑7.8  kcal/mol; Table  IV). Molecular interaction between 
targeted proteins and the pocket‑binding domain of ligands 
from P. indica was performed and visualized as 3D structure. 
Compounds with the most negative binding affinities were 
10,10‑dimethyl‑2,6‑dimethylenebicyclo(7.2.0)undecan‑5.β.‑ol 
and 11,11‑dimethyl‑ 4,8‑d imethylenebicyclo(7.2.0)
undecan‑3‑ol (Fig.  2). The analysis also revealed that the 
ligands formed weak bonds, such as van der Waals and π‑alkyl 
bonds for 10,10‑dimethyl‑2,6‑dimethylenebicyclo(7.2.0)
undecan‑5.β.‑ol, on FtsZ‑B.  subtilis and Rpro‑E.  coli. For 
11,11‑dimethyl‑4,8‑dimethylenebicyclo(7.2.0)undecan‑3‑ol, the 
weak bonds were van der Waals, hydrogen and alkyl bonds in 
FtsZ‑B. subtilis (Fig. 3; Table V).

To determine the stability of protein‑ligand binding, 
docking validation was performed via molecular dynamics 

Table I. GC‑MS analysis of Pluchea indica ethanolic extract.

			   Molecular	 Molecular	 Chromatogram
Peak	 RT	 Compound	 formula	 weight, g/mol	 peak area, %

  1	 31.468	 Limonene oxide, cis‑	 C10H16O	 152.23	 2.34
  2	 32.670	 Ethyltetramethylcyclopentadiene	 C11H18	 150.26	 1.32
  3	 35.541	 Hexadecanoic acid, methyl ester	 C17H34O2	 270.45	 3.88
  4	 37.221	 10,10‑Dimethyl‑2,6‑dimethylenebicyclo(7.2.0)undecan‑5.β.‑ol	 C15H24O	 220.35	 1.83
  5	 37.313	 11,11‑Dimethyl‑4,8‑dimethylenebicyclo(7.2.0)undecan‑3‑ol	 C15H24O	 220.35	 4.70
  6	 40.399	 8,11‑Octadecadienoic acid, methylester	 C19H34O2	 294.50	 2.44
  7	 41.527	 9,12,15‑Octadecatrienoic acid, methyl ester	 C19H32O2	 292.50	 3.82
  8	 42.213	 Phytol	 C20H40O	 296.53	 9.33
  9	 45.147	 Silane, [(methylsilyl)methyl](silylmethyl)‑	 C3H7Si3	 127.34	 3.36
10	 46.857	 n‑Hexadecanoic acid	 C16H32O2	 256.42	 27.36

RT, retention time.

https://www.spandidos-publications.com/10.3892/br.2024.1825
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simulation by referring to the RMSF value. The RMSF 
values from binding site on ligand interaction domains 
were <2 Å, indicating stability. The RMSF value was 
0.608 Å for the 10,10‑dimethyl‑2,6‑dimethylenebi-
cyclo(7.2.0)undecan‑5.β.‑ol_FtsZ complex, 0.157 Å for the 
11,11‑dimethyl‑4,8‑dimethylenebicyclo(7.2.0)undecan‑3‑ol_FtsZ 
complex, and 1.095 Å for the 10,10‑dimethyl‑2,6‑dimethyl-
enebicyclo(7.2.0)undecan‑5.β.‑ol_Rpro complex (Table  V). 
The molecular interactions were due to van der Waals 
(Asn25, Asp187, Gly22, Gly21, Arg143, Gly104, Gly107, 
Met105, Glu139, Asn166, Thr133) and π‑alkyl bonds (Phe183, 
Pro135) in the 10,10‑dimethyl‑2,6‑dimethylenebicyclo(7.2.0)
undecan‑5.β‑ol_FtsZ complex; van der Waals bonds 

(Ser201, Asn154, Phe153, His150, Gly240, Ala239) and 
π‑alkyl bonds (Val204, Trp157, His254, Trp236, Tyr205, 
Met149) in the 11,11‑dimethyl‑4,8‑dimethylenebicyclo(7.2.0)
undecan‑3‑ol_FtsZ complex and van der Waals (Glu34, 
Asp199, Val35, Thr203, Gln36, Ile298, Asn301, and Gln195), 
hydrogen (Asn299 and Glu300) and alkyl bonds (Val297) 
in the 10,10‑dimethyl‑2,6‑dimethylenebicyclo(7.2.0)
undecan‑5.β‑ol_Rpro complex (Fig. 3). Fig. 4 shows the struc-
tural fluctuations and RMSF graph of the target protein.

In vitro antibacterial activity based on well diffusion assay. 
The antibacterial activity of P. indica extract was determined 
using the well diffusion method. Notably, 50% P.  indica 

Figure 1. Gas chromatography‑mass spectrometry chromatogram of Pluchea indica ethanolic extract. 1, hexadecanoic acid, methyl ester; 2, 11,11‑dimethyl‑4,8‑di-
methylenebicyclo(7.2.0)undecan‑3‑ol; 3, phytol; 4, silane; 5, n‑hexadecanoic acid.
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extract exhibited the strongest inhibitory activity against E. 
coli growth (DIZ, 31.86±1.63 mm), with PI >80% that of the 
positive control (chloramphenicol). Moreover, 25% extract 

exhibited strong inhibitory activity (DIZ, 21.29±1.02 mm), 
with PI >~50% (Table VI). The 50% extract caused a larger 
DIZ than the 25% extract against B. subtilis, with PI >40% at 

Table II. Compounds extracted from Pluchea indica.

	 PubChem
Compound	 CID no.	 Compound structure	 2D structure

Limonene oxide, cis‑	 6452061	 CC(=C)C1CCC2(C(C1)O2)C	

Ethyltetramethylcyclopentadiene	 585272	 CCC1C(=C(C(=C1C)C)C)C	

Hexadecanoic acid, methyl ester	 8181	 CCCCCCCCCCCCCCCC(=O)OC	

10,10‑Dimethyl‑2,6‑	 577397	 CC1(CC2C1CCC(=C)CCCC2=C)C	
dimethylenebicyclo(7.2.0)
undecan‑5.β.‑ol

11,11‑Dimethyl‑4,8‑	 91715484	 CC1(CC2C1CC(C(=C)CCCC2=C)O)C	
dimethylenebicyclo(7.2.0_undecan‑3‑ol

8,11‑Octadecadienoic acid, methyl ester	 5319737	 CCCCCCC=CCC=CCCCCCCC(=O)OC	

9,12,15‑Octadecatrienoic acid, methyl ester	 5367462	 CCC=CCC=CCC=CCCCCCCCC(=O)OC	

Phytol	 5280435	 CC(C)CCCC(C)CCCC(C)CCCC(=CCO)C	

Silane, [(methylsilyl)methyl](silylmethyl)‑	 6329174	 C(Si)C(Si)C(Si)	

n‑Hexadecanoic acid	 985	 CCCCCCCCCCCCCCCC(=O)O	

CID, compound ID number.

Figure 2. Molecular visualization of compounds from Pluchea  Indica and targets. (A) Limonene oxide, cis‑. (B) Ethyltetramethylcyclopentadiene. 
(C) Hexadecanoic acid, methyl ester. (D) 10,10‑dimethyl‑2,6‑dimethylenebicyclo(7.2.0)undecan‑5.β.‑ol. (E) 11,11‑Dimethyl‑4,8‑dimethylenebicyclo(7.2.0)
undecan‑3‑ol. (F) 8,11‑Octadecadienoic acid, methyl ester. (G) 9,12,15‑Octadecatrienoic acid, methyl ester. (H) Phytol. (I) n‑Hexadecanoic acid. (J) Silane, 
[(methylsilyl)methyl](silylmethyl)‑. Green, compound; circle, Pluchea indica; blue, FtsZ‑Bacillus subtilis; red, Rpro‑Escherichia coli. FtsZ, filamenting 
temperature‑sensitive mutant Z; Rpro, Rhomboid protease.

https://www.spandidos-publications.com/10.3892/br.2024.1825
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Table III. Pluchea indica compounds predicted as drug‑like molecules.

						      Bioavailability
Compound	 Lipinski	 Ghose	 Veber	 Egan	 Muegge	 score

Limonene oxide, cis‑	 Pass	 Fail	 Pass	 Pass	 Fail	 0.55
Ethyltetramethylcyclopentadiene	 Pass	 Fail	 Pass	 Pass	 Fail	 0.55
Hexadecanoic acid, methyl ester	 Pass	 Fail	 Fail	 Pass	 Fail	 0.55
10,10‑Dimethyl‑2,6‑dimethylenebicyclo(7.2.0)undecan‑5.β.‑ol	 Pass	 Pass	 Pass	 Pass	 Fail	 0.55
11,11‑Dimethyl‑4,8‑dimethylenebicyclo(7.2.0)undecan‑3‑ol	 Pass	 Pass	 Pass	 Pass	 Fail	 0.55
8,11‑Octadecadienoic acid, methyl ester	 Pass	 Fail	 Fail	 Fail	 Fail	 0.55
9,12,15‑Octadecatrienoic acid,
methyl ester	 Pass	 Fail	 Fail	 Pass	 Fail	 0.55
Phytol	 Pass	 Fail	 Fail	 Fail	 Fail	 0.55
Silane, [(methylsilyl)methyl](silylmethyl)‑	 Pass	 Fail	 Pass	 Pass	 Fail	 0.55
n‑Hexadecanoic acid	 Pass	 Pass	 Fail	 Pass	 Fail	 0.85

Table IV. Binding affinity from the docking analysis.

	 Binding affinity, kcal/mol
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ -----------------------------------------------------------------
	 Bacillus subtilis	 Escherichia coli
Compound	 (FtsZ PDB ID: 2VAM)	 (Rpro PDB ID: 3ZMI)

Limonene oxide, cis-	‑ 5.8	‑ 6.8
Ethyltetramethylcyclopentadiene	‑ 5.4	‑ 6.3
Hexadecanoic acid, methyl ester	‑ 4.9	‑ 5.8
10,10‑Dimethyl‑2,6‑dimethylenebicyclo(7.2.0)undecan‑5.β.‑ol	‑ 6.0	‑ 7.8
11,11‑Dimethyl‑4,8‑dimethylenebicyclo(7.2.0)undecan‑3‑ol	‑ 6.0	‑ 7.2
8,11‑Octadecadienoic acid, methyl ester	‑ 4.8	‑ 5.6
9,12,15‑Octadecatrienoic acid, methyl ester	‑ 4.7	‑ 6.1
Phytol	‑ 4.7	‑ 6.1
n‑Hexadecanoic acid	‑ 5.0	‑ 5.5
Silane, [(methylsilyl)methyl](silylmethyl)‑	‑ 4.5	‑ 5.0

Figure 3. Molecular interaction of ligand (yellow line) and target domain (circle). (A) 10,10-Dimethyl-2,6-dimethylenebicyclo(7.2.0)undecan-5.β.-ol_FtsZ. 
(B) 11,11-Dimethyl-4,8-dimethylenebicyclo(7.2.0)undecan-3-ol_FtsZ. (C) 10,10-Dimethyl-2,6-dimethylenebicyclo(7.2.0)undecan-5.β.-ol_Rpro. FtsZ, fila-
menting temperature-sensitive mutant Z; Rpro, Rhomboid protease.
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both concentrations compared with that of the positive control 
(Fig. 5). Therefore, the higher the concentration of the extract, 
the greater the antibacterial activity.

Discussion

To the best of our knowledge, novel drugs from plant‑derived 
compounds have not been developed recently. The field of 
ethnopharmacology, which involves use traditional medicinal 
plants, can be applied in modern medical practice as therapeutic 
agent (34,35). P. indica was used as an antibacterial agent in 
the present study. Various factors, including solvents, can affect 
the proportion of bioactive compounds in an extract (36,37). 
In the present study, P. indica was extracted with ethanol, a 
universal solvent, to obtain bioactive compounds with antibac-
terial properties. Ethanol extract of P. indica is an antibacterial 
agent against B. cereus, E. coli, Pseudomonas fluorescens, 
Staphylococcus aureus and Salmonella typhimurium (38).

In the present study, E. coli was employed as a representa-
tive gram‑negative bacterium that commonly causes infection 
when it occupies the gastrointestinal and urinary systems, 
leading to individuals becoming immunocompromised (1,39). 
Gram‑positive bacteria, including Bacillus spp., are commonly 
detected in the blood, stool and respiratory systems of infected 
patients (8). One of the 29 strains of B. subtilis was previously 
identified as MDR, with high resistance to norfloxacin (40).

Plant‑derived compounds have gained popularity in 
drug development owing to minimal side effects on human 
health (41). Phytochemicals in P.  indica extract have been 
demonstrated to exhibit notable wound‑healing activity (18) 
and anti‑venom potential (42). Recently, to accelerate drug 
discovery, conventional methods, such as high‑throughput 
screening (HTS) and virtual HTS, have been developed (16). 
HTS frequently produces bulky hydrophobic metabolites that 
are poorly suited to chemical alterations (16). Thus, in silico 
docking studies are a bioinformatics tool to define the binding 
form and binding affinity score (43).

The principal mechanism of docking involves identi-
fying plant metabolites as candidates for drug improvement 
via binding to the protein target of a cell (16,43,44). In the 
present study, computational analysis using docking simula-
tions required bacterial protein targets. Several subcellular 
protein targets are present in B. subtilis and E. coli, including 
Murein cluster e‑B protein (MreB), MreC, The partitioning 
motor protein (ParM), Z‑associated protein D (ZapD) and 
FtsZ  (45). MreB and MreC localize in a helical pattern 
along the longitudinal axis of the entire cell (46,47), ParM is 
present in intercellular filaments along the cell length (48) and 
ZapD is focally localized to the mid‑cell of the septum in an 
FtsZ‑dependent manner (49).

FtsZ protein plays a crucial role in bacterial division and is 
arranged in a large protein complex in the middle of dividing 
cells called divisomes (50). As the regulation and function of 
the divisome are dependent on FtsZ, this protein is the first 
to be recruited for division (51). Inhibition of FtsZ may be 
a promising approach to combat antibiotic resistance. FtsZ 
is conserved in most bacteria but absent in eukaryote cells. 
The structures of FtsZ protein are available in the PDB (ID 
numbers, such as PDB ID: 2VXY, 3VPA, 4DXD, 5H5G) and 
ID 2VAM, which identified the FtsZ protein from B. subtilis 
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Figure 4. Molecular dynamic simulation plot of ligand-protein interaction stability and 3D protein fluctuation structure. (A)  10,10-Dimethyl-
2 , 6 - d i met hyleneb icyclo (7. 2 . 0)u nde ca n-5. β. - o l _ F t sZ;  ( B)   11,11-D i met hyl - 4, 8 - d i met hyleneb icyclo (7. 2 . 0)u nde ca n-3 - ol _ F t sZ . 
(C) 10,10-Dimethyl-2,6-dimethylenebicyclo(7.2.0)undecan-5.β.-ol_Rpro. FtsZ, filamenting temperature-sensitive mutant Z; RMSF, Root mean square fluctua-
tion; Rpro, Rhomboid protease.
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as the protein target in this present study  (51). Rpro is an 
intramembrane protease implicated in critical regulation of 
different cellular signaling processes (52,53). Thus, the inhibi-
tion of these bacterial proteins inhibits growth (52).

Computational approaches to drug discovery have led to 
the development of alternative tools to decrease costs and 
determine the effectiveness of potential drug candidates. 
Computational screening from ligand‑based sources has 
been performed to identify potential compound inhibitors 
for drug repurposing (16,43). However, information such as 
CID, (SMILE) Canonical and 3D files about the candidate 
ligands must first be obtained. The present study revealed 
10 compounds in the P.  indica leaf extract using GC‑MS 
screening.

Drug‑likeness analysis can assist in increasing probability 
of a natural chemical progressing through clinical trials (54). 
The present study used Lipinski's Ro5, Ghose, Veber and 
Muegge. Ro5 assesses lipophilicity (LogP), molecular mass, 
hydrogen bonding and molar refractivity (55). Veber measures 
oral bioavailability based on molecular weight, topological 
surface area and hydrogen and rotatable bonds. Ghose evalu-
ates drug likeness using LogP, refractivity and the number 
of atoms. Muegge evaluation predicts drug‑likeness using 
drug databases and pharmacophore calculations (56,57). Two 
compounds, 10,10‑dimethyl‑2,6‑dimethylenebicyclo(7.2.0)
undecan‑5.beta.‑ol and 11,11‑dimethyl‑4,8‑dimethylenebi-
cyclo(7.2.0)undecan‑3‑ol, passed four (Lipinski, Ghose, 
Veber, and Egan) of these rules. In this analysis, a compound 
must pass at least one rule to proceed to the next step in the 
molecular docking and dynamic simulation. Implementation 
of drug‑likeness rules improves physicochemical and pharma-
cokinetic profiles of active substances (58,59).

The Veber's rule‑based bioavailability score, which indi-
cates the capacity for absorption and circulation, determines 
the pharmacokinetic profile of drug-like molecules. Here, the 
best performance indicator of antibacterial drug effectiveness 
against target microorganisms, such as E. coli and B. subtilis, 
had a bioavailability score of 0.55 (60,61).

Ligands form interaction patterns or pocket-binding 
regions on weakly bonded targets. The binding affinity is the 
binding energy of the ligand during its interaction with the 
target. According to Gibbs' rule, a lower binding affinity value 
indicates increased ligand activity, which means the compound 
with the most negative value is the predicted ligand (62,63).

Candidate antimicrobial agents with inhibitory 
activity should have a lower (the most negative) binding 
affinity (64-66). Based on docking simulation, 10,10-dimethyl-
2,6 -d imethylenebicyclo(7.2.0)undecan-5.β.-ol  and 
11,11-dimethyl-4,8-dimethylenebicyclo(7.2.0)undecan-3-ol 
from P. indica may be antimicrobial drugs with inhibitory 
activities against FtsZ and Rpro proteins. 10,10-Dimethyl-
2,6-dimethylenebicyclo(7.2.0)undecan-5.β.-ol is a terpenoid 
derivative found in the extracts of Mammea  siamensis 
flower and young leaves (67); this compound is also one of 
the volatile compounds found in the Artemisia argyi fruit 
extract (68). 11,11-Dimethyl-4,8-dimethylenebicyclo(7.2.0)
undecan-3-ol  (bicyclo (7.2.0)  undecan-3-ol)  and 
11,11-dimethyl-4,8-bis(methylene)-are volatile compounds in 
Achillea millefolium essential oil (69), propolis (70), and this 
compound in Syzygium aromaticum extract has potential as 
an antifungal and nematicidal (71). Notably, 11,11-dimethyl-
4,8-dimethylenebicyclo(7.2.0)undecan-3-ol is positively 
associated with antibacterial activity (72).

Further analysis revealed that these two ligands could 
form van der Waals, hydrogen, and π-alkyl bonds. Weak-bond 
interactions in protein inhibitors, serve a role in promoting 
biological responses such as disrupt the regulate enzyme, 
interfering the metabolic role and blocking or slowing enzy-
matic function. The existence of van der Waals, hydrogen, 
hydrophobic, π-alkyl, and electrostatic interactions can 
increase stability of ligand-protein interactions (73).

In the present study, docking validation was performed 
through molecular dynamics simulation of a ligand-protein 
complex. The molecular complexes, 10,10-dimethyl-2,6-di-
methylenebicyclo(7.2.0)undecan-5.-ol_FtsZ, 11,11-dimethyl- 
4,8-dimethylenebicyclo(7.2.0)undecan-3-ol_FtsZ, and 
10,10-dimethyl-2,6-dimethylenebicyclo(7.2.0)undecan-5.β-ol_
Rpro, were identified based on their molecular stability. RMSF 
of molecular complexes with stable fluctuations is <3 Å (74,75).

Table VI. Well diffusion of Pluchea indica ethanolic extract.

	 DIZ, mm	 PI, %
	 ------------------------------------------------------------------------------	 ------------------------------------------------------------------
Group	 E. coli	 B. subtilis	 E. coli	 B. subtilis

25% extract	 21.29±1.02	 17.76±1.23	 55.60	 44.53
50% extract	 31.86±1.63	 21.09±0.09	 82.13	 50.74
Chloramphenicol	 38.79±0.43	 39.88±0.32	 100.00	 100.00

E. coli, Escherichia coli; B. subtilis, Bacillus subtilis; DIZ, diameter of the inhibitory zone; PI, percentage inhibition.

Figure 5. Antimicrobial activity of Pluchea indica ethanol extract against 
bacteria. Dashed line presented as inhibited growth zone. (A) Escherichia coli. 
(B) Bacillus subtilis.

https://www.spandidos-publications.com/10.3892/br.2024.1825
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In vitro, higher concentrations of the extract induced 
stronger antibacterial activity. Based on a previous study, 
this activity could be classified as very strong as DIZ was 
>15 mm (76). The compounds in the P. indica leaf extract 
exhibited strong antibacterial activity against gram‑negative 
E. coli. The compounds predicted as potential antibacterial 
agents were 10,10‑dimethyl‑2,6‑dimethylenebicyclo(7.2.0)
undecan‑5.β.‑ol and 11,11‑dimethyl‑4,8‑dimethylenebi-
cyclo(7.2.0)undecan‑3‑ol. However, the present study 
had some limitations. The in vitro experiments must be 
supplemented by additional analysis to confirm that the 
compounds have effective activity against the protein 
target. The in  silico approach requires more extensive 
protein screening to ensure compounds affect bacterial 
cells. The present study excluded the non‑proteins analysis 
and only focus on essential bacterial proteins, such as 
bacterial proteins that serve key role in division and 
growth (Rpro and FtsZ). The present study only compared 
the compounds in the extract and excluded the positive 
control in molecular docking analysis to reduce false posi-
tive and to improve reliability and efficiency as previously 
described (77,78).

Overall, 10 compounds were identified in the P. indica 
leaf extract. 10,10‑Dimethyl‑2,6‑dimethylenebicyclo(7.2.0)
undecan‑5.β.‑ol and 11,11‑dimethyl‑4,8‑dimethylenebi-
cyclo(7.2.0)undecan‑3‑ol formed a ligand‑protein complex 
with FtsZ from B.  subtilis and Rpro from E.  coli. Based 
on in  vitro experiments, the 50% P.  indica extract had 
the strongest inhibitory effect on the growth of E. coli 
and B.  subtilis. Therefore, these ligands from P.  indica 
leaf extract may serve as candidate inhibitors of targeted 
proteins that contribute to pathogenicity in the bacterial life 
cycle.
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