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Abstract
Silicone casts are widely used by practitioners in the comparative analysis of forensic 
items. Fractured surfaces carry unique details that can provide accurate quantitative 
comparisons of forensic fragments. In this study, a statistical analysis comparison protocol 
was applied to a set of 3D topological images of fractured surface pairs and their replicas 
to provide confidence in the quantitative statistical comparison between fractured items 
and their silicone cast replicas. A set of 10 fractured stainless steel samples were fractured 
from the same metal rod under controlled conditions and were replicated using a stand-
ard forensic casting technique. Six 3D topological maps with 50% overlap were acquired 
for each fractured pair. Spectral analyses were utilized to identify the correlation between 
topological surface features at different length scales of the surface topology. We se-
lected two frequency bands over the critical wavelength (greater than two- grain diame-
ters) for statistical comparison. Our statistical model utilized a matrix- variate t- distribution 
that accounts for overlap between images to model match and non- match population 
densities. A decision rule identified the probability of matched and unmatched pairs of 
surfaces. The proposed methodology correctly classified the fractured steel surfaces and 
their replicas with a posterior probability of match exceeding 99.96%. Moreover, the rep-
lication technique shows potential in accurately replicating fracture surface topological 
details with a wavelength greater than 20 μm, which far exceeds the feature comparison 
range on most metallic alloy surfaces. Our framework establishes the basis and limits for 
forensic comparison of fractured articles and their replicas while providing a reliable frac-
ture mechanics- based quantitative statistical forensic comparison.
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statistical and classification model, surface topography comparison, trace evidence
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1  |  INTRODUC TION

A physical fit or physical match, as described by the American Society 
of Trace Evidence Examiners (ASTEE), is the alignment between two 
or more pieces to determine whether they once formed a single ob-
ject [1,2]. Matching the physical fractures of different materials such 
as wood, glass, paper, skin, cables, tapes, and metals has been widely 
studied [3- 18]. This has also been extended to the examination of 
tool marks on human tissues (e.g., bone and cartilage) [19- 24]. This 
physical matching utilizes the thickness, color, pattern, fracture mor-
phology, irregularities in the fracture, and imperfections across the 
fracture location [25,26]. Patterns along with the complex jagged 
trajectory of a macro- crack (large cracks visible to the naked eye) 
are considered unique and can be utilized to distinguish matching 
pairs of fractured surfaces by an examiner or by a layperson on a jury 
[20,27,28]. However, reliable examination decisions require experi-
enced forensic experts using comparative microscopy and physical 
pattern matching. Moreover, the error rate is difficult to quantify in 
physical matching due to many factors, including fragment material 
properties, loading and environmental exposure, and forensic scien-
tist judgment and experience [2,19,20].

During the last two decades, new innovative 3D surface topo-
logical scanning microscopy has been developed with the potential 
to improve physical matching. Different 3D acquisition systems, 
employing 3D laser scanners, optical coherence tomography, sty-
lus scanning instruments, and confocal microscopy, have been uti-
lized for forensic evidence identification applications [19,26,29- 43]. 
Automated surface acquisition and matching processes utilizing 3D 
topography data have demonstrated promising improvements in 
the objectivity of the comparison process [34]. Specifically, confo-
cal microscopy utilizes a pinhole aperture, allowing only light that is 
reflected from the in- focus plane to where it is captured. Confocal 
microscopy allows for slices of surfaces to be captured at different 
depths and then stacked on top of each other to render a 3D image of 
the surface topology. This 3D image can then be visualized as a two- 
dimensional profile of the surface roughness, as shown in Figure 1C. 
Note that we coded the fractured pair surfaces as a “Base” and a 
“Tip” pair. Zooming out from the profile (looking at longer wave-
lengths, or spacing between topological events) makes the profile 
appear smoother, while zooming in on the profile (looking at shorter 
wavelengths, or spacing between events) results in the 2D profile 
appear rougher and makes it possible to identify unique features 
for forensic comparison. Further, forensic replicas utilizing silicone 
casts are widely used by practitioners in the comparative analysis of 
physical forensic articles [18,42,44,45] and for tool marks on human 
tissues [19- 24]. However, there is a dearth of in- depth analysis of the 

ability of a silicon cast to reproduce a useful range of topographical 
details needed for 3D analysis [19]. Especially, the silicon cast of a 
fracture surface may not replicate all the small features that repre-
sent the short- wavelength topology of the original surface.

In this paper, we address the limits and applicability of surface 
replica for forensic comparison using our formal quantitative frame-
work to quantify the probability of a match between two speci-
mens in question [46,47]. We combine fracture mechanics with 
statistics and machine learning to arrive at a comparison decision. 
When the 3D spectral analysis of the fractured surface topography 
is combined with a statistical learning tool, the domain of unique 
individuality can be easily identified [47]. This tool can provide a 
quantitative analysis for match probability and the corresponding 
error rate that is required to be reported [48,49]. The indefinite 
microscopic features on the fracture surface topology, as high-
lighted in Figure 1A,B, carry considerable unique details that may 
be used to support the forensic examiner’s decisions with a quanti-
tative forensic comparison. The fractured surfaces show self- affine 
scaling properties (proportionality of surface roughness with the 
observation window scale) to quantitatively correlate the material 
resistance to fracture with the resulting surface roughness, as high-
lighted in Figure 2. The corresponding surface roughness analysis of 
this surface is performed by the height- height correlation function, 
Δh(Δx) =

√
⟨(h(x+Δx)−h(x))⟩x  , where ⟨⟩x imply averaging over the x- 

direction. The limit of the self- affine scale is controlled by the mate-
rial resistance to fracture, crystal structure, material impurities and 
loading conditions [12,50- 54]. The surface characteristic becomes 
unique and non- self- affine at a larger scale, say, λ [54- 56], where it 
is eclipsed by the interference of the fracture process zone length 
scale. The observed saturation scale sets two important length scales 
for the comparison process. These are; (i) the proper imaging scale 
and the corresponding field of view (FOV) required for proper im-
aging of the fracture surface topology. This imaging scale should be 
greater than 10- times the self- affine saturation scale. (ii) The proper 
scale for forensic comparison of fractured surfaces and the corre-
sponding radial comparison bands on the frequency spectral space. 
Figure 2 shows the fracture surface topology and the corresponding 
height- height correlation as a function of the analysis window size. 
At a larger length scale (λ ~ 60– 70 μm for the examined SS alloy), the 
individuality of the fracture surface topology can exist [36,47,53], 
noted by the saturation of the correlation coefficient. This scale is 
about the size of the fracture process zone ahead of the crack tip, 
typically extending to about 2– 3 times the grain size (dg ≈ 25– 35μm 
for the examined SS alloy). Furthermore, Figure 2 shows also how a 
well- cast surface replica exhibits similar characteristics to the origi-
nal surface. On the other hand, a bad surface replica with entrapped 

• 3D topological images of fractured surface pairs and their replicas are acquired.
• Statistical learning is used to compare fracture items and their replicas.
• Silicon casts accurately replicate fracture surface topological details of 20  μm wavelength or 

larger.
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air bubbles deviates from the original surface characteristics and ex-
hibits different correlations. This phenomenon is very similar in ap-
pearance to dots formed during the casting of tool marks in human 
cartilage, where a very different underlying mechanism arise from 
cartilage cavities, which are areas where the strong collagen fibers 
leave space for the chondrocytes [19].

To highlight these characteristic length scales and their impact 
on the forensic comparison of the fracture surface, Figure 1C illus-
trates the role of the proper comparison band of the wavelengths 
(unique character) within the fracture surface topology. The three 
lines represent the marked line A– A at the center of the pair of pro-
cessed original Base and Tip surface images and the Tip’s replicas 
(see Figure 1B). The pair of images was processed by the mathe-
matical Fast Fourier Transform (FFT) operator. In one set, the low- 
frequency content (large wavelength, λ > 100 μm) was retained, 
as highlighted in the middle plot of Figure 1C. The three profiles 
showed a perfect match and asserted the uniqueness of the topol-
ogy in this range. In the other set, the high- frequency content was 

retained (small wavelength, 2 μm ≤ λ < 20 μm), as highlighted on the 
lower plot of Figure 1C. The line comparison was quite random with 
no similarity, indicating the self- affine deformation at this range. This 
trend is similar to that of an optical image obtained by high magni-
fication and a small field of view, where the local fracture mecha-
nism shows similar topological surface features over the fractured 
surface with indistinguishable character. Accordingly, the utilization 
of the observation length scale, λ for the unique fractured surface 
texture provides the proper level of details with the proper micro-
scope magnification.

In this paper, a set of fracture pairs and their replica were exam-
ined via 3D imaging profilometry and then analyzed with statistical 
decision- making tools. We quantify the range of features’ resolution 
that generic silicon- type casting materials can capture to replicate 
the fracture topology. In particular, we identify the ranges of wave-
length and frequencies that it replicates to perform quantitative fo-
rensic fracture matches. In optical microscopy, it will set the proper 
magnification to view the replicated surface and the number of 

F I G U R E  1  3D topological analysis of a Base- Tip pair of fractured surfaces and a Tip- cast replica. (A) Optical micrograph and color 
rendering of the topological fracture surface. Base/Tip and tip/its cast show mirror symmetry. (B) 3D topological representation of 
the fracture surface, utilizing a 640 μm field of view for the square inset area on the optical image. (C) 2D representation of the height 
comparison along with line A– A showing the original measured height (top) and the corresponding long- wavelength (middle) and short- 
wavelength (bottom), utilizing spectral decomposition by Fourier transform analysis. The low- frequency topological details (middle) exhibit 
patterns that are relevant for statistical comparison while the short- wavelengths topological details (bottom) exhibit no comparable patterns 
[Color figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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features or events that can be identified for matching purposes. For 
this purpose, we acquired six overlapping topological images of each 
fracture surface (Base and Tip) along with the Tip’s replicas and ob-
tained correlations for each of the three comparison pairs along with 
two frequency ranges and six overlapping images to obtain a matrix- 
valued feature that can be used to distinguish between matching 
and non- matching pairs of images. To classify these matrix- valued 
features, a quadratic discriminant analysis (QDA) classification algo-
rithm with the matrix t- distribution is trained on a separate set of 
samples of the same material- class and imaged by the same opera-
tor. This classifier is then used to classify the three surface pairs: (i) 
the original Base with Tip, (ii) Tip’s casted replicas with original Base, 
and (iii) Tip’s casted replicas with original Tip, resulting in perfect 
classification in all cases. The details of materials and methods are 
presented in Section 2, highlighting sample preparation and surface 
replication, fracture surface imaging protocol, surface spectral anal-
ysis, and a summary of the statistical model. The results and findings 
are summarized in Section 3 and followed by concluding remarks in 
Section 4.

2  |  MATERIAL S AND METHODS

2.1  |  Fracture samples and replica generation

A set of 10 rectangular (0.25″ wide and 1/16″ thick) rods of a com-
mon tool steel material (SS- 440C) and cut from the same metal 
sheet to minimize any variability from the manufacturer was used 
in this study. The steel rods were loaded in an INSTRON 8862 

servo- electric computer- controlled testing frame under a controlled 
extension of 1 mm/min displacement rate till fracture. The fractured 
pair surfaces were coded as a “Base” and a “Tip,” as shown within the 
loading grips of Figure 3A. The set of 10 fracture pairs are shown in 
Figure 3B.

A Mikrosil gray silicone type casting material was utilized in gen-
erating the fracture surface replicas because it is one of the common 

F I G U R E  2  Role of replica quality 
in identifying unique length scales for 
fracture comparison. (A) Color map 
rendering for topological heights, showing 
a pair of Base- Tip and good versus 
defective replicas of the Tip due to large 
voids. Notice that both the base and the 
Tip- replica images are mirror images of 
the Tip image. (B) The corresponding 
variation of the height- height statistical 
correlation with the size of the imaging 
window. The existence of a bubble within 
the field of view altered the critical 
wavelength at which the topological 
details show a transition from self- affine 
textures to the unique texture that can be 
used for matching purposes [Color figure 
can be viewed at wileyonlinelibrary.com]

F I G U R E  3  (A) Sample set of steel rods fractured under 
controlled tensile loading, (B) a set of 10 fracture pairs, providing 
the Base and Tip sections of the fractured steel rods utilized in this 
study [Color figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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replication materials for forensic analysis [19,42,45]. The Tip surface 
was replicated for the entire set. One of the major troublesome 
issues was the appearance of air bubbles within the image field of 
view. The air bubbles ranged in size from 70– 200 μm, which greatly 
interfered with the analysis. Figure 2 shows the effect that a bad 
replica has on biasing the domain of unique surface textures to be 
used for the comparative analysis. The replica surface with bubbles 
failed to show unique textures within the FOV and thereby could 
not be used for the comparative analysis. A glass slide with a uni-
form layer made of a silicon- based replica material was applied up-
side down, to the fracture surface, as in Figure 4A,B, to replicate the 
fracture surface. The glass slide was gently eased onto the surface 
with a 45° inclination to eliminate or minimize the entrapment of air 
pockets. Acetone droplets were applied to the resin and the hard-
ener mixture at the ratio in 1:10 by volume to reduce the propen-
sity for bubble entrapment during the replica process. The dilution 
process reduced the viscosity of replica paste and greatly improved 
its flowability and enabled capturing the fine details of the fracture 
surface, while providing a bubble- free replica surface, as shown in 
the set of images of Figure 2A. The replica cast was left on the sam-
ple surface for about 15 min to be fully hardened. The images in 
Figure 1A,B show a Base- Tip fracture pair and the replica of the Tip, 
which exactly matches both the Base and the Tip. The Tip for each of 
the 10 fracture pairs was replicated and utilized to form three groups 
for comparative analysis, namely (i) Base- Tip, (ii) Base- Replicas, and 
(iii) Tip- Replicas.

2.2  |  Fracture surface imaging

All 3D fractured surface height topological maps were acquired by a 
3D confocal laser microscope (OLYMPUS LEXT- OLS5000). The mi-
croscope provides optical magnification of 5– 100× with additional 

digital multiplication of 9×. For the purpose of classification of 
matching and non- matching surfaces, the observation scales (imag-
ing window) should be controlled by the self- affine transition length 
scale, which should cover at least 10 periods of the fracture process 
zone or about 20– 30 grain diameters to avert signal aliasing. The 
transition length scale is shown in Figure 2B, beyond which a satura-
tion in the height- height correlation is seen and indicative of unique 
surface texture. Accordingly, we utilized 20× objective, which maps 
the measuring array of 1024 × 1024 pixels to a 640 μm FOV with 
0.625 μm/pixel spatial inter- point resolution.

The topological imaging protocol includes an alignment step 
and an image- adjustment step. The alignment step ensures that 
the pair of fractured surfaces to be analyzed are aligned relative 
to each other without planar misalignment (in- plane tilt of the pair 
of surfaces), which could significantly deteriorate the correlation 
of the pairs of surface spectra. In optical comparative microscopy, 
the pair of fractured surfaces to be compared are viewed simul-
taneously and tilt adjustment done visually. For 3D topological 
comparison, such alignment step can be done mathematically 
[57], adding an extra step of complexity. To streamline the imag-
ing process, a fixture was developed to hold the pair of fracture 
surfaces parallel and aligned to each other, as shown in Figure 4C. 
The fixture also allows rotational movements around two axes 
to accommodate non- planar titled fracture surfaces. The image- 
adjustment- step entails adjusting the imaging volume (in direction 
normal to the fracture surface) to capture the entire topological 
surface height range of the fractured surface within the field of 
view. The laser intensity was then adjusted to map the entire 
surface topology within the dynamic range of the optical sensor 
without imposing over- saturation and truncation of extreme (high 
tortuosity) topological details. A standard mathematical out- of- 
plane tilt is applied to all images to remove global fracture sur-
face tilt. Furthermore, standard mathematical spike noise removal 

F I G U R E  4  Replication process and 
imaging of the fracture surface. (A) 
Vertical replication process of the fracture 
surface utilizing a gray silicone type 
casting material, (B) glass slide containing 
the replica of the fracture surface, (C) 
fracture surface characterization using the 
laser confocal microscope showing Base 
and its Tip alignment [Color figure can be 
viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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is also applied to remove any measurements that is beyond one 
standard deviation from the average of the surrounding window 
of 7- pixel radius. The noisy pixel is replaced with the surrounding 
window average. It should be noted that the range of wavelength 
of interests (essential topological features for comparison) are 
mapped to about 50– 100 pixels, rendering the correction window 
to be less than one quarter of the smallest recorded wavelength, 
and thereby not affecting any topological feature of interest.

All images were acquired relative to a reference mark, which 
is the corner of the sample. The first image reference coordinate, 
marked by the white box on Figure 1A, starts at a 1000 μm from the 
right vertical edge and is approximately centered around the cen-
terline of the sample thickness. For each fracture pair, a set of six 
successive images with 50% overlap was acquired for both the Tip 
and the Base. Our previous analysis [47] showed that a set of six 
images with 50% overlap is required to get classification with very 
high probability, and to ensure diminishing probability of misclassifi-
cations. Since the FOV was controlled by the saturation scale of the 
height- height correlation, multiple images were needed to overcome 
the imaging noise generated by missing grains between the pair of 
the fracture surface and the special circumstances of complex tor-
tuous path of fracture. It should also be noted that having a super- 
image of stitched smaller images with the selected FOV, equivalent 
to the five individual images, results in misregistry at the overlapping 
boundary of the stitched images. The ambiguity within the overlap-
ping region will lead to an additional interfering frequency within the 
band of comparison. Additionally, it is more computationally prac-
tical to perform FFT operation on smaller arrays as the operation 
scales with 2n, where n is the image size. Figure 5 shows a sequence 
of six topological images for a Base- Tip fracture pair and the replica 
of the Tip.

2.3  |  Spectral analysis and image correlation

The FFT operator was applied to each image to generate the cor-
responding frequency- space representation and the image topo-
logical spectral contents. A mathematical Hann filter with 10% 
edge smoothing ratio was applied to the original image to provide 
a periodic boundary for the image edges, before the FFT operator. 
The frequency- space analysis provides the ability to segment the 
surface topological frequency ranges for comparison. For instance, 
the lower frequency bands represent the macro- fracture features 
and the unique river marks. The high- frequency bands represent 
the micro mechanism of the fracture process as depicted in the 2- D 
topological height profiles shown in Figure 1C for line A– A showing 
the original topological details, and the decomposition of the long 
and short- wavelength components. For statistical comparison and 
decision- making, the statistical correlations between the spectra of 
each of the pair of surfaces are computed within banded frequencies, 
with increments in the bands determined by the scale of the image 
and the microstructure of the material, yielding a similarity measure 
on each frequency band for the corresponding pairs of images.

Comparison of image pairs for when the Tip and Base sur-
faces were from the same rod are called true matches, while 
comparison of surface pairs from different rods are called true 
non- matches. Figure 6 shows the correlation distribution for com-
parison made on pairs of images from matching and non- matching 
fracture pairs to estimate the distribution for both true matches 
and true non- matches. The image data set was derived from 10 
Base and Tip pairs and six images from each surface, resulting 
in 100 pairs of Base- Tip combinations 

(
10

2

)
. Note that, matching 

the Base of sample A with the Tip of sample B is not identical to 
matching the Base of sample B with the Tip of sample A (since 
the Tip and Base of a fracture surface are not perfect mirror im-
ages of each other due fracture surface irregularities between a 
Tip- Base pair). Accordingly, there are 60 matched image pairs (10 
matched pairs × 6 sets of image pairs per fracture pair) and 540 
non- matched image- pair comparisons (90 non- matched pairs × 6 
sets of image pairs per fracture pair). Correlation analysis shows 
a clear separation between the true matches (red color in Figure 6) 
and true non- matches (blue color in Figure 6) for the 5– 10 and 10– 
20 mm−1 frequency bands. The distributions start to be less discrimi-
nating and overlap more at higher frequencies. The overlap between 
matches and non- matches can be further reduced by combining 
the two most discriminating bands of 5– 10 and 10– 20 mm−1, as 
seen in the displays of their correlations in the Fisher- Z transform 
(the inverse hyperbolic tangent) scale (Figure 7). According to the 
contours, the surface pair with the least overlapping matches and 
non- matches is replica- Tip, which highlights the effectiveness of the 
surface replicas in capturing the important relevant information for 
classification. 

2.4  |  Model training and classification

The correlations that result from comparing each surface pair can be 
arranged in a 2×6 matrix, where the two rows correspond to the two 
relevant frequency bands of 5– 10 and 10– 20 mm−1 and the six col-
umns to the six overlapping images taken on the surfaces. To classify 
a 2×6 matrix X as a match or non- match, we first apply the Fisher- Z 
transform to each element of X and then use Bayes' theorem to ob-
tain the posterior probability that X is a match as

where f1 and f2 are the probability density functions (pdfs) of the true 
matches and non- matches, respectively, and p1 is the prior probability 
that X is a match. We set p1 = 0.5 because then the log- odd of the 
posterior probability in Equation (1) simply becomes the log of the 
likelihood ratio, which is easily interpretable. The posterior probability 
Equation (1) involves the unknown functions f1 and f2, with parameters 
that we estimate using a training sample of 10 rods of the same mate-
rial and fractured the same way as the studied steel rods, and that were 
imaged by the same operator who imaged the steel rods surfaces and 

(1)P (X = match) =
p1 f1 (X)

p1 f1 (X) +
(
1 − p1

)
f2 (X)

,
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their replicas. While we followed all these restrictions in generating the 
training set; however, we found that any set of fractured samples with 
the same range of grain sizes and similar brittle fracture mechanism re-
sults in the same quality of classifications [47]. To estimate f1 and f2 we 
fitted the matrix- variate t- distribution [58] with 5 degrees of freedom 
to both the true matches and true non- matches in our training sample 
using the expectation– maximization algorithm [46], which generalizes 
the block- relaxation algorithm given in [59]. Our matrix- variate- t model 
postulates a mean matrix with identical columns and a correlation 
structure across the six overlapping images that is dictated according 
to an AR(1) autoregressive process [47].

After estimating the parameters of the pdfs for f1 and f2, we pro-
ceed to estimate the posterior probability that a 2×6 matrix X corre-
sponds to a matching pair of surfaces as per Equation (1). In this study, 
the classification decision was made at the p = 0.5 level, meaning that 
posterior probabilities greater than 0.5 correspond to matching sur-
faces. The log- odds ratio of the posterior probability in Equation (1) 
can also be converted to a log- likelihood ratio, which can be used as a 
measure for forensic evidence comparison [2,8,25,44,45,60].

2.5  |  Assessment of replica effectiveness in 
wavelength recovery and topological mapping

In the previous section, we correctly classified every image 
pair using a QDA classification algorithm based on the matrix  
t- distribution with 5 degrees of freedom. For the purpose of studying 

the relevant wavelengths recovered from our replicas, we used the 
matrix t- distribution to obtain the mean correlation along with the 
10 frequency bands defined by the thresholds of 3- 5- 10- 20- 25- 33
- 50- 67- 100- 133- 200 mm−1. This corresponds to wavelength bands 
of 333- 200- 100- 50- 30- 20- 15- 10- 7.5- 5 μm, respectively. For the 
Tip- Replica pairs, we obtained the correlations from the six over-
lapping images for all the specified frequency bands to obtain 10 
matching pairs and 90 non- matching pairs of surfaces. Then, we for-
mulated 10×6 matrix features, with the 10 rows corresponding to 
the frequency bands and the 6 columns to the overlapping images. 
We fit the matrix t- distribution with 5 degrees of freedom, AR(1) 
correlation structure along with the columns to capture the overlap-
ping context of the images, and identical columns across the mean 
matrix. We note that the underlying fracture process generating the 
topography was not spatially stationary, meaning that at different 
positions within the fracture surface, the frequency of the fracture 
process varied slightly due to the inherent randomness of the mi-
crostructure. The FFT operator integrates over the entire 2D space, 
but because of non- stationarity, there are slight phase differences 
at different locations of the fracture surface. These local phase dif-
ferences give rise to destructive interference between frequencies 
that really ought to be correlated, especially at the high- frequency 
range. This phenomenon is an inherent limitation of the FFT opera-
tor. To study the effect of the noise in the Fourier space on the mean 
correlations, we applied a 3- point kernel filter to the FFT spectra of 
each topological image before obtaining the correlation coefficients. 
The kernel used was a 3 × 3 spatial- frequency- sample blur. Then, we 

F I G U R E  5  A representative topological set of images for a fracture pair for the acquired 6- images at 50% overlap and 20× objective. (A) 
Base, (B) Tip, and (C) a replica of the Tip [Color figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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fit the matrix t- distribution. Note that the blur kernel has an effect 
only on the high frequencies; therefore, it does not affect any of the 
match analysis utilizing the low- frequency components as explained 
in Section 2.4.

3  |  RESULTS AND DISCUSSION

Our framework utilizes a statistical model to produce a likelihood 
ratio or log- odds ratio of a matching pair or set of pairs; in addition, 

our model can estimate the probabilities of misclassification. Other 
probabilistic models such as the likelihood ratio and Congruent 
Matching Cells are used in many forensic applications such as fin-
gerprint identifications and bullet matching [35,57,61,62]. Our focus 
also is on examining the potential of replicas to transfer all the 
topological details required for the analysis at the proper magnifica-
tions. The classification model was applied to three sets of pairs of 
surfaces: the original Bases with Tips, the Bases with the Tip repli-
cas, and the Tips with their replicas. Figure 8 shows the posterior 
probabilities of match obtained on the three sets of surface pairs 

F I G U R E  6  Correlation histograms for true matches and true non- matches for different frequency bands and surface- pair comparison. 
Lower frequencies are well separated, while higher frequencies start to have overlap [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E  7  Scatterplots of fracture surface correlations in the Fisher- Z transform scale, and for the three sets of surface- pair comparison. 
Combining frequency bands increase the overlap between matches and non- matches. In each plot there a total of 60 matched pairs and 540 
unmatched pairs. Furthermore, Fisher- Z correlations form ellipsoids for both matches and non- matches, and therefore, make them suitable 
for a multivariate elliptical model such as the multivariate normal or t [Color figure can be viewed at wileyonlinelibrary.com]
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in the log- odds scale. Larger posterior log- odds indicate more evi-
dence that a surface pair is a match, whereas lower log- odds indi-
cate more evidence that a surface pair is a non- match. Utilizing the 
t- distribution with 5 degrees of freedom provides great confidence 
in the discrimination power of the proposed comparison and statisti-
cal analysis framework. The model classified the three cases with 10 
pairs of true matches and the 90 pairs of true non- matches with no 
false negatives and no false positives. That is, there are a total of 30 
pairs of true matches and 270 pairs of true non- matches. The 90 rep-
licas show a high probability of match when compared to the original 
fractured surfaces. This high accuracy exists for both original Base- 
Tips, replicas- Bases, replicas- Tips, although the replicas were cast 
only on the surfaces of the Tips. These results demonstrate the abil-
ity of the replicas to capture the relevant features that are important 
for discrimination. Furthermore, for the true match group, the low-
est posterior probability was higher than 0.9996, while the highest 
posterior probability for the true non- match was less than 0.005. 
The stark difference between the match and non- match probabili-
ties highlights the strength of using the physical basis of fracture 
mechanics to guide the imaging procedure and construct the statis-
tical discrimination framework.

Figure 9 summarizes the results for the replication capac-
ity of the silicone replica technique for all the frequency bands 
in the range of 3– 200 mm−1 or the corresponding wavelength of 
333– 5 μm, respectively. The mean correlations are shown for each 
of the comparison bands along with 95% bootstrap confidence in-
tervals for the group of match and non- match cases. The results are 

shown for both the original and the filtered frequency spectra of 
fractured sample Tips and their casted replicas. Figure 9 shows that 
with increasing frequency bands (i.e., reduction of the wavelength 
in real space), the match correlations between the Tip and its replica 
decay in magnitude and spread, indicating loss of differentiation 
of unique events. Furthermore, the correlations obtained from the 
filtered FFTs have increased correlations in both the matches and 
the non- matches. This is equivalent to using a discrimination frame-
work at higher magnification where the fracture surface topology 
is self- affine and indistinguishable from one surface to another of 
the same class. However, Figure 9A shows that the match correla-
tion remains around 0.4– 0.5 for a high frequency of 100 mm−1 or a 
short wavelength of 10 μm. This result gives confidence that replicas 
can still reliably reproduce wavelengths down to the micron ranges. 
However, such a range needs additional investigation with a smaller 
FOV and large magnification, employing a master surface with well- 
defined micron range features. Also, at large wavelengths, that is, 
at wavelengths greater than about a fifth of the imaging window 
size, Figure 9A shows a slight drop in correlation at the 3- 5 mm−1 
frequency band when compared to the 5– 10 mm−1 frequency band. 
This is a limitation of the discretization process wherein the resolu-
tion per frequency line is 1.56 mm−1, which will provide a very lim-
ited number of data points (about 7 discretized frequency lines) in 
the 3– 5 mm−1 band. A larger FOV at the same magnification would 
be required to refine the frequency- band lines and resolve these 
long- wavelength limitations.

Our analysis provides two significant results. First, the analysis 
supports our previously developed classification procedure [47]. It 
shows how replicas effectively capture surface fractures along with 
wavelength topological details in the range of the two frequency- 
band analyses of 5– 10 and 10– 20 mm- 1, equivalently between 
200– 100 and 100– 50 μm wavelengths. The topological features at 
these length scales are unique and helpful for distinguishing be-
tween matches and non- matches. Second, the analysis shows the 
ability of the replica to faithfully replicate fracture features with 
wavelengths all the way to the 20 μm range. For forensic compari-
son, the replicas are well suited for mapping features of 20 μm and 
larger. It can be assertively stated that the replicas effectively dis-
tinguish matches from non- matches in low- frequency ranges, and 
that they stop being distinctively different for frequencies above 
100 mm−1, where the micro- features of the local fracture processes 
that are common to both matches and non- matches are compared.

While our presented data set was acquired on a well- controlled 
fracture event of stainless steel rods, the results are general and 
applicable to crime scene scenarios. Here, we have attempted to 
eliminate other interfering issues that might bias the conclusion 
in gaging the ability of casted silicon replica to capture surface 
features to the micron- scale. However, we have examined a wide 
range of metallic articles with a range of microstructure grain sizes 
of 10– 30 μm, covering a broad range of engineering metallic alloys. 
We found that regardless of the origin and nature of the training 
set, we were able to acquire very high posterior match probabilities 
well above 99.9+% for true match pairs. For non- match pairs, we 

F I G U R E  8  Posterior probability of being a match (in log- 
odds scale) using a model trained on a separate set of images 
from the same surfaces and tested on the pair of surfaces of 
Base- Tip, replica- Base, and replica- Tip. Higher values indicate 
stronger evidence of a match [Color figure can be viewed at 
wileyonlinelibrary.com]
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consistently achieved very low posterior match probabilities well 
below 1%. Our framework is also applicable to different classes 
of materials including ceramics and automotive plastic compo-
nents. Our preliminary work showed similar levels of discrimina-
tion, though the imaging and comparison scales were adjusted to 
the relevant fracture process zone size. While this reassures the 
confidence in the prospects of applying our framework, additional 
investigations are needed for each of these classes of materials.

While our statistical analysis framework is quite promising for a 
wide class of material comparison and examination, the limitations 
of our technique arise from the ability to produce accurate 3D topo-
logical representations of the fracture surface for comparison. There 
are two main limitations for the technique.

(1) The framework presented here is accurate and feasible for the 
class of materials that exhibit brittle or semi- brittle fracture, wherein the 
fracture surface is relatively planar within several hundred microns. The 
limitation here is having the imaging depth resolution in the sub- micron 
range for the entire surface topology range. If the fracture surface ex-
hibits large tortuous- paths with topological variation in the millimeter- 
range, additional mathematical treatments would be required, similar to 
comparison of cylindrical surfaces (e.g., cartridge cases) [36,63].

(2) If the fracture surface has many missing grains or groups of 
grains, these missing topological details will greatly affect the fracture- 
pair correlations and the decision- making process. In the current work, 
we found that the use of six images with 50% overlap would tolerate 
the loss of several grains within the FOV, with a total area density of 

about 10%. If the differences between the pairs of images are larger 
than this range due to grain fall- out or excessive corrosion, larger 
image sets will be required. This is a problem of focused investigation 
and will be reported after analysis of different relevant scenarios.

Within the limitations noted above, the developed framework 
establishes the basis of forensic comparison of fractured articles and 
their replicas while providing a reliable quantitative statistical foren-
sic comparison. The framework utilizes the foundation of fracture 
mechanics to establish the FOV and scales of comparisons of the 
fracture surface topology of fragment pairs.

4  |  CONCLUSIONS

We have utilized our developed quantitative statistical comparative 
analysis framework to examine the potential of the cast replicas in the 
comparative forensic analysis of topological details of pairs of frac-
tured surfaces. The replica surfaces faithfully reproduce the topologi-
cal details with wavelength features greater than 20 μm. The replicas 
showed a high probability of match when compared to the original 
Base- Tip fractured pairs. This result highlights the replicas' ability to 
capture the relevant features that are important for discrimination. 
Furthermore, the stark difference between the match and the non- 
match probabilities highlights the strength of using the physical basis 
of fracture mechanics to guide the imaging procedure and construct 
the statistical discrimination framework. The presented framework 

F I G U R E  9  Mean correlations obtained from the comparison between the tip and its replica along with 10 frequency bands and to both 
matches and non- matches, and for both the original and filtered frequency spectra. The matching correlations decrease with increasing 
frequency bands while still being distinctively different from the non- matches until it reaches frequency bands less than 100  mm−1 (short 
wavelength greater than 10 μm) [Color figure can be viewed at wileyonlinelibrary.com]
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has a high potential in assisting forensic scientists in providing conclu-
sive decision- making with quantifiable probabilities for a wide range 
of fractured and broken forensic articles along with their replicas. All 
of the classification scores were higher than 99.96%, and were the 
highest for the Tip- replica comparison pair, demonstrating the po-
tential for using replicas, relative to the original Base- Tip comparison. 
The underlying correlations, which are strong for the low- frequency 
bands capturing the macro- fracture features, indicate the potential of 
using replicas to reproduce the relevant features present in forensic 
fracture evidence.
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