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Abstract: In this work, the finite element technique is employed to evaluate the effects of thermal
relaxation durations on temperature, displacements, and stresses in a two-dimensional, polymeric,
orthotropic, elastic medium. The problem is considered in a homogeneous, polymeric, orthotropic
medium in the context of the Green and Lindsay model with two thermal relaxation times. The
bounding surface of the half-space was subjected to a heat flux with an exponentially decaying
pulse. Finite element techniques were used to solve the governing formulations, with eight-node
isoparametric rectangular elements with three degrees of freedom (DOF) per node. The developed
method was calculated using numerical results applied to the polymeric, orthotropic medium. The
findings were implemented and visually shown. Finally, the results were displayed to demonstrate
the differences between classical dynamic coupling (CT), the Lord–Shulman (LS) and the Green and
Lindsay (GL) models.

Keywords: thermal relaxation; governing equations; polymeric orthotropic material; finite element method

1. Introduction

Over the last four decades, generalized thermoelastic models have drawn the sig-
nificant interest of several researchers from the mathematical and technical perspective
because of their remarkable, realistic implications in numerous regions which include
continuum mechanics, nuclear engineering, aeronautics, high-energy particle accelerators,
acoustics, etc. In materials science and solid mechanics, the polymeric, orthotropic medium
has material properties varying along the three perpendicular axes, where each axis has
double rotatory symmetry. Biot [1] constructed the coupled thermoelastic hypothesis to
overcome the inconsistency which appeared when using the uncoupled hypothesis. The
formulations of heat transfer and elasticity in this theorem are coupled. Several general-
izations of the thermoelastic hypothesis were formulated by Lord and Shulman [2]. In
1980, the Lord–Shulman model was expanded upon by Dhaliwal and Sherief [3] to involve
anisotropic cases. Lord and Shulman [2] presented the first generalized thermo-elastic
model with one thermal relaxation time, whereas Green and Lindsay [4] obtained the sec-
ond generalized thermo-elastic model in the case of two thermal relaxation times. Zenkour
and Abbas [5] applied the finite element approach to investigate the effect of magnetic
field in an infinite FG thermoelastic cylinder. Abo-Dahab and Abbas [6] investigated the
effect of thermal relaxation times and the magnetic field with variable heat conduction in
an infinite cylinder under thermal shock loading. Sarkar [7] discussed the wave propaga-
tions in elastic solids under magneto-thermoelastic theory using the time-fractional order
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two-temperature model. Lata and Kaur [8] studied the influences of inclined load and
rotation on transversely isotropic material under thermal and magnetic fields. Alesemi [9]
discussed the plane waves in a magneto-thermo-elastic anisotropic medium based upon the
Lord and Shulman model. Singh [10] studied wave propagation in media with voids under
the generalized thermoelastic model. Abbas and Abd-alla [11] investigated the effects of
thermal relaxation on thermoelastic interaction in an infinite, orthotropic, elastic material
with a cylindrical cavity. Khamis et al. [12] investigated the effects of ramp-type heating in
a two-dimensional medium using the generalized thermo-visco-elastic model. Lata and
Himanshi [13] studied the hall current in an orthotropic, magneto-thermoelastic solid with
multi-dual-phase-lag models. Biswas [14] studied the thermal shock problem in porous,
orthotropic material under the three-phase-lag theory. Biswas [15] used the eigenvalues
approach to study the magneto-thermo-elastic problem in a transversely isotropic, hol-
low cylinder. Balubaid et al. [16] studied the dynamical behaviors of orthotropic, elastic
materials using analytical solutions. Sarkar and Mondal [17] studied the thermoelastic
plane wave under the modified Green–Lindsay theory with two-temperature formula-
tions. The inclined load effect in an orthotropic, magneto-thermoelastic material with
fractional-order heat transfer was explored by Lata and Himanshi [18]. Yadav [19] studied
a magneto-thermoelastic wave in a rotating, orthotropic medium with diffusion. Lata
and Himanshi [20] investigated the fractional influence of normal force in an orthotropic
magneto-thermoelastic spinning solid of the GN-II type. Biswas [21] studied Rayleigh
waves in a porous, orthotropic material with phase delays. Under the non-Fourier MGT
thermoelastic model, Abouelregal et al. [22] investigated the thermo-visco-elastic behav-
ior of an infinitely thin, orthotropic, hollow cylinder with changing characteristics. An
orthotropic, magneto-thermoelastic solid was explored by Lata and Himanshi [23] using a
multi-dual-phase-lag model and hall current. Several investigations have been carried out
under the different theories in the recent literature [24–39]. In these papers, the authors used
numerical and analytical approaches to solve several thermal and elastic wave problems.

In this work, the impacts of thermal relaxation times in a two-dimensional, polymeric,
orthotropic medium upon the Green–Lindsay theory with two thermal relaxation times
are studied. So, using the finite element method (FEM), the numerical solutions for the
temperature increment, the displacement and the stress components are obtained. The
results are plotted to show the difference between classical dynamic coupling (CT) in
comparison with the Lord and Shulman (LS) and Green and Lindsay (GL) models.

2. Mathematical Model

For a polymeric, orthotropic, elastic, and homogeneous material, the basic formu-
lations under the Green–Lindsay [4] model without body force and heating sources are
introduced by the following equations.

The equations of motion can be given by:

σij,j = ρ
∂2ui
∂t2 , (1)

The GL heat conduction equation can be written as:

KiT,ii = ρce

(
1 + τ1

∂

∂t

)
∂T
∂t

+ Toγi

(
1 + mτ1

∂

∂t

)
ui,i, (2)

The stress-displacement equations can be written as:

σij = cijklekl − γi

(
T − To +

(
1 + τ2

∂

∂t

))
δij. (3)
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We investigated an orthotropic and elastic, two-dimensional medium in this problem.
The temperature and displacement components may be represented as follows:

T = T(x, y, t), u = (u, v, 0), u = u(x, y, t), v = v(x, y, t). (4)

The equations of motion can be given by:

c11
∂2u
∂x2 + (c12 + c44)

∂2v
∂x∂y

+ c44
∂2u
∂y2 − γ1

(
1 + τ2

∂

∂t

)
∂T
∂x

= ρ
∂2u
∂t2 , (5)

c22
∂2v
∂y2 + (c12 + c44)

∂2u
∂x∂y

+ c44
∂2v
∂x2 − γ2

(
1 + τ2

∂

∂t

)
∂T
∂y

= ρ
∂2v
∂t2 . (6)

The GL heat conduction equation can be written as:

K1
∂2T
∂x2 + K2

∂2T
∂y2 = ρce

(
1 + τ1

∂

∂t

)
∂T
∂t

+ To

(
1 + mτ1

∂

∂t

)(
γ1

∂2u
∂t∂x

+ γ2
∂2v
∂t∂y

)
. (7)

The stress-displacement equations can be written as:

σxx = c11
∂u
∂x + c12

∂v
∂y − γ1

(
1 + τ2

∂
∂t

)
T, σyy = c12

∂u
∂x + c22

∂v
∂y − γ2

(
1 + τ2

∂
∂t

)
T, σxy

= c44

(
∂u
∂y + ∂v

∂x

)
,

(8)

where τ1, τ2 are the thermal relaxation times; ρ is the density of the material; T is the incre-
ment of temperature; c11, c22, c44, and c12 are the elastic constants; ce is the specific heat; σxx,
σyy, and σxy are the stress components; t is the time; To is the reference temperature; u and
v are the displacement components; K1 and K2 are the thermal conductivity components;
and γ1 and γ2 are the thermal stress coefficients. This model can be reduced to:

(i) (GL) refers to Green and Lindsay’s model
0 < τ1 < τ2 , m = 0,

(ii) (LS) points to Lord and Shulman’s model
τ1 > 0, τ2 = 0, m = 1.

(iii) (CT) points to the classical, dynamically coupled model
τ1 = τ2 = m = 0,

3. Initial and Boundary Conditions

The initial conditions can be given by:

T(x, y, 0) =
∂T
∂t

= 0, u =
∂u
∂t

= 0, v(x, y, 0) =
∂v
∂t

= 0, t = 0, (9)

while the problem boundary conditions are presented by:

− K1
∂T(x, y, t)

∂x
= qo

t2e
− t

τp

16τ2
p

H(a− |y|), u = 0, σxy = 0.0, (10)

where τp is the characteristic time of pulse heat flux, qo is a constant, and H is the unit
step function. To obtain the main fields in nondimensional forms, the non-dimensional
parameters are taken:

(
x′, y′, u′, v′

)
= ηc(x, y, u, v), t′ = ηc2t,

(
σ
′
xx , σ

′
yy, σ

′
xy
)
=

(
σxx , σyy, σxy

)
c11

, T′ =
T − To

To
, (11)
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where η = ρce
K1

and c =
√

c11
ρ . By using the non-dimensional variables in Equation (11), the

governing Equations (5)–(10) can be given (the dashes have been dropped for appropriateness):

∂2u
∂x2 + (s1 + s3)

∂2v
∂x∂y

+ s3
∂2u
∂y2 − s4

(
1 + τ2

∂

∂t

)
∂T
∂x

=
∂2u
∂t2 , (12)

s2
∂2v
∂y2 + (s1 + s3)

∂2u
∂x∂y

+ s3
∂2v
∂x2 − s5

(
1 + τ2

∂

∂t

)
∂T
∂y

=
∂2v
∂t2 , (13)

∂2T
∂x2 + s6

∂2T
∂y2 =

(
1 + τ1

∂

∂t

)
∂T
∂t

+

(
1 + mτ1

∂

∂t

)(
s7

∂2u
∂t∂x

+ s8
∂2v
∂t∂y

)
, (14)

σxx =
∂u
∂x

+ s1
∂v
∂y
− s4

(
1 + τ2

∂

∂t

)
T, σyy = s1

∂u
∂x

+ s2
∂v
∂y
− s5

(
1 + τ2

∂

∂t

)
T, σxy = s3

(
∂u
∂y

+
∂v
∂x

)
, (15)

u = 0, σxy = 0,
∂T(x, y, t)

∂x
= −qo

t2e
− t

τp

16τ2
p

H(a− |y|), (16)

where s1 = c12
c11

, s2 = c22
c11

, s3 = c44
c11

, s4 = Toγ1
c11

, s5 = Toγ2
c11

, s6 = K2
K1

, s7 = γ1
ρce

, and s8 = γ2
ρce

.

4. Finite Element Method

In this section, the basic formulations of homogeneous, polymeric, orthotropic mate-
rial are summarized, followed by the corresponding finite element formulations. Abbas
and his colleagues [40–42] presented the solutions for various problems under deference-
generalized thermoelastic theories. The finite element formulation of thermoelastic diffu-
sion can be obtained by using the standard procedure. In the finite element approach, the
temperature change T and the displacement components u, v are related to the correspond-
ing nodal values by

T = ∑n
j=1 NjTj(t), u = ∑n

j=1 Njuj(t), v = ∑n
j=1 Njvj(t), (17)

where Nj are the shape functions, and m points to the number of nodes per element.
The eight-node quadrilateral, the isoperimetric element, is used for the temperature and
displacement computations. The shape functions and weighting functions coincide, hence:

δT = ∑n
j=1 NjδTj, δu = ∑n

j=1 Njδuj, δv = ∑n
j=1 Njδvj. (18)

In the absence of heat sources and body forces, the basic formulations are multiplied
by the test functions and, after that, are integrated into the spatial domain Ω using the
boundary Γ. The applications of integrations by parts and the use of the divergence theory
decrease the order of the derivatives and allow the applications of the problem boundary
conditions. Thus, the finite element formulations corresponding to the Formulations
(12)–(14) can be introduced by∫ y2

y1

∫ x2
x1

∂δu
∂x

(
∂u
∂x + s1

∂v
∂y − s4

(
1 + τ2

∂
∂t

)
T
)

dxdy +
∫ x2

x1

∫ y2
y1

∂δu
∂y

(
s3

(
∂u
∂y + ∂v

∂x

))
dydx =∫ y2

y1
δu
(

∂u
∂x + s1

∂v
∂y − s4

(
1 + τ2

∂
∂t

)
T
)

dy +
∫ x2

x1
δu
(

s3

(
∂u
∂y + ∂v

∂x

))
dx,

(19)

∫ y2
y1

∫ x2
x1

∂δv
∂x

(
s3

(
∂u
∂y + ∂v

∂x

))
dxdy +

∫ x2
x1

∫ y2
y1

∂δv
∂y

(
s1

∂u
∂x + s2

∂v
∂y − s5

(
1 + τ2

∂
∂t

)
T
)

dydx =∫ y2
y1

δv
(

s3

(
∂u
∂y + ∂v

∂x

))
dy +

∫ x2
x1

δv
(

s1
∂u
∂x + s2

∂v
∂y − s5

(
1 + τ2

∂
∂t

)
T
)

dx,
(20)
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∫ y2
y1

∫ x2
x1

∂δT
∂x

∂T
∂x dxdy +

∫ y2
y1

∫ x2
x1

∂T
((

1 + τ1
∂
∂t

)
∂T
∂t +

(
1 + mτ1

∂
∂t

)(
s7

∂2u
∂t∂x+

s8
∂2v
∂t∂y

))
dxdy + s6

∫ x2
x1

∫ y2
y1

∂δT
∂y

∂T
∂y dydx =

∫ y2
y1

∂T ∂T
∂x dy + s6

∫ x2
x1

∂T ∂T
∂y dx.

(21)

On the other hand, the temporal derivatives of the unknown variables must be deter-
mined by Newmark’s method of temporal integration or other methods (see Wriggers [43]).

5. Results and Discussion

For numerical calculations, the orthotropic material cobalt vide was chosen for the
purposes of the numerical estimations. The constants value of this material can be given as
in [44]:

To = 298(k), a = 0.5, τ1 = 0.05, τ2 = 0.08, t = 0.5, ce = 427 (J)(kg−1)(k−1),

c12 = 1.65× 1011(N)(m−2), c11 = 3.71× 1011(N)(m−2), ρ = 8836(kg)(m−3)

c44 = 1.51× 1011(N)(m−2), c22 = 3.581× 1011(N)(m−2), K1 = 100 (W)(m−1)(k−1)

K2 = 25 (W)(m−1)(k−1), γ1 = 7.04× 106(N)(k−1)(m−2), γ2 = 6.9× 106 (N)(k−1)(m−2)

The above data have been used to study the difference between the classical dynamic
coupling (CT), Lord and Shulman (LS) and Green and Lindsay (GL) models in the distribu-
tions of temperature T, the components of displacement u, v, and the stress components
σxx, σxy. The medium is considered to be an orthotropic, elastic, two-dimensional material.
The results are presented graphically with the distance 0 < x < 2 and −2 < y < 2 for three
models, as in Figures 1–13. Figure 1 displays the temperature variation via the distance
y, and it points that the variations of temperature have maximum values at the length of
the thermal surface (|y| ≤ 0.5), and it starts to decrease just near the edges ((|y| ≤ 0.5)),
where the temperature regularly reduces and finally reaches a zero value.
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Figure 1. The variation of temperature T via y, with x = 0.5 under the three models.

Figure 2 shows the horizontal displacement variations u via x. It should be noted
that the horizontal displacement has a maximum value at the length of the heating surface
(|y| ≤ 0.5), and it begins to reduce just near the edge (y = ±0.5), and then reduces to a
zero value.

The stress components σxx and σxy via y are presented in Figures 4 and 5.
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Figure 3. The variation of vertical displacement v via y, with x = 0.5 under the three models.
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Figure 8. The horizontal displacement variation u via x, with y = 0.5 under the three models.
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Figure 9. The stress variations σxx via x with, y = 0.5 under the three models.

Figures 6–10 depict the variations of the components of the temperature T, the dis-
placements u, v, and the stresses σxx, σxy versus the distance x in the context of the three
thermoelastic models when (t = 0.5). It can be seen in Figure 6 that the values of tempera-
ture T reduce with the increase in distance x. At a larger distance from the boundary of
the medium, the temperature field reaches closer and closer to zero, and, at last, becomes
zero. However, a significant difference in the temperature field near the boundary plane
is observed for all three models. The greater values of temperature are noticed for the
classical dynamic coupling (CT) in comparison with the Lord and Shulman (LS) and Green
and Lindsay (GL) models.

Figure 7 displays the variations of horizontal displacement u with respect to the
distance x. It can be observed that the horizontal displacement u started from a zero value,
which satisfies the problem’s boundary conditions. Figure 8 shows the variations of vertical
displacement via x, which have a maximum value on the boundary and decrease with the
increase of x. It can be observed that the vertical displacement reduces with the increase of
the distance x.
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Figures 9 and 10 show the variations of stress components σxx and σxy with respect
to the distance x. It can be observed that the stress magnitudes permanently start from
maximum magnitudes for the stress σxx, while the stress component σxy starts from a zero
value that obeys the boundary condition.

Figures 11–13 show the temperature field for three models of the hole contours. We
found that the temperature changed in the restricted zones in a finite area, while the
temperature did not change outside this area. In addition, there are areas with a temperature
gradient much greater than that of another area. This means that the heat is carried out at a
limited rate. As expected, it can be found that the thermal relaxation times τ1, τ2 have the
most significant impact on the values of all the fields studied.
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