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Compared to adults, neonates are at increased risk of infection. There is a

growing recognition that dynamic qualitative and quantitative differences in immunity

over development contribute to these observations. The liver plays a key role as

an immunologic organ, but whether its contribution to the acute innate immune

response changes over lifetime is unknown. We hypothesized that the liver would

activate a developmentally-regulated acute innate immune response to intraperitoneal

lipopolysaccharide (LPS). We first assessed the hepatic expression and activity of the

NF-κB, a key regulator of the innate immune response, at different developmental ages

(p0, p3, p7, p35, and adult). Ontogeny of the NF-κB subunits (p65/p50) revealed a

reduction in Rela (p65) and Nfkb1 (p105, precursor to p50) gene expression (p0) and

p65 subunit protein levels (p0 and p3) vs. older ages. The acute hepatic innate immune

response to LPS was associated by the degradation of the NF-κB inhibitory proteins

(IκBα and IκBβ), and nuclear translocation of the NF-κB subunit p50 in all ages, whereas

nuclear translocation of the NF-κB subunit p65 was only observed in the p35 and

adult mouse. Consistent with these findings, we detected NF-κB subunit p65 nuclear

staining exclusively in the LPS-exposed adult liver compared with p7 mouse. We next

interrogated the LPS-induced hepatic expression of pro-inflammatory genes (Tnf, Icam1,

Ccl3, and Traf1), and observed a gradually increase in gene expression starting from p0.

Confirming our results, hepatic NF-κB subunit p65 nuclear translocation was associated

with up-regulation of the Icam1 gene in the adult, and was not detected in the p7 mouse.

Thus, an inflammatory challenge induces an NF-κB-mediated hepatic innate immune

response activation across all developmental ages, but nuclear translocation of the

NF-κB subunit p65 and associated induction of pro-inflammatory genes occurred only

after the first month of life. Our results demonstrate that the LPS-induced hepatic innate

immune response is developmentally regulated by the NF-κB subunit p65 in the mouse.
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INTRODUCTION

Worldwide, neonates suffer a disproportionate burden of
infection, sepsis and related morbidities and mortality when
compared with older children and adults (1, 2). This is consistent
with pre-clinical reports indicating that neonatal animals
are highly sensitive to endotoxic shock, often demonstrating
mortality at exposures 10 times lower than similarly exposed
adults (3–11). This finding has been attributed to an immature
immune system that is biased against a pro-inflammatory innate
immune response during the fetal and perinatal period (12–17).
It is thought that at this life stage, the innate immune system has
a primary role of defense against diverse range of antigens since
there is a limited exposure to antigens that can activate adaptive
mechanisms (18). Neonates need a continuous microbial antigen
exposure to gradually mature to a Th1-type, pro-inflammatory
innate immunity during infancy (19). This antigen education is
necessary to obtain a fully functional and mature innate immune
system (20), but when this process starts or how it develops have
not been fully elucidated.

The NF-κB transcription factor plays a relevant role in

regulating the innate immune response. NF-κB activation is
induced by degradation of the inhibitory proteins IκBα and
IκBβ, and nuclear translocation of its subunits p65, p50, cRel,
RelB, and p52 (21–23). Particularly, the NF-κB p65 subunit
contains a C-terminal transcriptional activation domain that
in necessary for its transcriptional activity (24). This domain
undergoes post-translational modification, which affects NF-κB

transcriptional activity through its association with interacting
proteins leading to the activation of pro-inflammatory genes
(25). Of note, in neonatal hepatic lysates, NF-κB p50 subunit
is more abundant than p65 (26). This observation has
potential implications for the neonatal hepatic innate immune
response, as p50 has been reported to induce immunotolerance

due to a lack of transcription activation domain in other
experimental settings (27). As we have learned about the NF-
κB transcriptomic, subunit p65 can bind to the promoter
region of different pro-inflammatory genes such as TNF, IL1β,
MIP1α, ICAM, and TRAF1 (28–33). However, whether this
subunit exerts the same effects at different developmental
time points during an inflammatory challenge has not been
fully elucidated.

During fetal development and perinatal life, the liver plays
a key role in regulating the innate immune response due
to its essential role in clearing antigens from the systemic
circulation (34–37) via the portal vein, the biggest blood
supply from the gut (38, 39). It has been reported that
the liver uniquely contributes to the NF-κB-mediated innate
immune response to an inflammatory challenge through the
activation of pro-inflammatory cytokines (26, 40). Furthermore,
we have observed that this response resembles a Th1-
type in adults when compared with neonates hours after
intraperitoneally (IP) LPS exposure (26). However, whether
this difference can be linked to the actions of the p65
subunit expression and/or nuclear translocation has never
been explored. Likewise, describing how the hepatic innate
immune response to LPS evolves at different developmental

time points remains incompletely characterized. Therefore, a
better understanding of the mechanisms that regulates the
acute hepatic NF-κB activation in the neonate and adult could
reveal therapeutic targets against sepsis and prevent morbidity
and mortality associated with early life infection. In this
work, we proposed that the NF-κB-mediated pro-inflammatory
acute hepatic innate immune response is developmentally
regulated due to the subunit p65 actions in a murine model
of endotoxemia.

MATERIALS AND METHODS

Ethical Approval
All procedures were approved by the University of Colorado
Institutional Animal Care and Use Committee (00457) and
performed in compliance with the American Association for
Accreditation for Laboratory Animal Care at the Perinatal
Research Center at the University of Colorado School of
Medicine (Aurora, CO, USA).

Murine Model of Endotoxemia
Newborn (P0), neonatal (P3, P7), juvenile (P35), and adult
(> 10 weeks) ICR male mice (Taconic Biosciences, Rensselaer,
NY, USA) (n = 5–6/group) were exposed to a sublethal
dose of intraperitoneal (IP) LPS (5 mg/kg; L2630, Sigma-
Aldrich, St. Louis, MO, USA), as previously reported by our
group (26, 40–42). Similar number of animals from each
litter were included as a control (unexposed) group (P0,
P3, P7, P35, and adult). One hour after the experiment,
animals were euthanized with an IP overdose of sodium
pentobarbital, and liver regions were collected as described
previously (42), snap frozen in liquid nitrogen, and stored
at−80◦C.

Hepatic Nuclear and Cytoplasmic Protein
Extraction
Liver tissues from both LPS and control groups were
homogenized using the Bullet Blender (NextAdvance, Troy, NY,
USA), and protein lysates were collected and kept in T-PER
buffer (ThermoFisher Scientific, Waltham, MA, USA). Hepatic
cytosolic and nuclear extracts were prepared with the NE-PER
kit (ThermoFisher Scientific, Waltham, MA, USA).

mRNA Extraction and Quantitative Real
Time-PCR
Hepatic mRNA was collected using the RNeasy Mini Kit
(Qiagen, Valencia, CA, USA), and assessed for purity and
concentration using the NanoDrop (ThermoFisher Scientific,
Waltham, MA). mRNA was converted into cDNA using the
Verso cDNA synthesis Kit (Thermo Scientific, Waltham, MA,
USA). Relative mRNA levels were evaluated by quantitative
real-time PCR using the TaqMan gene expression system
(Applied Biosystems, Foster City, CA, USA). Gene expressions
of Icam1 (Mm00516023_m1), Il1b (Mm01336189_m1),
Ccl3 (Mm99999057_m1), Nfkb1 (Mm00476361_m1), Rela
(Mm00501346_m1), Tnf (Mm00443258_m1), and Traf1
(Mm00493827_m1) genes were assessed with predesigned
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exon-spanning primers using the StepOnePlus Real Time PCR
System (Applied Biosystems, Foster City, CA, USA). We used the
murine housekeeping gene 18S to normalize RT-qPCR results
and quantification was performed using the cycle threshold
(11Ct) method as described previously. Data are expressed as
fold change relative to the mean in the control group.

Western Blot Analysis
Whole lysates, and cytosolic and nuclear extracts were
electrophoresed on a 4–12% polyacrylamide gel (Invitrogen,
Carlsbad, CA, USA) and proteins were transferred to an
Immobilon-P membrane (MilliporeSigma, Burlington, MA,
USA). Membranes were blotted with antibodies against the
NF-κB subunits p65 (1:1000, #6956 and #8242, Cell Signaling,
Danvers, MA, USA), p50 (1:1000, ab32360, Abcam, Cambridge,
MA, USA), p105 (1:1000, #13586, Cell Signaling, Danvers, MA,
USA), and p100/p52 (1:1000, #4882, Cell Signaling, Danvers,
MA, USA); and NF-κB inhibitory proteins IκBα (1:1000, #4814,
Cell Signaling, Danvers, MA, USA), and IκBβ (1:1000, PA1-
32136, Invitrogen, Carlsbad, CA, USA). For loading controls
in our assays, we used β-actin (1:1000, #3700, Cell Signaling,
Danvers, MA, USA) for cytosolic extracts; lamin B (1:1000,
SC- 6217, Santa Cruz Biotechnology, Dallas, TX, USA) for
nuclear extracts; and total hepatic protein staining for p105
protein expression (Supplemental Figure 1). Blots were imaged
using the Li-Cor Odyssey R© Fc imaging system (Li-Cor, Lincoln,
NE, USA) and densitometric analysis was conducted using
Image Studio version 4.0 (Li-Cor, Lincoln, NE, USA). Western
blot assays were performed in 8 lanes where we were able to
compare all developmental time points in single and across
blots. Although some blots were not in chronological order,
this was the most objective way to analyze and interpret our
data correctly.

Immunofluorescence
IP LPS-exposed and control livers from p7 and adult mice
were fixed with 4% paraformaldehyde, paraffin-embedded, and
stained against NF-κB p65 subunit. Briefly, after antigen retrieval
(antigen unmasking solution, H-3301, Vector Laboratories,
Burlingame, CA, USA), permeabilization (0.5% Triton X), and
quenching with 100mM glycine and 0.5% Pontamine Sky Blue
(Chicago Sky Blue 6B, C8679-25G, Sigma-Aldrich, St. Louis, MO,
USA), 5µm sections were blocked with Sea Blocking (#37527,
ThermoFisher Scientific, Waltham, MA) for 40min, and Fc
Receptor Blocking (NB309-15, Innovex Biosciences, Richmond,
CA, USA) for 30min. Sections were subsequently incubated with
anti-p65 antibody (1:100, NF-κB p65 XP R©, #8242, Cell Signaling,
Danvers,MA, USA) at 4◦C overnight. The following day, sections
were incubated with secondary antibody (1:200, Alexa Fluor 488
donkey anti-rabbit, A-21206, ThermoFisher Scientific, Waltham,
MA) for 1 h at room temperature. Finally, sections were mounted
with DAPI (1:1000, D9542, Sigma-Aldrich, St. Louis, MO, USA)
and imaged with an IX83 microscope and DP80 camera using
CellSens software (Olympus Life Science, Waltham, MA, USA).

Evaluation of Nuclear NF-κB Binding by
EMSA
IRDye 700 phosphoramidite-labeled oligonucleotides with the
consensus sequence for NF-κB (5′-AGTTGAGGGGACTTTC
CCAGGC-3′; 3′-TCAACTCCCCTGAAAGGGTCCG-5′) (829-
07924, Li-cor, Lincoln, NE, USA) was used as a probe to
evaluate NF-κB binding ability. In order to identify the NF-κB
subunit proteins in the binding complex (supershift expression),
3 different p50 (ab32360, Abcam, Cambridge, MA, USA; #13586,
Cell Signaling, Danvers, MA, USA; and #90275, Millipore,
Burlington, MA, USA) or a p65 (8242, Cell Signaling, Danvers,
MA, USA), subunit antibodies were incubated with nuclear
proteins for 25min at 4◦C prior to the addition of the
labeled probe.

Chromatin Immunoprecipitation (ChIP)
Assay
We used the lateral left lobe of the liver for this assay. Chromatin
was prepared using the EZ-Magna ChIPTM G – Chromatin
Immunoprecipitation tissue kit (Millipore, Burlington, MA,
USA) with sonicated tissues in nuclear lysis buffer (Millipore,
Burlington, MA, USA) as described previously (41). Ten µg
of chromatin was diluted to a total volume of 500 µL in
dilution buffer. We used antibodies against rabbit IgG (1:10,
PP64, Millipore, Burlington, MA, USA), NF-κB p65 subunit
(1:25, SC-372, Santa Cruz Biotechnology, Dallas, TX, USA),
and RNA Polymerase II clone CTD4H8 (1 mg/mL, 05-623B,
Millipore, Burlington, MA, USA) as positive control. All
antibodies had an overnight incubation at 4◦C. We performed
RT-qPCR for Icam1 gene enrichment with SYBR green ROX
qPCR Mastermix (330523, Qiagen, Valencia, CA, USA) and
pre-designed Icam1 (F: TGGTGGGTTAAAGAGGCTTG; R:
CAGGTGAGTCCGGAGAGAAG) promoter spanning primers
(Integrated DNA Technologies, Coralville, IA, USA)1. Results
were expressed as percent input average.

Statistical Analysis
Statistical analysis was conducted with GraphPad Prism 8
software (GraphPad, San Diego, CA, USA). Primary cytokine
gene expression and the NF-κB ontogeny data were analyzed by
1-way ANOVA (developmental time point as main factor) and
differences between groups was determined by the Dunnet post-
hoc test. IP LPS-exposed NF-κB signaling and ChIP data (LPS vs.
CTR) was analyzed by Student’sT-test. Statistical significance was
declared at P < 0.05.

RESULTS

Hepatic NF-κB p65 Subunit Gene and
Protein Expression Is Developmentally
Regulated
The transcription factor NF-κB has been reported to have a
central role in the regulation of the innate immune response
(43, 44). NF-κB activation induces the expression of pro-
inflammatory genes via toll-like receptor (TLR) signaling (28,
45, 46). LPS-mediated activation of the TLR4 induces the
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degradation of the inhibitory proteins IκBα and IκBβ allowing
the nuclear translocation of the NF-κB subunits resulting in
the up-regulation of key pro-inflammatory genes (22, 25, 47).
We have previously shown that the LPS-mediated hepatic
innate immune response in the adult is largely p65 driven
compared with the neonate P0 mouse (26). Based on these
findings, we decided to explore this relationship at other
transitioning time points (late neonate and juvenile) in LPS
exposed and unexposed animals. Figure 1 shows the hepatic gene
(Figure 1A), whole (Figures 1B,C) and nuclear (Figures 1D,E)
protein expression of the NF-κB subunit proteins p65 and
p50, hepatic protein expression of NF-κB subunit protein p105
(Figure 1F), and hepatic cytoplasmic NF-κB inhibitory proteins
IκBα and IκBβ expression (Figure 1G) in unexposed mice.
Hepatic gene expression of Rela (p65) and Nfkb1 (p50) were
significantly lower in p0 vs. adult mice (P < 0.05). There were
not significant differences in other developmental time points
compared with adult mice. At the whole protein level, hepatic
p65 expression was significantly lower in p0 and p3 vs. adult
mice (P < 0.05); and at the nuclear level, p65 protein expression
was higher in p35 compared with the adult (P < 0.05) and
expression was undetectable in p0, p3, and p7 mice. There
were no differences detected in p50 whole or nuclear protein
expression in any developmental group. Likewise, whole hepatic
p105 protein and cytoplasmic NF-κB inhibitory proteins IκBα

and IκBβ expression were observed at all developmental time
points consistently.

Activation of the Hepatic NF-κB-Mediated
Innate Immune Response to IP LPS Is
Developmentally Regulated by Subunit p65
Having demonstrated significant changes in the expression of
Rela (p65) and Nfkb1 (p50) over murine development, we
next sought to assess whether there were differences in LPS-
induced hepatic NF-κB activation over the same developmental
window. We have previously reported that the liver is able
to mount an innate immune response to IP LPS as early as
1 h after exposure through NF-κB signaling activation (26)
and upregulation of primary response genes (42), which led
us to continue studying this initial activation at multiple
developmental time points. Exposure to IP LPS resulted in
degradation of the cytoplasmic NF-κB inhibitory proteins IκBα

and IκBβ occurred within 1 h (Figures 2A,B) with a similar
pattern among all developmental ages (P < 0.05 vs. control).
These data demonstrate that the LPS-induced hepatic NF-κB
signaling upstream of IκB inhibitory protein degradation is intact
from P0 to adult. Likewise, nuclear translocation of NF-κB p50
subunit 1 h after IP LPS (Figures 2C,D) was significantly present
(P < 0.05 vs. control) without a significant difference among all
ages. However, we found significant differences in LPS-induced
p65 nuclear translocation from P0 to adulthood. Specifically, p65
translocation was not detected in p0, p3, and p7 mice when
compared with p35 and adult (P < 0.05 vs. control). These data
demonstrate that despite LPS-induced degradation of the IκB
inhibitory proteins at P0 to adulthood, nuclear translocation of

key NF-κB subunits was specific to the postnatal age at which
exposure occurred.

IP LPS-Mediated Nuclear Translocation of
the NF-κB Subunit p65 Occurs Only in the
Adult Mouse Liver
Having determined that the NF-κB p65 expression in the LPS-
exposed liver is different between the adult and neonate, we
finally sought to detect the p65 protein cellular location in the
LPS-exposed adult and neonatal liver by immunofluorescence
(Figure 3). IP LPS adult liver showed a very distinct p65
nuclear localization (green fluorescence) at 1 h after exposure.
In contrast, adult control and p7 mice showed a cytoplasmic
p65 localization after LPS exposure. Together, these results
demonstrate that upon LPS activation, p65 nuclear translocation
only occurs in the adult liver whereas, in the neonate, this
expression remains in the cytosol.

Hepatic DNA-Binding NF-κB Dimers
Include p65 in Adults but Not in P7 LPS
Exposed Mice
Having demonstrated that IP LPS induced differential NF-κB
subunit nuclear translocation from P0 to adulthood, we next
sought to determine what dimers present in the nucleus were able
to bind to DNA. Thus, we performed electrophoretic mobility
shift assays (EMSA) on hepatic nuclear extracts obtained from
control and LPS exposed (5 mg/kg, 1 h) p7 and adult mice. For
this assay, we worked with 3 different p50 subunit antibodies (A,
Abcam; C, Cell Signaling; and D, Millipore) and 1 p65 subunit
antibody (B, Cell Signaling). Analysis of p7 and adult LPS-
exposed livers by EMSA (Figure 4) revealed NF-κBDNA binding
at 1 h of exposure compared with their respective controls
(Figure 4A lines 3, 7; Figure 4B lines 4, 5; and Figure 4C line
3). Supershift analysis confirmed presence of the NF-κB p50
subunit in both adult and p7 LPS-exposed mice using antibody C
(Cell Signaling, Figure 4B line 7 [adult]; Figure 4C line 4 [p7]).
In contrast, NF-κB p65 subunit supershift was only detected in
LPS-exposed adult compared with p7 mice (Figure 4A line 9
[adult]; Figure 4A line 5 [p7]). These results confirm that LPS
induces nuclear translocation of NF-κB dimers that contain p50
but not p65 at p7, while NF-κB dimers contain both p50 and p65
in adults.

Endotoxemia Induces
Developmentally-Regulated Hepatic
Expression of Primary Pro-Inflammatory
Genes
Exposure to LPS induces a NF-κB-mediated pro-inflammatory
signaling in the liver, and we have previously described that this
response is attenuated in neonates compared with adults (26).
However, how this response matures over time has never been
described. Having observed that IP LPS induces a p65-dependent
hepatic innate immune over murine maturation, we then sought
to determine whether this change was associated with increasing
hepatic expression of p65 dependent pro-inflammatory genes.
Thus, we interrogated the expression of key primary response,
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FIGURE 1 | Ontogeny of the NF-κB subunits shows that p65 protein is developmentally regulated. Unexposed mouse livers from different developmental time points

were collected and measured for hepatic (A) cRela and Nfkbl gene expression, (B,C) whole cell lysate and (D,E) nuclear protein p65 and p50 (F), whole cell lysate

protein p105, and (G) cytoplasmic NF-κB inhibitory proteins IκBα and IκBβ levels. GAPDH and HDAC1 were used as loading controls for the cytosolic and nuclear

extracts, respectively. *P < 0.05 vs. adult (AD) by 1-way ANOVA and Dunnet post-hoc test. Values are represented as fold change relative to adult (AD).
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FIGURE 2 | The activation of the hepatic NF-κB-mediated innate immune response to IP LPS is developmentally regulated by the subunit p65. IP LPS-exposed (5

mg/Kg, 1 h) mouse livers (1 h) from different developmental time points were collected and measured for hepatic (A,B) cytoplasmic NF-κB inhibitory proteins IκBα and

IκBβ, and (C,D) nuclear p65 and p50 protein expressions. Loading controls used were calnexin and GAPDH (cytoplasmic), and HDAC1 (nuclear). *P < 0.05 vs.

control (0 h) by Student’s T-test. Values are represented as fold change relative to control.

pro-inflammatory genes (Tnf, Icam1, Il1b, Ccl3, and Traf1)
whose promoter regions are known to interact with both NF-κB
subunits p65 and p50 (33), the NF-κB subunits available to bind
DNA in LPS-exposed adult mice as demonstrated by EMSA in
Figure 4. Figure 5 shows comparison in gene expression levels
between LPS-exposed vs. unexposed to determine the different
NF-κB activation levels of stimulation across development. We
found that compared to LPS-exposed adults, LPS-induced gene
expression was significantly lower at p0, p3, p7, and p35 (Tnf);
p0, p3, and p7 (Icam1); p3 (Il1b); and p0 and p3 (Ccl3 and Traf1).

The NF-κB Subunit p65 Binds the Icam1

Promoter in the LPS-Exposed Adult Liver
Having observed the effects of IP LPS on the hepatic expression
of primary pro-inflammatory genes and NF-κB p65 activation,
we next evaluated whether there is a direct relationship between
LPS-induced p65 nuclear translocation and the expression of
Icam1 in the adult liver. Icam1 is an important pro-inflammatory
mediator involved in the recruitment of leukocytes into different
tissues (48–50) and is present in the liver in the sinusoidal
lining cells (51, 52), hepatocytes (53, 54), and Kupffer cells (54).

Likewise, Icam1 gene promoter has been shown to strongly
interact to the NF-κB subunit p65 in LPS-exposed human
monocytes (33), macrophages (55), and alveolar cells (56, 57)
in-vitro. We found that 1 h following IP LPS exposure, NF-κB p65
subunit bound the Icam1 promoter in the adult liver (P < 0.05 vs.
control), and could find no evidence of p65 binding to the Icam1
promoter in LPS-exposed p7mice (Figure 6). RNA Polymerase II
interaction with Icam1 promoter followed the same pattern thus
validating our results. Our data demonstrate that expression of
LPS-induced hepatic Icam1 gene expression is developmentally
regulated by NF-κB subunit p65.

DISCUSSION

The main goal of this study was to assess the LPS-induced NF-
κB-mediated innate immune activation in the mouse liver across
development. This study reveals that the maturation of the NF-
κB-mediated hepatic innate immune system is dependent of the
actions of Rela (p65) in mice. The present work shows three
important findings: (1) LPS-induced hepatic NF-κB subunits p65
and p50 activation does only occur in the juvenile (p35) and adult
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FIGURE 3 | The NF-κB subunit p65 is translocated into the nucleus in the liver of IP LPS-exposed adult mice. Representative histological pictures of control (CTR)

and LPS-exposed (5 mg/Kg, 1 h) adult and p7 livers. NFκB subunit p65 was stained in green (FITC) and cell nuclei was stained in blue (DAPI). Internal scale bar to

50µm. Image at 40x.

mouse; (2) neonatal hepatic NF-κB innate immune response to IP
LPS does not involve p65, but does depend on the NF-κB subunit
p50; and (3) the NF-κB subunit p65 activation is transcriptionally
active and can be found bound to the promoter region of pro-
inflammatory genes that are expressed to a greater extent in in
the LPS-exposed juvenile and adult compared to neonate mouse.

After stimulation of the innate immune system, the NF-κB
response is highly dependent on the levels and stability of the
subunit p65 (58). This subunit has the primary role of inducing
pro-inflammatory gene responses (59) and also amplifies the
pro-inflammatory signaling through an autoregulatory loop
mechanism (60). In this work, we were able to detect hepatic Rela
(p65) and Nfkb1 (p50) gene and protein expression levels in the
unexposed mouse across all developmental ages. The presence
of hepatic NF-κB p50 protein was supported by p105 protein
detection in liver lysates at all developmental ages consistently.
However, after LPS stimulation, the NF-κB subunit p65 faces
a different extent of activation and activity that is dynamic as
the mouse matures. Here, we present data demonstrating that
exposure to IP LPS induced nuclear translocation of both p50
and p65 in the livers of juvenile and adult mice, but only p50
translocation was detected in the neonate. We have previously
reported that the neonatal mice (p0) do not show hepatic

p65-NF-κB signaling compared with the adult at 1 h post IP
LPS exposure (26). The present work builds on our previous
findings by demonstrating that LPS-induced NF-κB subunit p65
nuclear translocation, DNA binding and transcriptional activity
does not occur at developmental ages p3 and p7 after LPS
exposure. All these findings were validated by Western blot,
immunostaining against p65 subunit in the LPS-exposed adult
vs. neonate (p7) mouse liver, EMSA and ChIP. Our data show
that NF-κB subunit p65 hepatic nuclear translocation only occurs
in the adult after LPS exposure. In contrast, p7 neonatal mice
showed hepatic cytosolic subunit p65 expression but there was
no nuclear translocation after exposure.

This study shows that the LPS-induced hepatic expression
of NF-κB-associated pro-inflammatory genes (Tnf, Icam1, Ccl3,
and Traf) is greater in the adult compared with the neonate
mouse. Previous studies have shown that cytokines such as
TNF-α, CCL3, and IL1β along with others have been shown
to be significantly reduced in neonatal monocytes (61) and
systemically (11, 62) when exposed to LPS. There are few reports
that describe whether this situation also occurs similarly in
the liver. For instance, Le Rouzic et al. found that the hepatic
innate immunity is suppressed in the p1 neonatal mice compared
with juveniles (p21) and adults (p70) by measuring basal TLR4,
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FIGURE 4 | IP LPS induces age-specific hepatic NF-κB activation. Representative EMSA of hepatic nuclear extracts from p7 and adult mice exposed to IP LPS

(5mg/Kg, 1 h) and control (CTR) (A–C). Bands represent NF-κB consensus sequence binding, non-specific binding, free probe, and supershift (black arrows) are

labeled. Superscript letters indicate different antibodies used: A p50 (1.06mg/mL, ab32360, Abcam, Cambridge, MA, USA), B p65 (201µg/mL, #8242, Cell Signaling,

Danvers, MA, USA), C p50 (170µg/mL, #13586, Cell Signaling, Danvers, MA, USA), and D p50 (1mg/mL, #90275, Millipore, Burlington, MA, USA).

FIGURE 5 | Endotoxemia induces developmentally-regulated hepatic expression of primary pro-inflammatory genes. Hepatic gene expression levels for primary

innate immune pro-inflammatory genes 1-h post IP LPS at different developmental time points. *P < 0.05 vs. adult (AD) by 1-way ANOVA and Dunnet post-hoc test.

Values are represented as fold change compared to their own unexposed control.

CD14, and MD2 gene expression in rats (63). Furthermore,
Nakagaki et al. reported a significant higher Tlr4, Itgam (CD11b,
macrophage marker), and a reduced Nr1h3 (NR1, regulator of
macrophage function) hepatic gene expression in the neonatal
mice when exposed to LPS (64) indicating an insufficient
innate immunity maturation. Our findings are consistent with
these reports, and also reveals that the LPS-induced hepatic
downstream pro-inflammatory cascade remains attenuated at p3
and p7 ages. Likewise, our data show that increases in LPS-
induced hepatic pro-inflammatory cytokine upregulation that
occur from birth to adulthood are associated with significant
differences in the nuclear translocation and DNA binding of
the NF-κB subunit p65. We have shown that nuclear p65 binds
to DNA sequences in the promoter region of the Icam1 gene
after LPS exposure as shown by ChIP data. This result fits well
with previous reports describing a large distribution of p65 DNA

binding sites in different cells upon TLR4 activation that leads
to up-regulation of pro-inflammatory responses (33, 65, 66).
Together, our findings indicate that the neonatal mouse does not
have a fully matured hepatic innate immunity due to a reduced
NF-κB subunit p65 pro-inflammatory activity.

The mechanisms how the NF-κB p65 subunit induces an
innate immune pro-inflammatory response are well-described.
This subunit is ubiquitous (22), considered the main target for
phosphorylation by numerous kinases (59), and transcriptionally
active in most tissues as homodimers (p65/p65) or heterodimers
with NF-κB subunits p50 and c-rel (22). Also, the NF-κB
subunit p65 profound pro-inflammatory actions are strongly
involved in organ defense against damage-associated (DAMPs)
and pathogen-associated (PAMPs) molecular patterns (22, 67).
This molecule is very stable (68, 69) and has regulatory effects on
the subunit p50 (70) and NF-κB inhibitory proteins activity (60).
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FIGURE 6 | The NF-κB subunit p65 is bound to the Icam1 promoter in the liver of IP LPS-exposed adult mice. Adult and p7 mice were exposed to IP LPS (5 mg/Kg,

1 h), and whole liver homogenates were subjected to chromatin immunoprecipitation with anti-p65 (SC-372, Santa Cruz Biotechnology, Dallas, TX, USA) and analyzed

by RT-qPCR targeting the Icam1 promoter. RNA Polymerase 2 (Pol2) was used to validate the assay. *P < 0.05 vs. control (0 h) by Student’s T-test. Values are

represented as input chromatin percentage of RT-qPCR for the amplification of the Icam1 promoter run in triplicate.

Likewise, NF-κB subunit p65 can be post-translational modified
through phosphorylation (71), acetylation (72), isomeration
(73), methylation (74), and ubiquitination (75), and exert other
cellular functions which adds more complexity to its role.
However, the exact mechanisms by which p65 activity is reduced
in the neonatal liver are unknown. We can speculate that, due
to its unique and essential role in clearing antigens systemically,
hepatic p65 is associated with strong pro-inflammatory responses
that cannot be regulated by the neonatal immune system, yet.
Without correct regulatory mechanisms, NF-κB p65-dependent
activation of the hepatic innate immune system may lead to
severe organ damage in the neonate.

In contrast to some reports (76, 77), we found that neonates
are able to mount an innate immune response to IP LPS but
in a lesser extent compared with the adult mouse, possibly
due to an exclusive subunit NF-κB p50-dependent mechanism.
Contrary to p65 actions, NF-κB p50 subunit is reported to
have transcriptional repressor effects on the innate immune
signaling (58). However, NF-κB subunit p50 can become
transcriptionally active through an association with other NF-κB
inhibitory proteins such as a B-cell lymphoma 3-encoded protein
(Bcl3) (78–80), and IκBζ (81–83) and induce immunoregulatory
actions. Whether these mechanisms are active in the maturing
liver is an area of active study. Additionally, we found in
this study that hepatic NF-κB subunit p50 is present in all
developmental ages and can be largely translocated after LPS
exposure. There are no reports that describe how the NF-κB
subunit p50 develops or matures over time in the liver, but along

with its immunosuppressor effects (58, 84), subunit p50 has been
reported to have a relevant role in other cellular processes, such
as organogenesis (85), neuroplasticity (86), anti-aging processes
(87), hepatic tumor suppressing (88), and liver metabolism (89,
90). We believe that NF-κB subunit p50 role is essential in the
liver since its expression is pretty consistent among all ages in
mice. Studies with NF-κB subunit p50K.O. animal and short
hairpin RNA on specific cell lines for gene knockdown can
provide relevant information to confirm the functional role of
subunit p50 during development and its activation when exposed
to different stressors.

Our studies are limited in that we did not identify the
specific liver cell populations involved in LPS-mediated NFκB
p65 activation and assess their contribution to the hepatic
innate immune response through in-vitro studies. Of note,
reports describe that the neonatal liver is myeloid-enriched in
granulocytes, monocytes, and immune cell precursors, all of
them with a reduced Th1 activity (64). It is possible that the
difference in hepatic cell populations between the neonatal and
adult mouse might affect the p65-mediated NFκB signaling after
LPS exposure. Furthermore, the aim of this study was to assess
the NF-κB-mediated hepatic innate immune response to LPS
at 1 h (acute) and did not assess any later pro-inflammatory or
systemic signaling effects. However, for the first time, this work
identified notable differences in the initial activation of the NF-
κB signaling in the liver across development and will provide
relevant data that will be used for testing the response to LPS
at different range of exposures (doses) and later time points.
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Likewise, this work showed that NF-κB subunit p65 nuclear
activation is transcriptionally active in the juvenile and adult
mice, but this subunit might not be the only one that can induce
NF-κB-mediated innate immune activation in the liver. There is
also the need to assess the contribution of the NF-κB subunit c-
Rel, which is present in the liver (91) and is reported to have
immunosuppressive actions (58, 91), as well as the non-canonical
NF-κB pathway activation through the nuclear translocation of
NF-κB subunits p52 and RelB (92). We only detected a small
increment in hepatic nuclear p52 expression in the adult but did
not observe any nuclear translocation in the neonate (p7) after
LPS exposure (Supplemental Figure 2). Furthermore, the degree
of response to an inflammatory stimulus can be sex-specific
(93, 94). The present work only used males, but future studies
should focus on describing the female NF-κB-mediated innate
immune response to LPS as well as the factors that can influence
this signaling (e.g., estrous cycle) at different developmental
time points.

We conclude that the maturation of the NF-κB transcriptome
is regulated by the subunit p65 in the liver. We have shown
that an inflammatory challenge (IP LPS) induces a robust
upregulation of hepatic NF-κB target genes identified to be
subunit p65 dependent in the adult. Nuclear extracts from LPS-
exposed adult livers showed that NF-κB subunit p65 becomes
transcriptionally active and is able to bind the promoter region
of pro-inflammatory genes in the juvenile (p35) and adult mouse
thus promoting gene transcription. In contrast, LPS-exposed
neonates lack hepatic NF-κB subunit p65 activation and this is
associated with attenuated expression of key pro-inflammatory
NF-κB regulated genes. The role of hepatic NF-κB subunit
p65 on the development of the hepatic innate immunity might
provide novel insights in how to treat neonatal sepsis by creating
therapeutic approaches targeting specific NF-κB subunits.
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