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The role of hypoxia-inducible factor-2 in digestive
system cancers

J Zhao1,2, F Du1, G Shen2, F Zheng2 and B Xu*,1

Hypoxia is an all but ubiquitous phenomenon in cancers. Two known hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α, primarily
mediate the transcriptional response to hypoxia. Despite the high homology between HIF-1α and HIF-2α, emerging evidence
suggests differences between both molecules in terms of transcriptional targets as well as impact on multiple physiological
pathways and tumorigenesis. To date, much progress has been made toward understanding the roles of HIF-2α in digestive
system cancers. Indeed, HIF-2α has been shown to regulate multiple aspects of digestive system cancers, including cell
proliferation, angiogenesis and apoptosis, metabolism, metastasis and resistance to chemotherapy. These findings make HIF-2α a
critical regulator of this malignant phenotype. Here we summarize the function of HIF-2 during cancer development as well as its
contribution to tumorigenesis in digestive system malignancies.
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Facts

� Hypoxia is a common phenomenon in digestive system
cancers.

� HIF-2α is an essential mediator of the cellular oxygen-
signaling pathway.

� HIF-2 plays important roles in digestive system cancers and
upregulates genes involved in cell proliferation, angiogen-
esis and apoptosis, metabolism, metastasis and resistance
to chemotherapy.

� HIF-2 inhibitors can suppress the expression of HIF-2 target
genes to reduce angiogenesis and metastasis.

Open questions

� Studies assessing the HIF-2α roles in digestive system
cancers are scarce, with inconsistent outcomes. Therefore,
the actual roles of HIF-2α are still unclear.

� The definite mechanisms of HIF-2 activity during digestive
system cancers remain elusive. How does HIF-2 take part
in tumorigenesis of digestive system cancers?

� The exploitation of HIF-2α inhibitors faces many challenges.

Introduction to HIF-2α

HIF-2 is the second member of the hypoxia-inducible factor
(HIF) family that includes three proteins: HIF-1, HIF-2 and

HIF-3. Its amino-acid sequence shares ∼ 48% homology with
that of HIF-1.1–3 HIF-2 is a heterologous dimeric protein
complex that consists of two subunits: HIF-2α and HIF-1β.
Both HIF-2α and HIF-1β belong to the superfamily of
transcription factors bHLH-PAS. HIF-2α, also named endothe-
lial PAS domain protein-1 (EPAS1), member of pas super-
family 2 (Mop2), hypoxia-inducible factor 2α subunit or Hif-2-α,
was identified in 1997.1–4 It binds to and activates transcription
from the HIF-1α response element derived from the 3-prime
flanking region of the EPO gene. Hypoxic conditions stimulate
HIF-2α activation.5 Like HIF-1, HIF-2 is primarily regulated by
specific prolyl hydroxylase-domain enzymes (PHDs) that
initiate its degradation via the von Hippel–Lindau protein
(pVHL) tumor suppressor protein.6 Under normoxia, PHDs
hydroxylate two conserved proline residues (Pro 405 and 531)
within HIF-2α, using oxygen, α-ketoglutarate and iron as
cofactors. HIF-2α hydroxylation facilitates the binding of pVHL
to the HIF-2α ODD7 (Figure 1). The pVHL protein constitutes
the substrate recognition module of an E3 ubiquitin ligase
complex comprising elongin C, elongin B, cullin-2 and ring-box 1
that directs HIF-2α polyubiquitylation and proteasomal
degradation.8 With the inhibition of PHD activity and elimina-
tion of pVHL binding under hypoxia, HIF-2α enters the nucleus
and heterodimerizes with HIF-1β. Subsequently, HIF-2α binds
to a conserved DNA sequence known as the hypoxia-
response element (HRE) and transactivates a variety of
hypoxia-responsive genes.9 As the transcriptional activator
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of erythropoietin, HIF-2 controls intracellular hypoxic
responses throughout the body.
HIF-2α is expressed in endothelial cells, the parenchyma

and interstitial cells of multiple organs.1,10,11 Although HIF-2α
is stabilized at higher O2 pressure compared with HIF-1α
in vitro, it was not detected under normoxic conditions in
various organs.11–13 However, HIF-2α was shown to be
markedly induced under hypoxia in all organs investigated,
including brain, heart, lung, kidney, liver, pancreas and
intestine.11

Hypoxia is a common phenomenon in many tumors. The
HIF-1α and HIF-2α proteins are expressed in most types of
human tumors, including breast, colon, ovarian, pancreatic,
prostate, renal and hepatocellular cancers.14–16 Compared
with surrounding normal tissues, HIF-1α or HIF-2α (or both)
have been detected at higher levels in the majority of primary
human cancers and their metastases.14–17 HIF-2α mediates
the adaptive response to decreased O2 availability at the
cellular and organismal level.

HIF-2 Is Different from HIF-1

The HIF transcription factors mediate the primary transcrip-
tional responses to hypoxic stress in normal and transformed

cells. Both HIF-1α and HIF-2α are O2-labile α-subunits and
heterodimeric complexes composed of bHLH-PAS proteins. In
addition, both of them can bind ARNTand mediate transcrip-
tion. However, increasing evidence has indicated that HIF-2 is
distinct or even opposite in many ways from HIF-1.12,18–20 To
ease understanding, we here delineate the differences
between HIF-2 and HIF-1 in three parts. In fact, all the
disparities are cause-and-effect relationships and should be
conceived as part of a whole in the cellular processes.
First, HIF-2α expression has been shown to differ from that

of HIF-1α (Table 1) in various tissues. In contrast to HIF-1α that
appears to be expressed in nearly all cell types, HIF-2α
expression is restricted to specific types, including endothelial
cells, glial cells, type II pneumocytes, cardiomyocytes, kidney
fibroblasts, interstitial cells of the pancreas and duodenumand
hepatocytes. In the umbilical cord, HIF1α is expressed in
smooth muscle cells that surround blood vessels, whereas
HIF-2α was detected in endothelial cells that line blood vessel
walls.1–3 HIF-1α was observed by cytoplasmic staining in
addition to nuclear accumulation; HIF-2α is confined to the cell
nucleus and expressed only under hypoxic stimulation.
Although HIF-1α is expressed in renal tubules and neuronal
cells, HIF-2α was detected in nonparenchymal cells including

Figure 1 The structural domains of HIF-1α and HIF-2α. Both of them contain basic helix-loop-helix (bHLH), per-Arnt-SIM (PAS), oxygen-dependent degradation domain
(ODD) and C-terminal transactivation domains (CADs). Prolyl hydroxylases (PHDs) hydroxylate proline residues 402 and 564, and 405 and 531, respectively, in ODD of HIF-1α
and HIF-2α, under normoxic conditions, targeting it for degradation by the proteosome, respectively. Numbers refer to amino-acid similarity between human HIF-1α and HIF-2α in
the defined domains

Table 1 Different expression of HIF-1α and HIF-2α

HIF-1α HIF-2α References

Tissue distribution
Nearly all cell types Endothelial cells, glial cells, type II pneumocytes, cardiomyocytes,

fibroblasts of the kidney, interstitial cells of the pancreas and duodenum
and hepatocytes

1–3

Umbilical cord smooth muscle cells Endothelial cells 1–3

Cytoplasm and cell nuclei Cell nuclei 1–3

Renal tubules and neuronal cells Kidney glomerular, peritubular endothelial cells and fibroblasts, brain
endothelial cells and glia cells

11

No Neuroblastoma well-vascularized areas 12

RCC perinecrotic regions RCC tumor-associated macrophages 14

Oxygen condition
Normoxic baseline conditions No 11

More severe hypoxia (6% O2) in liver and kidney No 12

Time to be activated and duration
Transient in kidney and liver Sustained in kidney and liver 11,12
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glomerular, kidney peritubular endothelial cells and fibro-
blasts, and brain endothelial and glial cells.11 Furthermore,
HIF-2α expression has been shown to differ from that of
HIF-1α in many cancers. In addition, HIF-2 is expressed in
tumor-associated macrophages, although HIF-1α distribution
tends to be more restricted to perinecrotic regions in renal cell
carcinoma (RCC).14

Another difference concerns the oxygen conditions needed
for expression. HIF-1α was shown by immunohistochemistry
to be already expressed under normoxic baseline conditions,
unlike HIF-2α.11 More severe hypoxia (6% O2) is required to
induce HIF-1α compared with HIF-2α in liver and kidney.11

HIF-1α is most active during short periods (2–24 h) of intense
hypoxia or anoxia (o0.1% O2), whereas HIF-2α was shown to
be active under mild or physiological hypoxia (o5% O2) in
both SK-N-BE(2)c and KCN-69n neuroblastoma cell lines.12

These findings indicate that HIF-2 plays a critical role in driving
the hypoxic response, whereas HIF-1 controls the initial
response to hypoxia in certain contexts.12,20

The two proteins also differ by the time needed for activation
and duration of activity. HIF-1α induction in kidney and liver
was shown to be transient; however, HIF-2α expression is
sustained.11 Moreover, HIF-1α was transiently stabilized and
primarily mediated acute responses, whereas HIF-2α gradu-
ally accumulated and managed prolonged hypoxic gene
activation under hypoxia (1% O2) in neuroblastoma. The
activity of HIF-2α persists even after 48–72 h of hypoxia in
neuroblastoma cell lines.12

Second, based on their distinct expression patterns, HIF-2α
plays different roles in many respects compared with HIF-1α
(Table 2). It was found that the majority of hypoxia-induced
genes contained HIF-1-binding sites, and gene expression
was shown to be dependent on HIF-1α expression. HIF-2α
binding was redundant for many genes, but knockdown of
HIF-2α levels did not affect gene expression.21 In fact,
emerging studies have shown that HIF-1α andHIF-2α regulate
different target genes, with non-redundant and even opposite
biological functions. HIF-1α plays more important roles in
endothelial cell proliferation, migration and vessel sprouting;
HIF-2α plays a more significant role in controlling vascular
morphogenesis, integrity and assembly.22 Overexpression of

HIF-2α was shown to enhance the expression of endothelial
tyrosine kinase receptor Tie2, in contrast to HIF-1α.1 HIF-2α or
other hypoxia-induced factors cannot compensate for the loss
of HIF-1α, whereas hypoxic induction of HIF-1α target genes is
attenuated in Hif-1α-deficient endothelial cells.23 Interestingly,
HIF-1α decreased IL-8 expression whereas HIF-2α over-
expression increased the mRNA and protein levels of this
cytokine in HMEC-1 cells.24 HIF-2α also seems to have a
stronger transactivation activity than HIF-1α on vascular
endothelial growth factor (VEGF) promoter.2,13,25,26 Moreover,
HIF-2 is the dominant HIF regulating VEGF and other
angiogenic factors in mouse liver hemangiomas.27 HIF-1α
facilitates cell growth in vitro and tumorigenesis in vivo,
whereas HIF-2 showed opposite effects in colon cancer
cells.28 Surprisingly, HIF-2α also has distinct or even opposite
functions with HIF-1α in some cancers. In RCC, HIF-2α, but
not HIF-1α, promotes tumor growth in xenograft models.
Overexpression of stable HIF-1α inhibits tumor growth in
786-ORCC cells,29,30 whereas overexpression of stable HIF-2α-
expressing pVHL restores xenograft growth to the level of
parental VHL-null cells.30–32 HIF-2α expression was shown to
increase with the degree of dysplasia in preneoplastic kidney
lesions of patients with VHL disease, whereas HIF-1α
expression decreased, indicating that HIF-2α plays a role in
the transformation of dysplastic cells.30,33 A similar phenom-
enon was also observed in hepatocellular carcinoma (HCC)
and colorectal cancers as described, though the data did not
allow firm conclusion. HIF-1α deficiency inhibited overall tumor
growth, whereas deficiency of HIF-2α stimulated tumor growth
in colorectal cancers xenograft.28 HIF-1α and HIF-2α are
differentially regulated in vivo and reflected distinctive protein
expression patterns and stabilization mechanisms in
HCC.15,34 HIF-2α also appears to have a more general role
in promoting tumorigenesis. Subcutaneous teratomas gener-
ated from ES cells with the HIF-2α cDNA ‘knocked in’ into the
Hif-1α locus exhibited a fourfold mass increase compared with
WT RCC 786-O cells controls, mainly because of increased
proliferation.35 HIF-2α was shown to be stable under
prolonged and mild hypoxia conditions in neuroblastoma,
and may promote angiogenesis even in tumors experiencing
minimal hypoxic stress.12 Loss of HIF-1α in endothelial cells

Table 2 Different functions and related target genes between HIF-1 and HIF-2

HIF-1α HIF-2α Function Gene Cell type References

+ − Endothelial cell proliferation, migration,
and vessel sprouting

CXCR4 Endothelial cell 22

− + Controlling vascular morphogenesis,
integrity, and assembly

CXCR4 Endothelial cell 22

− + Regulates embryonic vasculature Tie2 Embryonic kidney cells 1

− + Increases IL-8 expression c-Myc, Mxi-1 HMEC-1 cells 24

− + A stronger transactivation activity on
VEGF promoter

(HIF-2 DNA binding
sequences)

Hepa-1,Hep3, Ka13, fetal kidney cell line mouse,
MG63 Vhlh-deficient mice

2,13,25–27

+ − Facilitates cell growth and
tumorigenesis

CCNG2,ANGPTL4 SW480, DLD-1 cells 28

− + Promotes tumor growth BNip3 transcriptional
regulator

RCC 29, 30–32

− + Transformation of dysplastic cells Cyclin D1, GLUT-1, RCC 30,33

− + Increases proliferation VEGF, TGF-α Endothelial cells 35

− + Retards tumor cell migration iNOS Endothelial cells 36

− + Angiogenesis TGF-β1 Prostate tumor 38

− + Regulates stem cell Oct4, CD133 Embryos, glioblastoma 39,40
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reduces NO synthesis, retards tumor cell migration through
endothelial layers and restricts tumor cell metastasis; how-
ever, loss of HIF-2α resulted in opposite effect in each case.36

Deficiency of HIF-2α increased tumor growth and progression,
whereas HIF-1α deletion had nearly no effect on tumor burden
and progression in a KRAS-driven lung tumor model.37 HIF-2α
signaling, but not HIF-1α, may contribute to tumor angio-
genesis via autocrine transforming growth factor-β1 (TGF-β1)
production under nonhypoxic conditions in prostate tumor
cells.38 For cancer stem cells (CSCs), though hypoxia and
HIFs may contribute to the maintenance of putative cancer
‘stem’ cells, HIF-2α seemed also to play a distinct role from
HIF-1α, through unique mechanisms. A recent study revealed
that HIF-2α regulates Oct4 directly upstream and binds
hypoxic regulatory elements in the promoter of murine Oct4,
which is a stem cell regulatory protein; this is not the case for
HIF-1α.39 HIF-2αmay have a specific function in glioblastoma
stem cells: it was shown to be selectively expressed in the
CD133+ subpopulation of glioblastoma cells, whereas HIF-1α
expression is widespread among both tumorigenic and
nontumorigenic cells.40

Third, HIF-2α and HIF-1α regulate key downstream genes,
including c-Myc, p53, mTOR and β-catenin, conversely
(Figure 2). For example, HIF-1α and HIF-2α showed opposite
effects on c-Myc interaction with its transcription cofactors.
HIF-1α induction was demonstrated to inhibit c-Myc transcrip-
tional activity and suppress cell proliferation.24,41,42 However,
HIF-2α induction promotes cell cycle progression by enhan-
cing c-Myc function.24,43 In addition, HIF-2α-mediated sup-
pression of p53 is central to maintenance of the enhanced
stemness phenotype in human embryonic stem cells. Unlike
HIF-2α, HIF-1α expression declined markedly following
reoxygenation in the model44,45(Figure 3). HIF-2α may
regulate the focal adhesion kinase family interacting protein
of 200 kD gene and stimulate mTORC1 to promote cellular
proliferation in O2-deprived cells.46 On the contrary, HIF-1α
induces DDIT4 gene expression and represses mTORC1 by
promoting the release of sequestered TSC2 from 14-3-3
proteins.47,48 A recent study found that HIF-1 negatively
regulates Wnt/β-catenin signaling by sequestering β-catenin
from β-catenin/T-cell factor (TCF); instead, HIF-2α interacts
with β-catenin at a different site and assembles with β-catenin/
TCF to facilitate gene transcription.49

HIF-2α in Digestive System Cancers

HIF-2α is frequently detected in most types of solid tumors,
including head and neck, renal, bladder, glial, breast, ovarian,
prostate and renal cancers.14,15,25,28,50–53 An increasing
number of studies reporting HIF-2 in the context of digestive
system cancer have emerged in recent years and conveyed
that this protein plays important roles in digestive system
cancers. Interestingly, its prognostic roles are explicit in
pancreatic and gastric cancers but confused in colon and
hepatocellular cancers (Table 3). HIF-2 upregulates several
genes involved in a variety of tumorigenesis events: cell
proliferation, angiogenesis, metabolism, metastasis and
resistance to chemotherapy (Figure 4).

Proliferation

Studies have suggested that HIF-2 can regulate cell prolife-
ration through multiple mechanisms, although the outcomes
are not identical for all cancers and even controversial in some
cases. HIF-2 was shown to be necessary and sufficient to
maintain tumor growth in VHL-deficient RCC cells.31,32 HIF-2
was shown to control cellular proliferation through modulation
of c-Myc activity and cyclin D1 in RCC cells.30,54 In addition,
new mechanisms for HIF-2 were described in digestive
system cancer.

Figure 2 HIF-1 and HIF-2 regulate conversely some key downstream genes.
HIF-2 increases c-Myc, mTOR and β-catenin activity and decrease p53 activity,
whereas HIF-1 exert opposite effects

Figure 3 (a) HIF-1α upregulates P53 activity whereas HIF-2α downregulates P53
activity under hypoxia directly (full line) or indirectly (dotted line). (b) HIF-1α and HIF-2α
regulate distinctively c-Myc interacting with its transcription cofactors. HIF-1α diminishes
the association with MAX and SP1, and then decreases MYC activity, whereas HIF-2α
combines with MAX and SP1 complex, thereby increasing MYC activity

Table 3 HIF-2 activation in digestive system cancer

Cancer HIF-2α Prognosis References

Poor Good

Gastric ↑ + − 18,86

Hepatocellular ↑ + − 14,15,34,78

↑ − + 60

↓ + − 57

Pancreatic ↑ + − 14,56

Colorectal ↑ + − 14,52,64,76,87

↓ + − 28

The symbol ↑ indicates upregulation, ↓ indicates downregulation; + indicates
there is correlation and − indicates there is no correlation
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A recent study showed that HIF-2 plays opposite roles in
different digestive tract cancer cell lines through Sirt1. Sirt1
inhibited HCT116 cell growth but promoted HepG2 cell
growth. The cell type-dependent actions of Sirt1 on cell
growth may be attributable to its opposite effects on HIF-2α
activity in different cell lines.18 PrPc (cellular prion protein) is a
glycosylphosphatidylinositol anchored membrane protein with
various physical functions. PrPc is highly expressed in
colorectal adenocarcinomas. It is involved in regulating Glut1
expression through the Fyn-HIF-2α pathway.55

By maintaining appropriate levels of both Smad4 and
β-catenin, HIF-2α modulates the Wnt signaling pathway
during mPanIN progression, with the oncogenic protein Ras
expressed in the pancreas. Loss of Hif-2α in mice instead
led to markedly higher number of mPanIN lesions.56 The
average amounts of HIF-2α at both protein and mRNA levels
were significantly lower in tumor than peritumoral tissues in
HCC, and the decreased levels were associated with lower
overall survival.57 Bax and Bak were expressed at higher
levels in HCC SMMC-7721 cells with high HIF-2α expression
relative to controls.57 Both Bax and Bak are pro-apoptotic
BCL-2 proteins and would facilitate the release of cytochrome
c. The latter triggers cleaved caspase 3, which is also a key
executer of apoptosis detected at higher levels in cells
overexpressing HIF-2α.58,59 These data confirmed that high
levels of HIF-2α in HCC cells cause cell growth arrest through
apoptosis. Furthermore, it was suggested that HIF-2α induces
apoptosis through a novel TFDP3/E2F1 pathway involving
both p53-dependent and -independent modes. Hence, high
HIF-2α expression in HCC was shown to be correlated with a
good outcome.57. Menrad et al.60 found that knockdown of
HIF-1α or HIF-2α increased cell viability as well as spheroid
size and decreased caspase-3 activity. Indeed, HIF-2α-
knockdown cells upregulated HIF-1α and enhanced Bcl-XL
and BNIP3 expression. BNIP3 binds to the Beclin-1/Bcl-XL
complex, thereby releasing Beclin-1 that subsequently
induces autophagosome formation.61,62 However, the role of
HIF-2α in the development of cancer is unclear, and
inconsistencies abound in the existing literature. Bangoura
et al.15 reported that HIF-2α is overexpressed in pericarcinoma
tissues in HCC and significantly correlated with tumor grade
and reduced survival in patients with HCC. HIF-2α/EPAS1
itself, to some extent, affects patient survival.15

HIF-2α is overexpressed in colon cancer,14,17 and its
activation in vivo directly upregulates COX2 expression

and facilitates colon tumorigenesis. HIF-2α activates
COX2/mPGES-1/PGE2 signaling to facilitate colon
tumorigenesis.63 In addition, HIF-2α exerts its proliferative
effects through modulating the EGFR, IGF1R and ERK/Akt
signaling pathways in colorectal carcinoma, and its inhibition
prevents growth and tumorigenesis of colorectal cancer
in vivo.64 However, an opposite outcome was reported, with
HIF-2α-selective knockdown having no effect on cellular
proliferation in colorectal cells, although colony formation
doubled in soft agar assays.28

A research has also investigated the relationship between
HIF-2α and microRNA (miRNA) in digestive system cancers.
HIF-2α was shown to mediate miR-210 and c-Myc to
participate in neoplasma. MicroRNA-210 is a direct transcrip-
tional target of HIF-2α and its upregulation led to a switch from
Mnt to c-Myc expression during cholestatic cholangiocarcino-
genesis in vivo.65

At present, inconsistent conclusions have been reached for
the role of HIF-2 in digestive system cancers, especially in
HCC and colorectal carcinoma. The function of HIF-2α
appears to be cell-type dependent. The different expression
patterns and levels of HIF-2 as well as cell-specific cofactors
may affect its activity. Indeed, the organism environment is
very complex and HIF-2 could be influenced by many other
factors. For instance, HCC is often complicated with hepatitis
B or C and hepatocirrhosis that may also promote a hypoxic
response that stabilizes HIFs in oxygen tension.66,67 There-
fore, HIF-2 may also be involved in these diseases, leading to
a complicated network in certain organs.

Metabolism

HIF-2α plays a critical role in metabolism, modulating the
expression of cytochrome c oxidase isoforms so as to
maximize the efficiency of the electron transport chain.
Defects in this response lead to impaired ATP production
and elevated oxidant production in hypoxia.68 HIF-2α/ARNT
targets (e.g., SOD2) also protect cellular and mitochondrial
components during oxidative stress in mice.69

Cancer cells shift glucose metabolism from oxidative route
to glycolytic pathway, which involves decreased mitochondrial
respiration and increased lactate production, even in the
presence of oxygen.70,71 HIF-α target genes are involved in
the regulation of numerous pathways important for tumor
metabolism.72

Figure 4 Mechanisms underlying HIF-2α effect on tumorigenesis in digestive system cancer. HIF-2α regulates genes that modulate key aspects of tumorigenesis, including
proliferation, metabolism, angiogenesis, metastasis and resistance to chemotherapy
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HIF-2α depletion downregulated the expression of heme
oxygenase (HMOX1) genes that exert antioxidant functions in
RCC.73 In colon cancer cells, absence of oncogenic KRAS or
both HIF-1α and HIF-2α led to decreased cardiolipin level and
inefficient mitochondrial respiration; ACSL5 induction is
directly responsible for maintaining cardiolipin level and
efficient mitochondrial respiration in cancer. Colon cancer
cells with oncogenic KRAS mutation and expressing both
HIF-1α and HIF-2α were shown to maximize ATP production
and minimize ROS generation, probably through the induction
of enzymes important for mitochondrial cardiolipin
synthesis.74

Poorer survival of HIF-2α and wild-type TP53 was asso-
ciated with carbonic anhydrase 9 (CA9) stromal-positive
colorectal adenocarcinomas. Furthermore, tumors expressing
HIF-2α or CA9 in their stroma show poorer prognosis in wild-
type TP53 tumors compared with mutant malignancies. It is
plausible that p53 is involved in the metabolic switch to
glycolysis, when oxidative phosphorylation is impaired during
hypoxia;75 p53 may simply correlate with defects in another
pathway such as the BNIP3 cell death pathway that
substitutes for TP53 loss in a similar manner during
carcinogenesis.76 CYP (cytochrome P450) 3A4 mediates
exogenous-drug transportation and oxidative metabolism. We
have observed that HIF-2α modulates the recruitment of
pregnane X receptor (PXR) to the PXR response element in
the CYP3A4 (cytochrome P450 3A4) gene promoter region in
gastric cancer BGC-823 cells (Jiuda Zhao, unpublished data).

Angiogenesis

Angiogenesis plays an important role in tumorigenesis and
cancer progression. Hypoxia is the prime driving force for
tumor angiogenesis, and HIFs play a key role in this process.
Growing evidence supports that HIF-2α is involved in
angiogenesis.77 HIF2 expression was directly correlated with
microvessel density and cyclooxygenase 2 expression in
colorectal carcinoma, indicating its potential role in angiogen-
esis of colorectal carcinomas.53 Selective knockdown of
HIF-2α resulted in more pronounced decrease of VEGF and
MVD levels compared with HIF-1α repression in colon cancer
xenograft studies. HIF-2α exerts these unique effects on
colonic tumorigenesis through cyclin G2 (CCNG2) and
angiopoietin-like 4 (ANGPTL4), a secreted protein of the
angiopoietin-like family induced by hypoxia.28 HIF-2 upregu-
lates the expression of VEGF that binds VEGFR and
stimulates tumor angiogenesisin in HCC.77 Transfection of
HIF-2α siRNA into HCC cells was shown to downregulate the
expression of VEGF, cyclin D1, HIF-2α and TGF-α, inhibiting
the activation of EGFR.78 Conditional inactivation of HIF-2α
resulted in suppressed development of VHL-associated liver
hemangiomas; in addition, angiogenic gene expression in
hepatocytes is predominantly regulated by HIF-2 and not
HIF-1. It suggests that HIF-2 is the dominant HIF in the
pathogenesis of VHL-associated vascular tumors. Heman-
gioma formation does not require HIF-1α, but is dependent on
ARNT, suggesting that HIF-2α may play an essential role in
VHL-associated vascular tumorigenesis.79 These observa-
tions indicate that HIF-2α is an important mediator of
angiogenesis in digestive tract cancers.

Metastasis

Hypoxia is an important microenvironmental factor that
induces cancer metastasis. HIF activation correlates
with metastasis in multiple tumors and can promote metas-
tasis through the regulation of key factors governing tumor
cell metastatic potential, including E-cadherin, LOX, CXCR4,
SDF-1 and TWIST in RCC, breast and head/neck
cancers.80–85

Some studies have indicated that HIF-2α also participates in
digestive tract cancer metastasis by regulating the JNK
signaling pathway, BNIP3, PAI-1 and CSCs. In gastric cancer,
HIF-1α and HIF-2α levels are higher in metastasis samples
compared with non-metastatic ones. Hypoxia (1% O2, 8 h)
was shown to induce HIF-1α and HIF-2α expression in gastric
cancer cell lines. Small interfering RNA (siRNA) against
HIF-1α and HIF-2α in gastric cancer cells significantly inhibited
hypoxia-induced adhesive and invasive abilities. HIF-2α is
therefore involved in metastasis and invasion of gastric cancer
cells under hypoxia, in a mechanism involving the JNK
signaling pathway.86 In primary colorectal cancer, overexpres-
sion of HIF-2α together with BNIP3 was linked to local invasion
and lymph node metastasis.87

The role of HIF-2α in HCC is not entirely understood. Some
studies have demonstrated that HIF-2α is associated with
tumor metastasis, whereas others hold the opposite opinion. A
study found that HIF-2α is overexpressed in HCC compared
with noncancerous lesions, and its levels were significantly
correlated with tumor grade, venous invasion, intrahepatic
metastasis, necrosis and capsule infiltration.15 Two HREs at
−3.6 kb of the 5'-flanking promoter region of the PAI-1 gene
can function as cis-acting elements to regulate PAI-1 gene
induction by hypoxia in mouse hepatoma cells. The interaction
of these HREs with the HIF-1 or HIF-2 protein mediates the
transcription of the PAI-1 gene that is involved in invasion and
metastasis.88 However, Yang et al. reported recently that
high HIF-2α expression was found in only 13.5% (17/126) of
tumors compared with 47.6% (60/126) of peritumoral tissues
in HCC samples. There was no relationship between HIF-2α
and capsular infiltration or portal vein invasion in HCC
patients.34

Another mechanism by which HIF-2 controls metastasis is
through modulation of CSCs. It is widely accepted that
metastasis originates from CSCs with tumor-initiating cap-
abilities that allow most disseminated tumor cells to recon-
stitute growing, heterogeneous secondary tumors.89 Blocking
HIF-1α or HIF-2α activity results in dramatically decreased
CSC proliferation and self-renewal in hematological malig-
nancies and glioma stem cells.40,90–92 Limited research has
indicated that HIF-2α also plays roles in metastasis of
digestive tract cancers by regulating the CSCs. Interestingly,
HIF-2α co-stained with CD133 in pancreatic ductal adenocar-
cinoma (PDA), suggesting that tumor hypoxia is associated
with the expression of CSC markers in PDA. Hypoxia-driven
EMToccurs in tumor tissues from pancreatic cancer patients,
with CSC-positive tumor cells present in hypoxic tumor
microenvironments. Only stem-like cells acquire high migra-
tory potential and thus may be responsible for invasion and
metastasis.93
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HIF-2 and Resistance to Chemotherapy

The hypoxic environment plays a critical role in promoting
resistance to anticancer drugs.94,95 Previous studies have
indicated that HIF-2 responds rapidly to decreased oxygen
levels to activate the expression of a broad range of genes that
promote resistance.
In the case of colon cancer cells, oxaliplatin increased

HIF-2α accumulation and enhanced cell growth; indeed,
HIF-2α may mediate, at least partly, oxaliplatin resistance in
SW1116 cells.96 Disruption of HIF-1α or HIF-2α gene, or both,
further improved the tumor response to sunitinib therapy in
human colon cancer cells.97 Upregulation of HIF-2α induced
by sorafenib was shown to contribute to resistance of hypoxic
HCC cells by activating the TGF-α/EGFR pathway.79

To better understand the roles of HIF-2 in chemotherapy
resistance, our laboratory studied the relationship between
HIF-2α and multiple drug resistance (MDR1). We found that
overexpression of HIF-2α inhibits the PXR transcriptional activity
and reduces the expression of PXR downstream genes,
whereas increasing hypoxia elicited MDR1 and CYP3A4
expression. Moreover, overexpression of HIF-2α significantly
reduced the pharmacological effects of Paclitaxel, Mitomycin C,
Imatinib and Sorafenib on gastric cancer BGC823 cells, and the
corresponding IC50 values increased markedly (Jiuda Zhao,
unpublished data). Therefore, HIF-2 may serve as a biomarker
for a better understanding of chemoresistance in digestive
system cancer through MDR1 gene induction.
Taken together, these experimental and clinical data

delineate an important role for HIF-2 in chemotherapy
resistance through multiple mechanisms and provide a basis
for reversing drug resistance with HIF-2 inhibitors.

HIF-2 and Tumor Inhibition

As HIF complexes are involved in cancer cell adaptation to
hypoxic tumor microenvironments, inhibitors of the HIF
signaling pathway have been developed and used to inhibit
the expression of HIF target genes and reduce angiogenesis
and metastasis.98 The ability to selectively inhibit HIF activity
would be beneficial to clinical treatment.99 A large collection of
compounds have been reported to inhibit HIF transcriptional
activity, either directly or indirectly.100–102 For example, down-
regulation of the oncoprotein human double minute 2 reduced
the levels of HIF-1 and HIF-2α in a p53- and VHL-independent
manner.103 The JNK inhibitor SP 600125 abolished hypoxia-
induced HIF-1α and HIF-2α expression, and inhibited the
adhesive and invasive abilities of gastric cancer cells.86 Two
new cembrane diterpenes were found to selectively inhibit
HIF-2α and modulate downstream effectors of tumorigenesis.104

In addition, agents that inhibit reactive oxygen species
generation, such as superoxide dismutase mimetics, have
also been shown to decrease HIF levels.105 Inducing PHD
enzyme activity with derivatives of α-ketoglutarate is also a
method to target hypoxic areas of tumors, although it reduces
signaling through both HIF-1α and -2α.46 Overexpression of
the tumor suppressor protein pVHL inhibits HCC growth in
mice by downregulating HIF-1α and HIF-2α.106

To date, only few inhibitors have been shown to selectively
target HIF-2α. Furthermore, although laboratory effects of

chemical and biologic inhibitors of HIF-2α on tumor cells are
being investigated, clinical grade HIF-2α-specific inhibitors
have yet to be developed.

Conclusion and Perspectives

In conclusion, multitudinous studies have provided persuasive
evidence that HIF-2 plays important roles in many critical
aspects of digestive system cancers. It is involved in cellular
proliferation, metabolism, angiogenesis, metastasis and
resistance to drugs. Clinical data also indicated that HIF-2
overexpression is associated with prognosis of digestive
system cancers. The HIF-2 pathway may therefore constitute
a useful biomarker for assessing disease states as well as
developing cancer treatments.
However, multiple questions regarding HIF-2 need to be

promptly answered. First, inconsistent associations
between HIF-2 and digestive tract cancers have been
reported. The study conclusions do not corroborate each
other, sometimes for the same organ. This suggests that
HIF-2-specific gene activating functions respond differently
to various stimuli, with gene- or tissue-specific regulatory
mechanisms involving additional transcription factors. More-
over, the limited sample size in different studies and different
cell line status in some studies may also affect the results.
Second, although data have been amassed delineating the
mechanisms and consequences of increased HIF-2 activity
during cancer progression, its definite mechanisms remain
elusive in digestive system cancers. The role of HIF-2α in the
pathogenesis of cancers is extensively studied in RCC, but
far too few studies have assessed HIF-2α in digestive
system cancers. Third, the exploitation of HIF-2α inhibitors is
still challenging. Most inhibitors target nonselectively both
HIF-1α and HIF-2α. HIF targeting involves the overlapping
but distinct biological roles of the HIF-α subunits.
Compounds that promote the binding of IRP1 to the
5′ UTR of HIF-2αmRNA decrease HIF-2α hypoxic induction,
but also repress HIF-1α synthesis via an independent
mechanism.107 Discriminating between the α-subunits and
their relative contributions to different digestive system
cancers will be important for appropriately testing com-
pounds for use in therapy. The intricate interplay between
HIF-1 and HIF-2 should also be studied further. In addition,
although another HIF family member, HIF-3, can also
dimerize with ARNT and bind to HREs in vitro,108 its role in
the hypoxic regulation of target gene expression and
interaction with HIF-1 and HIF-2 in vivo is not well under-
stood. We believe that further studies are warranted to
elucidate the important role of HIF-2 in digestive system
cancers. There is still a long way to go before one can
confidently promote the clinical application of HIF-2 target-
ing therapy for digestive system cancers.
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