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INTRODUCTION 

Osteosarcoma (OS) is the most common primary bone 
tumor in childhood and adolescence. Current standard 
therapies include a combination of radical surgery and 
chemotherapy. Recently, several targeted therapeutic 
agents have been developed, including inhibitors 
of phosphoinositide 3-kinase/mammalian target of 
rapamycin (PI3K/mTOR) [1, 2], tyrosine kinases (TKI) 
[3], and signal transducer and activator of transcription 3 
(STAT3) [4, 5]. However, drug resistance remains a 
critical obstacle to current pathway-targeted treatments, 
leading to relapsed or refractory cases and overall poor 
outcomes.  

Multiple drug resistance mechanisms have been 
illustrated in diverse cancers. For example, the epidermal 
growth factor receptor (EGFR) T790M mutation impairs 

the interaction of inhibitory chemicals with the ATP-
binding pockets of protein kinases, leading to acquired 
resistance to first- and second-generation EGFR-TKIs 
in non-small-cell lung cancer [6]. In lung and breast 
cancer, MET amplification was shown to mediate 
resistance to osimertinib (AZD9291) [7, 8]. Furthermore, 
overactivation of compensatory growth signaling 
cascades can contribute to cancer cell escape from anti-
EGFR therapies. For instance, hyperactivation of STAT3 
caused by EGFR inhibitors (STAT3 feedback activation) 
was shown to mediate resistance in lung cancer [9], 
colorectal cancer [10] and glioma [11]. Growth factors, 
e.g. EGF, c-MET, and platelet-derived growth factor
receptor (PDGF) activate oncogenic Src, Ras, and
members of the Janus kinase (JAK) family, driving
phosphorylation of STAT3 in tumors. Phospho-STAT3
forms hetero- or homodimers which translocate to the
cell nucleus to promote transcription of pro-survival
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ABSTRACT 

Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. Overactive EGFR 
signaling is frequently seen in osteosarcoma cells, and represents a potential therapeutic target. However, 
feedback activation of STAT3 after EGFR inhibition is linked to treatment resistance, suggesting that combined 
EGFR/STAT3 inhibition may be needed to overcome this effect. Cantharidin and its analogues have shown strong 
anticancer effects, including STAT3 inhibition, in several tumor cells. Therefore, we investigated the effects of 
sodium cantharidate (SC), either as monotherapy and in combination with the EGFR inhibitor erlotinib, on STAT3 
activation and osteosarcoma cell growth. Cell viability, migration, and apoptosis assays were performed in 
human MG63 and U2OS cells, and MG63 xenografts were generated in nude mice to verify the suppression of 
tumor growth in vivo. Additionally, western blotting and immunohistochemistry were used to verify the STAT3 
and EGFR phosphorylation statuses in xenografts. We found that SC repressed cell viability and migration and 
induced apoptosis in vitro, while combined SC and erlotinib treatment enhanced osteosarcoma growth 
suppression by preventing feedback activation of STAT3. These data support further development of 
cantharidin-based combination therapies for metastatic and recurrent/refractory osteosarcoma. 
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target genes such as Bcl-2 and matrix metallopeptidase 2 
(MMP2). Therefore, preventing STAT3 phosphorylation 
is an enticing strategy to defeat resistance to EGFR 
inhibitors such as erlotinib in various tumor types, 
including relapsed or refractory osteosarcoma. 
 
Cantharidin, a natural toxin produced by the Chinese 
blister beetle Mylabris, has long been used to treat skin 
ulcers and warts, and also as an anticancer agent [12]. 
The broad anti-cancer effects of cantharidin have been 
studied in different tumor types. A recent report showed 
that cantharidin induced G2/M phase arrest and reduced 
osteosarcoma cell viability [13], whereas disruption of 
the glucose transporter 1/pyruvate kinase M2 glycolytic 
loop mediated cantharidin inhibition of liver and lung 
metastases of breast cancer [14]. One of the analogues of 
cantharidin, sodium cantharidate (SC), promoted 
apoptosis in hepatocellular carcinoma cells by triggering 
endoplasmic reticulum stress [15]. Wang et al. found 
that cantharidin inhibited VEGF-induced JAK1/STAT3 
activation and phosphorylation of Akt in human 
umbilical vascular endothelial cells, leading to 
suppressed migration and vessel formation [16]. Pan et 
al., on the other hand, demonstrated that cantharidin 
downregulated pyruvate kinase M2 (PKM2) and 
inhibited distant metastasis of breast cancer [14]. Indeed, 
the PKM2/STAT3 loop has been involved in multiple 
pathological processes in diverse cancers, influencing 
proliferation, apoptosis, and angiogenesis [17–19]. The 
present study tested the hypothesis that cantharidin 
abrogates feedback STAT3 activation induced by EGFR 
inhibition in osteosarcoma, resulting in enhanced tumor 
suppression upon combined SC and erlotinib treatment. 
While results were promising, further investigations are 
necessary to confirm the efficacy and safety of SC for 
osteosarcoma treatment, either as monotherapy or in 
combination with EGFR signaling inhibitors. 
 
RESULTS 
 
STAT3 and EGFR inhibition trigger reciprocal 
feedback activation in osteosarcoma cells 
 
Abnormal EGFR expression and constitutive STAT3 
activation have been described in osteosarcoma cells in 
relation to disease progression and chemotherapy 
resistance [4, 20]. To determine the effects of STAT3 and 
EGFR inhibition on osteosarcoma cell proliferation and 
migration, MG63 and U2OS cells were incubated with the 
STAT3 inhibitor LY5 (1µM) or the EGFR inhibitor 
erlotinib (1µM). MTT assay results showed that treatment 
with either LY5 or erlotinib reduced cell viability 
significantly compared to control (Figure 1A). Mean-
while, cell migration was also significantly reduced by 
both treatments (Figure 1B and 1C). Next, western blot 
was performed to further investigate EGFR and STAT3 

phosphorylation status. Both phospho-Tyr705 STAT3 and 
phospho-Tyr1068 EGFR signals declined after treatment 
with the respective inhibitors (Figure 1D). However, 
feedback phosphorylation of EGFR and STAT3 was 
observed after treatment with LY5 and erlotinib, 
respectively, whereas no significant differences in EGFR 
or STAT3 expression were detected post-treatment. 
 
Sodium cantharidate inhibits osteosarcoma cell 
growth and migration via STAT3 suppression  
 
Cantharidin, a terpenoid toxin produced by blister 
beetles, has long been used in traditional Chinese 
medicine to treat dermatological conditions and as an 
anticancer agent. To determine its effects on osteo-
sarcoma growth, MG63 and U2OS cells were treated 
with increasing concentrations of sodium cantharidate 
(SC; 0–20 µM) for 24 h. Through MTT viability assays, 
half-maximum inhibitory concentrations (IC50) of 16.84 
± 0.28 µM for MG63 cells and 18.5 ± 0.00 µM for 
U2OS cells were defined (Figure 2A). Therefore, SC at 
10 µM and 20 µM was tested in osteosarcoma cells over 
0, 12, 24, 36, or 48 h, revealing dose- and time-
dependent growth arrest in both cell types examined 
(Figure 2B). Next, the effect of SC on cell migration was 
assessed 24 h post-treatment. A dose-dependent 
reduction in migratory ability was detected in both 
MG63 and U2OS cells (Figure 2C and 2D).  
 
To investigate whether the observed effects could be 
related to altered STAT-3 expression, total STAT3 and 
phospho-STAT3 levels were assessed by western blotting. 
Results showed that at 24 h post-treatment, SC markedly 
reduced phospho-Tyr705 STAT3, but minimally affected 
total STAT-3 expression. These results suggest that 
suppression of osteosarcoma cell growth by cantharidin 
may be mediated by a reduction in STAT-3 activation.  
 
Combined treatment with sodium cantharidate and 
erlotinib enhances growth arrest and promotes 
apoptosis in osteosarcoma cells 
 
The effect of STAT3 and EGFR co-inhibition on 
osteosarcoma cell viability was evaluated by calculating 
drug combination index (CI) values using the MTT 
assay. Assayed at 50% effective dose, the LY5/erlotinib 
combination showed additive anticancer activity (MG63 
cells, CI = 1.0097; U2OS cells, CI = 1.0763), whereas 
the SC/erlotinib combination exhibited synergistic 
effects (MG63 cells, CI = 0.6340; U2OS cells,  
CI = 0.6752) (Supplementary Figure 1 and Table 1). 
 
To explore the potential of combined treatment with SC 
and erlotinib, MG63 and U2OS cells were incubated 
with DMSO (control), SC, erlotinib, or a combination of 
SC and erlotinib for 24 h. Changes in cell viability 
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Figure 1. Independent inhibition of STAT3 and EGFR signaling triggers reciprocal feedback activation in osteosarcoma cells. 
(A) MG63 and U2OS cells were treated with DMSO (vehicle), LY5, or erlotinib, and the MTT assay was performed to determine cell viability at 
different time points. Cell migration assay results in MG63 (B) and U2OS (C) cells treated with DMSO, LY5, or erlotinib for 24 h. Magnification, 
200x. Error bars indicate SD. ** p < 0.01 vs. DMSO, n = 3. (D). Western blot analysis of phospho-Tyr705 STAT3 and phospho-Tyr1068 EGFR in 
MG63 and U2OS cells treated with DMSO, LY5, or erlotinib for 24h. 
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Figure 2. Sodium cantharidate represses growth, migration, and STAT3 activation in osteosarcoma cells. (A) Half-maximum 
inhibitory concentration (IC50) values obtained for SC. (B) MTT assay results in cultured MG63 and U2OS cells exposed to SC. Migration assay 
results in MG63 (C) and U2OS (D) cells treated for 24 h with DMSO (vehicle) or SC. Magnification, 200x. Error bars indicate SD. **p < 0.01 vs. 
DMSO, n = 3. (E). Western blot analyses of protein expression in MG63 and U2OS cells exposed over 24 h to DMSO or SC. 
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Table 1. Combination Index (CI) at ED50 values of drug 
combination on two osteosarcoma cell lines.  

Cell line Drug combination CI at ED50 
MG63 LY5 + erlotinib 1.0097  
 Sc + erlotinib 0.6340 
U2OS LY5 + erlotinib 1.0763 
 Sc + erlotinib 0.6752 

Notes: Osteosarcoma cells were treated with various 
drugs combination as indicated. CI values at 50% effective 
doses (ED50) were calculated using Chou-Talalay method. 
Data are the mean of two independent experiments 
performed in triplicate. Sc, sodium cantharidate. 
 

were measured by MTT assay. As shown in Figure 3A, 
dual treatment with SC and erlotinib hampered cell 
growth to a greater extent than either drug alone. To 
examine the effect of this treatment combination on 
apoptosis, changes in mitochondrial membrane potential 
were evaluated through measurements of JC-1 fluo-
rescence by flow cytometry. Consistent with data from 
cell viability assays, results showed that compared to 
control, single-drug exposure promoted a significant 
increase in apoptosis in MG63 cells, while combined 
treatment further raised the percentage of apoptotic cells 
(Figure 3B). Identical results were obtained in U2OS 
cells (Figure 3C). On the other hand, migration assays 
showed similar effects, namely significant reduction of 
migration by either drug alone, and compounded 
inhibition after combination treatment with SC and 
erlotinib (Figure 3D and 3E).  
 
Combined exposure to sodium cantharidate and 
erlotinib suppresses STAT3 and EGFR expression 
 
Western blotting was carried out to determine the 
expression of total and phosphorylated STAT3 and EGFR 
levels in osteosarcoma cells after combined treatment 
with SC and erlotinib. As shown in Figure 4A, phospho-
STAT3 declined significantly while phospho-EGFR 
decreased slightly in cells treated with SC. Meanwhile, 
erlotinib treatment induced feedback activation of STAT3 
-denoted by increased phosphorylation-, and this 
phenomenon was reduced significantly after combined 
exposure to erlotinib and SC.  
 
Western blotting was next used to investigate the  
effects of single and combined treatments on the 
expression of Bcl-2, a pro-survival protein, and matrix 
metalloproteinase 2 (MMP2), a regulator of extracellular 
matrix remodelling. Enhanced downregulation of both 
Bcl-2 and MMP2 was observed after dual drug treatment, 
compared to the moderate reduction elicited indepen-
dently by each inhibitor (Figure 4B).  

To further assess the link between SC exposure and 
STAT3 activation status, ectopic expression of 
constitutively active STAT3 (STAT3-C) was induced in 
MG63 and U2OS cells. Western blotting showed that 
STAT3-C rescued STAT3 phosphorylation in the 
presence of SC, and restored also Bcl-2 and MMP2 
expression (Figure 4B). Cell viability and transwell 
migration assays were next performed in STAT3-C-
transfected cells. Results showed that STAT3-C 
expression abrogated the anti-proliferative and anti-
migratory effects of SC (Figure 4C and 4D). These data 
indicate that SC inhibits STAT3 phosphorylation and 
can prevent STAT3 feedback activation induced by the 
EGFR inhibitor erlotinib in osteosarcoma cells. 
 
Combined treatment with sodium cantharidate and 
erlotinib inhibits tumor xenograft growth in vivo 
 
MG63 cell xenografts were generated in nude mice to 
investigate the effect of dual treatment with SC and 
erlotinib on tumor growth in vivo. Until sacrifice at day 
28 post-implantation, mean tumor volume increased time 
dependently in mice treated with vehicle (saline), SC 
alone, erlotinib alone, or their combination (Figure 5A). 
Xenograft volumes of both SC- and erlotinib-treated 
mice did not vary from those of vehicle-treated mice until 
day 12, where they started to show slower growing 
kinetics. The effect was more pronounced in mice treated 
with the inhibitors combined, as significantly smaller 
tumors developed since day 8 post-inoculation (Figure 
5A). At sacrifice, mean tumor wet weight in the drug 
combination group was ~70% lower than control, 
whereas for single drug treatments a ~40% decrease was 
recorded (Figure 5B). There were no differences in body 
weights among treatment groups at the end of the 
experiment, which suggests good treatment tolerability 
(Figure 5C). Western blotting was performed to verify 
the expression of phospho-EGFR and phospho-STAT3 in 
tumor tissues. As expected, erlotinib-induced STAT3 
phosphorylation was reduced notably by SC, while 
phospho-EGFR levels declined after erlotinib-only and 
dual combination treatment. Meanwhile, the expression 
of Bcl-2 and MMP2 was downregulated in parallel with 
the decrease in phospho-STAT3 (Figure 5D). Lastly, 
supporting the results of western blots, IHC staining 
further confirmed reduced activation of EGFR (Figure 
5E) and STAT3 (Figure 5F) after combined treatment 
with SC and erlotinib. 
 
DISCUSSION 
 
According to the updated statistics of the American 
Society of Clinical Oncology (ASCO), the general long-
term survival rate for localized osteosarcoma is between 
60%-80%, while for osteosarcoma with distant 
metastasis is only 15%-30%. Hence, there is an urgent 
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Figure 3. Combined treatment with sodium cantharidate and erlotinib enhances growth and migration inhibition and 
promotes apoptosis of osteosarcoma cells. (A). MG63 and U2OS cells were treated with DMSO, SC, erlotinib, or SC plus erlotinib for the 
indicated times, and the MTT assay was performed to determine cell viability. Apoptosis analysis (JC-1 staining) was conducted in MG63 (B) 
and U2OS (C) cells treated as above. Migration assay results in MG63 (D) and U2OS (E) cells 24 h after individual or combined drug treatment. 
Magnification, 200x. Error bars indicate SD. **p < 0.01 vs. DMSO. ##p < 0.01 vs. SC. ^^p < 0.01 vs. erlotinib; n = 3. Sc, sodium cantharidate; Er, 
erlotinib. 
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Figure 4. Combined treatment with sodium cantharidate and erlotinib decreases phosphorylation of STAT3 and EGFR. (A) 
MG63 and U2OS cells were treated with DMSO, SC, erlotinib, or a combination of SC and erlotinib for 24 h, and phospho-STAT3 and phospho-
EGFR expression was evaluated by western blot. (B) Western blot analysis of phospho-STAT3, Bcl-2, and MMP2 expression in MG63 and 
U2OS cells treated with DMSO plus empty vector, SC alone, or a combination of SC and constitutively active STAT3 (STAT3-C) for 24 h. Sc, 
sodium cantharidate; Er, erlotinib. (C) MTT assay results from STAT3-C-transfected MG63 and U2OS cells. (D) Transwell migration assay 
results from MG63 and U2OS cells expressing STAT3-C.  
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Figure 5. Combined treatment with sodium cantharidate and erlotinib enhances osteosarcoma growth suppression in nude 
mice. Nude mice were subcutaneously implanted with MG63 cells, randomly divided into four groups, and treated with saline (control), SC, 
erlotinib, or SC plus erlotinib for 4 weeks. (A) Mean tumor volumes in each experimental group. (B) Tumor wet weights at sacrifice (day 28 
post-inoculation). (C) Body weight measurements. (D) Western blot analysis of phospho-EGFR, phospho-STAT3, Bcl-2, and MMP2 in excised 
tumor tissues. (E) Phospho-EGFR and (F) phosphor-STAT3 detection thorough immunohistochemistry in excised xenografts. Magnification, 
100x. Sc, sodium cantharidate; Er, erlotinib. 
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need for more effective therapies to treat advanced 
osteosarcomas. Previous studies revealed that EGFR 
gene copy number amplification and EGFR over-
expression are common events in osteosarcoma, so 
targeting EGFR signaling is a promising therapeutic goal 
[21, 22]. Activation of EGFR stimulates several down-
stream signaling cascades, including the RAS/ 
RAF/MAPK, PI3K/Akt/mTOR, JAK/Src/STAT, and 
phospholipase C gamma/protein kinase C pathways, 
triggering oncogene transcription and promoting tumor 
proliferation, survival, invasion, and drug-resistance 
[23]. Available therapies targeting EGFR include 
monoclonal antibodies, e.g. nimotuzumab and 
cetuximab [24, 25], and tyrosine kinase inhibitors such 
as erlotinib and gefitinib [26, 27]. However, most 
current therapies targeting EGFR in osteosarcoma 
patients have not fulfilled expectations in clinical trials. 
Increasing evidence points to the STAT3 cascade 
pathway as a molecular mediator of both intrinsic and 
acquired resistance to anti-EGFR therapy. Dobi et al. 
reported that nuclear phospho-STAT3 expression 
correlated with low objective response rates to cetuximab 
and chemotherapy in metastatic colorectal cancer [28]. 
Deeken and colleagues found that persistent, hyperactive 
STAT3 signaling in advanced solid tumor patients 
correlated with lack of response to cetuximab treatment 
[29]. Recently, enhanced STAT3 activation was found in 
an EGFR-driven, patient-derived xenograft model of 
non-small cell lung cancer, contributing to acquired 
EGFR resistance [30]. 
 
A large number of chemicals have been tested in the 
attempt to overwhelm STAT3-mediated drug resistance 
in tumors. A study showed that inhibition of the 
EGFR/STAT3 axis by lupeol induced apoptosis in 
EGFR-TKI-resistant H1975 small lung cancer cells 
carrying the EGFR L858R/T790M mutation, whereas 
introduction of a constitutive STAT3 mutant, STAT3-
Y705D, prevented this effect [31]. The multi-targeted 
TKI ponatinib was shown to inhibit STAT3 
phosphorylation driven by EGFR and interleukin 6, 
leading to suppression of colorectal cancer cell growth 
and migration [32]. Very recently, alantolactone, a 
natural sesquiterpene lactone, was shown to down-
regulate phospho-STAT3 and enhance EGFR inhibition 
by erlotinib or afatinib in pancreatic cancer [33]. 
Furthermore, combination strategies were developed to 
improve anti-tumor effects on osteosarcoma. For 
example, dual blockage with the pan-HER inhibitor 
dacomitinib and the STAT3 inhibitor S3I-201 was 
reported to exert higher growth suppression in sarcoma 
cells compared to single-drug inhibition [34, 35]. 
 
LY5, a small molecule inhibitor that antagonizes 
constitutive and inducible STAT3 activation, was shown 
to inhibit tumor cell migration and angiogenesis and to 

induce apoptosis in medulloblastoma, osteosarcoma, 
Ewing’s sarcoma, and rhabdomyosarcoma cells [36–39]. 
In accordance with those studies, we found that LY5 
inhibited viability and migration of human osteosarcoma 
cells. It was reported however that LY5 was ineffective in 
reducing sarcoma xenograft growth and preventing lung 
metastasis, therefore more details on the inhibitory effects 
of LY5, and potentially compensatory tumor responses, 
need to be obtained [39]. Our evidence for EGFR 
feedback activation in MG63 and U2OS cells post-LY5 
treatment may explain the limited repression of tumor 
growth upon STAT3 dephosphorylation. Activation of 
EGFR would bypass the EGFR/JAK/STAT3 axis, initiate 
other downstream signalling pathways, and compensate 
for the inactivation of STAT3, favoring osteosarcoma 
growth and progression. 
 
Research over the last two decades showed that 
cantharidin and its derivatives can promote tumor 
regression in multiple cancers via different mecha-
nisms, and numerous analogues were designed to 
improve efficacy and safety in anti-cancer regimens 
[12, 40]. Targets of cantharidin include protein 
phosphatases [41–43], glutathione S-transferases [44], 
STAT3 [16, 45], Akt [46], and cell division control 
protein 1 (CDC1) [47]. With focus on the concomitant 
activation of EGFR and STAT3 as determinants of 
osteosarcoma progression, we investigated the 
mechanisms underlying the anticancer effects of SC, a 
cantharidin analogue, alone and in combination with 
the EGFR inhibitor erlotinib. Our results showed SC 
efficacy against osteosarcoma growth and migration in 
vitro, and prevention of feedback activation of STAT3 
induced by erlotinib both in vitro and in vivo. As SC-
induced growth suppression was reversed by 
overexpression of constitutively active STAT3 (where 
Tyr705 was replaced by an aspartate residue), we 
conclude that SC anti-tumor effect was phospho-705-
STAT3 dependent.  
 
Subcutaneous MG63 xenograft growth inhibition by SC 
administration in vivo was nearly additive compared to 
single SC or erlotinib treatment, and was accompanied 
by declined phospho-EGFR and phospho-STAT3 
expression. Interestingly, the inhibition caused by either 
SC or erlotinib alone diminished by day 26, suggesting 
onset of acquired resistance. Since mice body weights 
were not affected, these results implied that the 
combined therapy was well-tolerated.  
 
A complex signaling network underlies feedback 
activation mechanisms in tumor cells. Ta and colleagues 
demonstrated that a phosphorylated pro-survival form 
of the tumor necrosis factor receptor Fas, i.e. 
Fas.Y291D, enhances EGFR signaling and promotes 
activation of the nuclear EGF/STAT3 pathway by 
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inducing nuclear accumulation of phospho-EGFR and 
phospho-STAT3 in colorectal cancer cells. Con-
sequently, proliferation and migration are facilitated by 
hyperactivation of MEK/ERK and PI3K/Akt signaling 
[48]. Other studies showed that phospho-STAT3 
triggered abnormal dimerization of STAT3, increased 
the expression of anti-apoptotic proteins Bcl2, Bcl-xl, 
and MMP2/9, and promoted proliferation, survival, and 
migration/invasion in ovarian cancer [49, 50], liver 
cancer [51] and retinoblastoma [52] cells. In line with 
these findings, our study identified that Bcl-2 and 
MMP2 expression decreased in parallel with SC-
induced STAT3 dephosphorylation both in vitro and in 
vivo. Figure 6 summarizes the putative mechanisms that 
underlie STAT3-mediated tumor resistance to  
EGFR inhibition and reversal of this effect by SC in 
osteosarcoma. In future investigations, pharmaco-
kinetic/pharmacodynamic analyses along with high-
throughput screening of kinase activity are warranted to 
characterize drug kinetics and identify additional 
cantharidin targets. Meanwhile, examination of poten-
tial mechanisms underlying intrinsic or acquired 
cantharidin resistance should help define the therapeutic 
value of SC in cancer treatment. 
 

 

 
 

Figure 6. Proposed model of osteosarcoma growth 
suppression upon dual treatment with sodium 
cantharidate and erlotinib. Combined treatment with sodium 
cantharidate (Sc) and erlotinib impedes erlotinib-induced 
activation of STAT3 and signaling through the STAT3/Bcl-2/MMP2 
axis, leading to enhanced growth suppression in osteosarcoma. 

In conclusion, our data showed that SC, a cantharidin 
derivative, inhibited osteosarcoma progression in vitro 
and in vivo and abrogated the feedback activation of 
STAT3 induced by EGFR inhibition. Our results 
highlight potential uses of SC in combined therapeutics 
targeting recurrent and refractory osteosarcoma. 
 
MATERIALS AND METHODS  
 
Cell culture and reagents 
 
The human osteosarcoma cell lines MG63 (ATCC® CRL-
1427™) and U2OS (ATCC® HTB-96™) were obtained 
from American Type Culture Collection (Manassas, VA, 
USA), and maintained in Dulbecco’s Modified Eagle 
Medium (DMEM, Sigma–Aldrich, St. Louis, MO, USA). 
All media were supplemented with 10% fetal bovine 
serum (FBS, Sigma–Aldrich). These cell lines were 
employed for the described experiments without further 
authentication. Sodium cantharidate (CN100506212C) 
was obtained from Shandong Luoxin Pharmaceutical Co., 
Ltd (Linyi, Shandong, China). LY5 (#562712) was 
purchased from MedKoo Biosciences, Inc. (Morrisville, 
NC, USA). Erlotinib (SML2156) was purchased from 
Sigma-Aldrich (Shanghai) Trading Co., Ltd (Shanghai, 
China). The lentivirus expressing a constitutively active 
mutant form of STAT3 (EF.STAT3C.Ubc.GFP) was a 
gift from Linzhao Cheng (Addgene plasmid #24983; 
http://n2t.net/addgene:24983; RRID: Addgene_24983) 
[53]. Vector pLenti-CMV-MCS-GFP-SV-puro was a gift 
from Paul Odgren (Addgene plasmid #73582; 
http://n2t.net/addgene:73582; RRID: Addgene_73582) 
[54]. Negative control siRNAs (sc-37007) and STAT-3-
targeted siRNA (siSTAT3; sc-29493) were obtained from 
Santa Cruz Biotechnology, Inc. (Shanghai, China). 
 
Cell viability assay 
 
To evaluate cell viability, 5x103 cells per well were 
seeded in 96-well plates and cultured for 24 h prior to 
treatment. After drug treatments, the plates were 
supplemented with MTT solution at a final concentration 
of 0.5 mg/mL and further incubated for 4 h at 37°C. 50 μl 
DMSO was then supplemented after media elimination. 
The combination index (CI) of LY5 and erlotinib and of 
sodium cantharidate and erlotinib was calculated and 
their synergy quantification evaluated using the Chou-
Talalay method as described previously [55]. CI < 1, CI 
= 1, and CI > 1 indicate synergism, additive effect, and 
antagonism in drug combinations, respectively. 
 
Migration assay 
 
Migration assays were conducted using modified 
Boyden chambers with polycarbonate membranes 
(Nuclepore; Cell Biolabs, Inc., San Diego, CA, USA). 
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Cells (1x105) in 100 μL DMEM supplemented with 
0.1% bovine serum albumin were seeded into the upper 
chambers while the lower chambers were filled with 
600 μL DMEM containing 10% FBS. Cells were 
removed from the upper surface of the filter with a 
cotton swab post-incubation with test compounds for 24 
h. Migrant cells on the lower surface of filter were 
fixed, stained, photographed and counted under high-
power magnification.  
 
Western blotting 
 
Cell and tissue lysates were resolved by 10% SDS-
PAGE and transferred to nitrocellulose membranes. 
After blocking with 5% skim milk, membranes were 
incubated overnight with primary antibodies (1:1000), 
washed thrice with PBS-T, and incubated for 1 h with 
secondary HRP-conjugated antibodies (1:2500; Cell 
Signaling Technology, Inc. Shanghai, China). Primary 
antibodies against phospho-Tyr705 Stat3 (#9145), Stat3 
(#9139), phosphor-Tyr1068 EGFR (#3777), EGFR 
(#4267), Bcl-2 (#15071), MMP2 (#40994), and GAPDH 
(#5174) were obtained from Cell Signaling Technology, 
Inc. Shanghai, China. Proteins bands were detected by 
enhanced chemiluminescence (Pierce; Thermo Fisher 
Scientific, Inc.). 
 
Apoptosis assay 
 
The lipophilic dye JC-1 was used to evaluate the loss of 
mitochondrial transmembrane potential that precedes 
apoptosis. Cultured MG63 and U2OS cells (2.5x105) 
were collected 24 h post-treatment, washed once with 
1X dilution buffer, and stained with 1 µM JC-1 for 30 
min. Flow cytometric analysis was performed to 
evaluate JC-1 fluorescence, according to instructions in 
the BD™ MitoScreen (JC-1) Kit (#551302; BD 
Biosciences, San Jose, CA, USA).  
 
Tumor xenografts 
 
Animal experiments were approved by the 
Institutional Animal Care and Use Committee of 
Shengjing Hospital of China Medical University. A 
total of 5×106 MG63 cells in 0.2 mL of media were 
subcutaneously injected into athymic nude male mice. 
Tumor-bearing mice were randomized into four 
groups (n = 3-4 mice per group) when mean tumor 
volume reached approximately 100 mm3. Each group 
received either oral saline, i.p. sodium cantharidate 
(10 mg/kg/d), oral erlotinib (50 mg/kg/d), or dual 
treatment with sodium cantharidate (1mg/kg/d), and 
erlotinib (50 mg/kg/d). Tumor volume and body 
weight were measured every other day. At the end of 
the studies, all animals were euthanized humanely by 
cervical dislocation under isoflurane anaesthesia. 

Immunohistochemistry 
 
Tumors were excised, fixed in formalin, embedded in 
paraffin and sectioned. Representative sections were 
analyzed using the IHC staining kit Ultra-SensitiveTM 
SAP (KIT-7710, Maixin. Biological, Fuzhou, China) 
after incubation with either phosphor-Tyr1068 EGFR 
(#3777) or phospho-Tyr705 Stat3 (#9145) antibodies 
(Cell Signaling Technology, Inc. Shanghai, China.).  
 
Statistics 
 
Statistical analyses were performed using GraphPad 
Prism 7 software (La Jolla, CA, USA). Data from at 
least three independent experiments are presented as 
the mean ± standard deviation (SD). Group means 
differences were analyzed by Dunnett’s multiple 
comparisons test. P < 0.05 was considered statistically 
significant. 
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SUPPLEMENTARY MATERIAL 
 
 
 

 
 

Supplementary Figure 1. Drug combination index (CI) estimations. (A) CI for LY5 and erlotinib in MG63 cells. (B) CI for LY5 and 
erlotinib in U2OS cells. (C) CI for sodium cantharidate and erlotinib in MG63 cells. (D) CI for sodium cantharidate and erlotinib in U2OS cells. 
 


