
sensors

Article

Evaluation of a Fatigue Detector Using Eye Closure-Associated
Indicators Acquired from Truck Drivers in a Simulator Study

Łukasz Dziuda 1,* , Paulina Baran 1 , Piotr Zieliński 2 , Krzysztof Murawski 3 , Mariusz Dziwosz 1,
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Abstract: This paper presents a camera-based prototype sensor for detecting fatigue and drowsiness
in drivers, which are common causes of road accidents. The evaluation of the detector operation
involved eight professional truck drivers, who drove the truck simulator twice—i.e., when they were
rested and drowsy. The Fatigue Symptoms Scales (FSS) questionnaire was used to assess subjectively
perceived levels of fatigue, whereas the percentage of eye closure time (PERCLOS), eye closure
duration (ECD), and frequency of eye closure (FEC) were selected as eye closure-associated fatigue
indicators, determined from the images of drivers’ faces captured by the sensor. Three alternative
models for subjective fatigue were used to analyse the relationship between the raw score of the FSS
questionnaire, and the eye closure-associated indicators were estimated. The results revealed that, in
relation to the subjective assessment of fatigue, PERCLOS is a significant predictor of the changes
observed in individual subjects during the performance of tasks, while ECD reflects the individual
differences in subjective fatigue occurred both between drivers and in individual drivers between
the ‘rested’ and ‘drowsy’ experimental conditions well. No relationship between the FEC index and
the FSS state scale was found.

Keywords: car drivers; digital cameras; drowsiness; eye closures; facial features; fatigue detectors;
PERCLOS; truck simulators

1. Introduction

Driver fatigue and drowsiness are common causes of road accidents. Among over
36,000 people killed in motor vehicle traffic crashes on US roadways during 2019, 1.9% of
fatalities involved a drowsy driver [1]. Police reports from European countries showed
that 1% to 3% of all traffic accidents were caused by fatigue or drowsiness while driving [2].
In China, the traffic accidents caused by fatigue driving accounted for as much as 20% of
the total number of accidents [3].
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For almost 30 years, the issue of detecting driver fatigue and drowsiness has been
investigated in many ways. Many research groups have proposed different technical
solutions to detect driver fatigue early and thus minimise the risk of road hazards. In
general, these solutions can be grouped into three categories according to the fatigue
detection methods, which are based on monitoring (1) vehicle driving parameters, (2) driver
physiological parameters, or (3) driver facial features [3–11]. The first category includes
sensors for monitoring steering wheel touch, the steering wheel angle, the travel path and
the vehicle’s speed [12–14]. Failure to detect a hand on the steering wheel or the detection
of steering wheel turns beyond the lane may indicate unusual driver behaviour due to
fatigue. The sensors for measuring driving parameters are easily mounted on a vehicle
and relatively cheap; however, the data they provide may be affected by road or weather
conditions, and these sensors should therefore be used together with devices of other
categories [3,15,16].

The second group of methods is represented by electroencephalography (EEG), elec-
tromyography (EMG), electrooculography (EOG), electrocardiography (ECG), heart rate
(HR), heart rate variability (HRV), and respiratory rate (RR) [17–27]. Each change in the
mental state causes reactions reflected by changes in the values of physiological signals
and their parameters, the intensity of which is an individual feature. EEG monitors are
the most sensitive and reliable tool for assessing mental condition, including detecting
fatigue. Although data provided by physiological parameter recorders are generally highly
objective, these devices are expensive and require contact with the driver’s skin using
electrodes. This significantly limits their use for the common detection of fatigue and
drowsiness in vehicles [3].

Camera video recorders with software for analysing facial features belong to the third
category of fatigue detectors [28–31]. Facial features change as fatigue increases. The
continuous analysis of face images acquired from a driver while driving allows for the
detection of fatigue without contact and effectively. At the beginning of the 1990s, the
PERCLOS indicator—i.e., the percentage of time that the eyes were 80% to 100% closed—
was adopted to research fatigue in drivers [32–41]. Later, ranges of 70% to 100% [42] and
75% to 100% [43] of eye closure were considered in other studies. Various research groups
simplified the definition of this indicator to the percentage of time that the driver’s eyes
were entirely closed over a certain period, typically 30 s or 60 s [44–48]. Other indicators for
detecting fatigue were also proposed, the most measurable of which were the eye closure
duration (ECD) and frequency of eye closure (FEC) [43,49–52]. When determining eye
closure-associated indicators, most researchers considered only eye closures that lasted
no less than 150 ms to 250 ms to distinguish them from ordinary eye blinks [47,53–61].
Nevertheless, eye blinks are also considered in the latest literature on driver fatigue re-
search [28,62–64], as is eye tracking [65,66]. Additional information is obtained by tracking
the position of the driver’s head.

In recent years, the method based on monitoring a driver’s facial features has been par-
ticularly actively studied. The rapid development of digital cameras and facial recognition
software has provided an opportunity for this. The high potential of facial feature-based
methods is evidenced by the involvement of car companies in the research and develop-
ment of commercially available systems [31,67,68].

In this paper, we describe the design, construction and evaluation of a prototype
fatigue sensor, the operating principle of which is based on the automatised detection of
eye closures in the images of the driver’s face provided by a digital camera with an infrared
(IR) illuminator.

2. Materials and Methods
2.1. Fatigue Detector

The hardware part of the detector includes an MQ013RG-E2 camera by Ximea equipped
with a 25 HB lens by Tamron and an IR face illuminator specially designed to be integrated
onto the camera body. The main hardware components of the detector are shown in
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Figure 1. The camera body is cube-shaped with an edge length of 26 mm and weight
of 26 g. The camera enables the capture of monochromatic images in visible-light and
near infrared (NIR) frequencies with a resolution of 1280 × 1024 pixels at 60 frames per
second (fps). The camera uses USB 3.1 communication to transmit the captured images to
a personal computer (PC) and is powered by this link.

Figure 1. Main hardware components of the detector: 1—camera body; 2—lens; 3—IR illuminator;
4—band-pass filter; 5—supporting frame; 6—illuminator control cable; 7—camera data cable; 8—ball-
joint holder.

In order to improve the quality of images recorded in night conditions or in the
darkened interior of the simulator cabin, we developed an IR illuminator with adjustable
lighting intensity. The driver’s face was illuminated by 15 IR light-emitting diodes (LEDs)
that were powered and controlled through an USB 2.0 port of the PC. The light reflected
from the driver’s face was passed in the range of 820 to 910 nm through an F-BP850-25.5
filter by CCS Inc. Kyoto, Japan, mounted on the lens. The bandpass filter prevented the
influence of ambient light. The illuminator was mounted on a supporting frame designed
according to the Standard Template Library (STL) model and made using 3D printing
technology. The supporting frame was mounted on a ball-joint holder with a suction cup
to attach the detector to the front window of a car, truck or simulator. A more detailed
technical description of the detector can be found in [69].

To operate the detector, we developed a software package that allowed us to record im-
ages, create calibration files, analyse the recorded data and visualise the results. To perform
all the above-mentioned functions, the software package included the following parts:

• image acquisition module;
• calibration module;
• data analysis module;
• result visualisation module.

The software ran on the Microsoft .Net Framework 4.5.2 platform and was prepared
in the C# language using the Visual Studio environment. The images captured by the
sensor were saved on a PC disk in the form of video files in MP4 format using the image
acquisition module.

The main task of the calibration module was to create calibration files—i.e., pairs of
template images of the right and left eyes—which were later used to detect eye closures.
The templates could be images of both the open and closed eyes of a given driver. Images
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of open eyes were more characteristic and hence we adopted them as the templates for
detecting eye openings and counter states—i.e., eye closures. This approach was also
supported by the fact that the determination of eye closure-associated indicators was based
on the detection of both entire and partial eye closures. One or more pairs of the template
images could be used to detect eye closures. More pairs increased the chance to detect eye
closures effectively, but slowed down the identification procedure. Based on a series of
trials, we decided to use three pairs of the template images to analyse each of the recordings.
The templates were created from any three selected frames with clearly visible areas of
open eyes. These areas were automatically selected by the commercially available FaceSDK
5.0.1 library by Luxand [70].

The same library was used in the data analysis module to detect the locations of the
eyes in each frame of the video material recorded. Among the series of facial feature points,
FaceSDK returned coordinates of the eye centres. In the case when the FaceSDK library
could not find the facial feature points including the coordinates of the eye centres, such a
frame could later be classified manually in the result visualisation module. Further analysis
was performed using the template matching function covered in the OpenCV 3.3.0 library.
This function operated in the mode of the normalised correlation coefficient calculation,
and matched the areas around the centres of both eyes in consecutive frames of the video
recording with the template images of the right and left eyes, respectively [71]. The result
of the template matching function was a double-precision floating-point numeric value in
the range from 0 to 1. The higher the value, the better the matching to the template image.
In the OpenCV settings, a threshold value was defined at or above which the matching
to the template image was considered sufficient and thus an eye opening was found. The
images in each frame were sequentially matched to the three pairs of the template images
in the loop until the template matching function returned a value equal to or greater than
the threshold value. Then the returned value was adopted and no further matches were
checked. In our study, the threshold value was set to 0.68. Hence, scores below 0.68 in all
of the matching trials were qualified as eye closures. The template matching method was
used for the right and left eyes separately. Finally, the analysis module treated the eyes as
closed if both the eyes met this condition. More on the issues of classifying eyes as closed
are discussed in the next section.

All unclassified frames as well as the automatically detected eye closures could be
verified and corrected manually in the window of the result visualisation module, as
shown in Figure 2. The upper part of the window displayed a frame of the recorded video
material, selected with the cursor on any of the charts presented in the lower part of the
window. In this area, automatically detected eye openings and closures were displayed
as series of bars, the height of which reflected the degree of eye opening. Eyes classified
as open were marked with green bars, while eyes classified as closed were marked with
red bars. The previously unclassified eye states were unmarked, resulting in the gaps
between the green or red bars. The distributions of these bars along with the successive
video frames were presented for the right and left eyes, one below the other. The next chart
in the form of a series of blue bars of the same heights indicated the video frames in which
the driver’s eyes were open. The gaps between the blue bars indicated frames in which
both eyes were qualified as closed. The purple bars below the blue ones indicated frames
with ordinary eye blinks, which were not included in the determination of PERCLOS, ECD,
and FEC indicators. The next three graphs showed the changes of these indicators along
with successive video frames. On the left side of the charts, the average values of the eye
closure-associated indicators, calculated within the time periods specified in the software
settings, were listed. They could be exported to a comma-separated values (CSV) file.
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Figure 2. Window of the result visualisation module.

2.2. Eye Closure-Associated Indicators

Below, we describe the indicators displayed by the result visualisation module and
that are included in the data analysis.

PERCLOS indicates the percentage of time that the eyes are classified as closed within
30 s or 60 s time periods; we used 30 s time periods. When calculating PERCLOS, some
researchers classify the eyes as closed if the eyelids cover the pupils by at least 70%, 75%,
or 80%, with others doing so only if the pupils are entirely covered. The calculation
of PERCLOS based on entirely covered pupils is, however, questionable, as fatigue or
drowsiness makes the eyelids droop, and a tendency to partially cover the pupils by the
eyelids is observed. On the other hand, it is often difficult to precisely determine the
degree of pupil coverage in facial images due to the different orientation of the driver’s
face relative to the camera that captures the images. The head position while driving,
and thus the arrangement of the face elements—i.e., eyes, nose, mouth—in the captured
images is an individual feature of each driver, which additionally changes while driving.
Therefore, we use a threshold of 75% of the pupil coverage by the eyelids with a tolerance
of approximately ±5% for the PERCLOS calculation. Moreover, we exclude eye blinks and
eye closures that last 200 ms or less, i.e., 12 frames or less at 60 fps. Hence, PERCLOS is
given by

PERCLOS = Nclosure75,duration12/N, (1)

where Nclosure75,duration12 is the number of frames in which the eyes are classified as closed
with at least 75% coverage of the pupils and the duration of this closure is above 12 frames,
and N is the total number of frames captured in a 30 s time period, i.e., N = 1800 at 60 fps.
PERCLOS takes values from 0 to 1 or from 0 to 100 if it is expressed as a percentage. The
first option is more common, and we use it when specifying PERCLOS values in this paper.
PERCLOS is assumed to indicate fatigue when it takes values above 0.15 [49]. However,
according to some reports, the indication of sleep deprivation and fatigue starts at 0.11 [41].
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ECD is defined as the mean duration of clusters over 30 s or 60 s time periods, where
a cluster is a set of continuous frames in which the eyes are classified as closed. As in the
case of PERCLOS, when calculating ECD, we use 30 s time periods. The mathematical
expression of ECD is also similar to PERCLOS, i.e.,

ECD = Nclosure75,duration12/n, (2)

except that n is the number of clusters in a 30 s period. In this approach, ECD is a number
of frames, but can also be expressed as time in milliseconds. ECD is considered to be high
when its value is well above 200 ms [49]. Some authors use 400 ms—i.e., 24 frames at
60 fps—as the fatigue recognition threshold. [51].

FEC specifies the number of eye closures recognised within 30-s or 60-s time periods,
which are not ordinary eye blinks—i.e., that last longer than the predetermined value
of 200 ms—corresponding to 12 frames. Within the 30 s period used to determine FEC,
2–3 eye closures are normal, while values above 5 may indicate fatigue in drivers [49].

2.3. Fatigue Symptoms Scales

The Fatigue Symptoms Scales (FSS) questionnaire was chosen to assess subjectively
perceived levels of fatigue [72]. This questionnaire was constructed to measure different
symptoms of subjectively experienced fatigue, both as a current state (FSS-S) and trait
(FSS-T) [72]. Subjects are asked to indicate to what extent they experience a particular
symptom on a five-point rating scale ranging from 0 (not at all) to 4 (very strongly). The
questionnaire measures the overall level of fatigue experienced by the subject (total score),
as well as individual and specific self-reported symptoms of fatigue included in a few
subscales—e.g., cognitive, emotional, and physiological subscales. In the presented study,
the raw score of the overall state scale of the FSS questionnaire was used for analysis as a
subjective measure of the psychophysical state of the examined drivers.

2.4. Truck Simulator

The truck simulator used in this study is owned by the Nofer Institute of Occupational
Medicine and was manufactured by ETC-PZL Aerospace Industries Sp. z o.o. The simulator
is a stationary system that consists of a real Mercedes Benz Actros truck cabin placed on
a movable platform with six degrees of freedom (6 DoF), advanced visualisation and
acoustic background simulation modules, as well as an instructor room. The cabin with its
cockpit and standard equipment has the same functionality as in a normal truck. The 6DoF
platform allows the driver to feel rolls when turning, vibrations caused by uneven roads,
or pitch of the cabin when braking. The images seen from the cockpit are projected by
three laser projectors with widescreen ultra extended graphics array (WUXGA) resolution
on a cylindrical screen with a horizontal field of view of 180◦. The acoustic background
simulation module generates sound effects heard by the driver and these sounds are
reproductions of real sounds heard in the cabin, e.g., engine noise, sounds of other vehicles,
and alarm signals of specific failures or malfunctions of the truck. The instructor or operator
room is designed to control and operate the truck simulator. In this room, the PC that
controls the fatigue detector was located. The simulator system is very similar to the one
deployed at the Military Institute of Aviation Medicine, shown in Figure 3, which the
authors described in the other paper [73].
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Figure 3. Photograph of the simulator system: the (a) exterior of the truck cabin, (b) instructor room, and (c) detector
attached to the front window and directed towards the driver’s face.

2.5. Experimental Protocol

The experimental protocol complied with the Declaration of Helsinki and was ap-
proved by the Ethics Committee of the Military Institute of Aviation Medicine (Decision
11/2015). The study was carried out in the Nofer Institute of Occupational Medicine in
accordance with the relevant guidelines and regulations. The subjects were informed in
detail of the purpose and nature of the study and signed their informed consent for study
participation and the use of identifying images in data analysis.

Eight professional truck drivers (men) aged 33.13 ± 4.39 (M ± SD) years were involved
in the study. They were asked to drive the truck simulator twice: once when they were
rested (R), and again when they were drowsy (D), i.e., after working a night shift. In the
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first iteration, the study involved five subjects who were rested and three who were drowsy,
and the second iteration was the reverse, with five drowsy drivers and three rested ones.
The study design is schematically illustrated in Figure 4. Approximately 40 min before the
simulated truck driving, the subjects received the FSS questionnaire to complete the state
scale, according to their own fatigue feelings, and then, they were prepared for driving.
Before first main drive, the subjects were familiarised with the simulator and took a 5 min
test drive. The subjects’ task during the main drive was to complete the route by following
the trace that was being drawn in the upper middle part of the screen. The images of the
drivers’ faces while driving were recorded with the detector attached by an operator to
the front window inside the simulator cabin at the eye level of the drivers. The detector
was wired to the PC located in the instructor room. From there, the operator controlled the
image recording and also adjusted the intensity of the IR illuminator so that the face was
clearly visible in the images.

Figure 4. Scheme of the study. The procedure was repeated twice in states of rest (R) and drowsiness (D) at least a few
days apart.

The first part of the route (approximately 25% of the whole route) led along local roads
through an urban area; the remaining part was along an expressway outside urban areas.
The fastest subject completed the route in 40 min, and the slowest subject completed it
in 48 min. However, the subjects were not required to complete the route as quickly as
possible, but only to drive in accordance with the road traffic regulations. The subjects
drove the same route when they were rested and drowsy, but with the requirement that the
drives must be at least a few days apart. Approximately 40 min after the completion of the
route, the subjects were again asked to complete the state scale of the FSS questionnaire.
Relatively long intervals between the questionnaire and simulator phases of the study
were employed to prepare the subjects for physiological recordings and remove all the
measurement devices—e.g., an EEG electrode cap—as EEG signals were also acquired
while driving. However, these recordings are beyond the scope of this paper.

As the subjective measurement of fatigue using the FSS-S scale was taken at two
occasions, i.e., before and after completing the simulator task, the averages, i.e., arithmetical
means of the first 10 measurements and of the last 10 measurements of PERCLOS, ECD,
and FEC, were computed, and those averages were further treated as eye closure-associated
indicators in the pre-test/post-test study design. Moreover, the categorical variable of
the ‘rested’ or ‘drowsy’ states of the subjects was taken as the main factor describing the
experimental conditions.
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2.6. Statistical Analysis

Descriptive statistics methods were used for the evaluation of the PERCLOS, ECD,
and FEC indicators, as well as the FSS-S scale, during the pre-test and post-test, considering
the two experimental conditions. The Student’s t-test was used to assess the differences
between the pairs of measurement occasions. Additionally, the validity of the FSS-S scale
as a predictor of psychophysical state was checked with the receiver operator characteristic
(ROC) curve analysis, with pre-test FSS-S scale result as a classifier and an experimental
condition as an outcome variable.

The main goal of the detector evaluation was to check to what extent the eye closure-
associated indicators could be used as predictors of the individual fatigue level and there-
fore the obtained data were analysed using a linear mixed model, which was chosen as
an appropriate statistical method for repeated measurement schemes with time-varying
covariates [74]. The model had three levels, with two measurement occasions—i.e., pre-test
and post-test—nested in the ‘rested’ and ‘drowsy’ experimental sessions, and in the subjects.
The ‘rested’ and ‘drowsy’ sessions were treated as a random factor. It was assumed that,
for every subject, those two conditions could be seen as different points on the continuum
of physiological fatigue. Raw scores of the FSS-S scale from pre-test and post-test were
taken as the dependent variable, whereas the measurement occasion was treated as the
time variable. Based on this model, three alternative models were estimated, with each one
adding a different eye closure-associated indicator as an additional predictor. For those
models, a change in the model-fit measures was computed, and their predictive properties
were compared.

All analyses were performed using R statistical software version 4.0.3 by R Core Team.
The ROC curve analysis was performed using the pROC package in version 1.16.2 [75]. The
linear mixed model analysis was performed using the lme4 package in version 1.1-26 [76]
and the lmerTest package in version 3.1-3 [77].

3. Results

We begin the presentation of the results by showing how PERCLOS, ECD, and FEC
values changed during the simulator task. Table 1 graphically illustrates these changes for
each of the subjects and for each of the experimental conditions—i.e., ‘rested’ and ‘drowsy’.
Five-minute sections—i.e., the first 10 and the last 10 measurements—are marked in red.
The average values of these parts of the PERCLOS, ECD, and FEC measurements were
taken for the analysis. The trends of changes of the particular indicators increased in most
cases, and they did not change only in some cases. A high variability of the indicator values
was observed in some subjects. Particularly noteworthy are the cases of subjects no. 6 and 7
in the ‘drowsy’ state due to the exceptionally high values of the average PERCLOS achieved
over the last five minutes of the simulator task. In subject no. 6, the average PERCLOS
value over the first 5 min was 0.11, which followed an upward trend and reached 0.28 over
the last 5 min. In subject no. 7, the average PERCLOS value over the first 5 min was 0.25,
whereas over the last 5 min it was as high as 0.42. Thus, in subject no. 7, the starting value
was already elevated, considering that PERCLOS above 0.15 indicated fatigue. The case
of patient no. 7 in the ‘drowsy’ state also differed from the others due to the extremely
high ECD values achieved at the beginning and at the end of the simulator task. A total
24 frames at 60 fps is the fatigue recognition threshold, whereas the average ECD values
over the first 5 min and last 5 min were 41 and 72 frames, respectively. In addition, it
should be noted that the case of subject no. 6 was distinguished by a high FEC value of 23,
which increased by 12 from the beginning of the simulator task. FEC values above 5 are
considered to show signs of fatigue.
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Table 1. Changes in the eye closure-associated indicators during the simulator task for each of the subjects in the ‘rested’
and ‘drowsy’ states.

Subject State PERCLOS (−) ECD (Frame) FEC (−)

1

R

D

2

R

D

3

R

D

4

R

D

5

R

D
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Table 1. Cont.

Subject State PERCLOS (−) ECD (Frame) FEC (−)

6

R

D

7

R

D

8

R

D

The eye closure-associated indicators were firstly evaluated for mean and other distri-
bution parameters as well as for the significance of differences between the measurements.
The same analysis was then conducted for the FSS-S scale. The results are presented in
Table 2. The effect size for paired samples—i.e., Cohen’s d—was computed using the
approach suggested in [78].

Table 2. Distribution parameters and significance of differences between measurements of the PERC-
LOS, ECD, and FEC indicators and the FSS-S scale under the established experimental conditions.

Pre-Test Post-Test
t p d

Mean SD Mean SD

Rested
PERCLOS 0.036 0.031 0.072 0.047 3.277 0.014 0.793

ECD 16.511 7.556 18.770 5.304 1.152 0.287 0.326
FEC 3.013 2.398 6.313 3.710 4.340 0.003 0.877

FSS-S 8.875 13.994 23.500 29.189 2.534 0.039 0.265
Drowsy

PERCLOS 0.082 0.081 0.151 0.142 2.478 0.042 0.408
ECD 21.254 10.073 23.542 21.640 0.446 0.669 0.094
FEC 5.338 4.331 11.336 6.623 3.274 0.014 1.006

FSS-S 42.875 29.541 41.250 34.075 0.266 0.798 0.049

A visible increase in the mean values of all the eye closure-associated indicators in
both experimental conditions was observed. In the case of ECD in the ‘drowsy’ state, this
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increase was statistically insignificant due to the very high individual variability of the
results. A significant increase from the beginning to the end of the experimental session in
the ‘rested’ state was observed in the FSS-S scale. In the ‘drowsy’ subjects, the initial value
of the FSS-S scale was very high in comparison to the ‘rested’ state and did not change
significantly at the end of the experimental task.

When comparing the initial values in the ‘rested’ and ‘drowsy’ states, all the eye
closure-associated indicators achieved higher values at the beginning of the experimental
task in the ‘drowsy’ state. However, the differences were slight in terms of the effect
size interpretation, and statistical significance was only found at the level of statistical
tendency in the case of PERCLOS and ECD. Exact test values were: t(7) = 2.078, p = 0.076,
d = 0.520 for PERCLOS; t(7) = 2.290, p = 0.056, d = 0.491 for ECD; and t(7) = 2.555, p = 0.038,
d = 0.476 for FEC. On the other hand, the subjective fatigue declared with the FSS-S scale
was considerably higher at the beginning of the task in the ‘drowsy’ state—i.e., t(7) = 4.800,
p = 0.002, d = 1.055.

In the next step of the analysis, the ROC curve was computed to assess whether the
distinction of the ‘rested’ and ‘drowsy’ states could be treated as valid—i.e., whether the
subjective fatigue was concordant with the classification according to the study conditions.
For this purpose, the preliminary (before the simulation task) score on the FSS-S scale was
taken as a predictor, and the group classification (‘rested’/’drowsy’) was treated as an
outcome variable. The ROC curve showed a significant predictive power for the FSS-S
score, with an area under the curve (AUC) of 0.898 (bootstrap 95% confidence interval:
0.732–1.0). The optimal threshold was 7.5 points on the FSS-S scale with a specificity of 1.0
and sensitivity of 0.75. According to this result, it could be stated that the assignment to
the experimental conditions was very well reflected in the subjective feeling of fatigue.

The main analysis was performed with the use of the linear mixed model, as described
in the statistical analysis section. All consecutive models were estimated with the lmer
function of the lme4 package in version 1.1-26, with the maximum likelihood estimation
and default options for the optimisation method, which for lmer is a BOBYQUA (Bound
Optimization BY Quadratic Approximation) algorithm delivered by the open-source NLopt
library [79]. For the model evaluation, coefficients of determination in the form of the
conditional and marginal R2 were used and computed using the equations given in [80].
Those coefficients were first proposed in 2013 in [81] as a simple and general way for pre-
senting the explained variance both in linear and generalised linear mixed-effects models,
with different link functions. The conditional R2 summarises the variance explained by
an entire model, whereas the marginal R2 can be interpreted as the variance explained by
fixed factors. Despite their simplicity and clarity, the coefficients do not provide informa-
tion on the variance explained at each level of the linear mixed effects model. Therefore,
according to the original suggestion presented in [81], they were supported by providing a
simple proportion change of the variance—i.e., delta R2 calculated as shown for example
in [82]—at different levels of analysed models.

At first, the zero mode—i.e., intercept-only model—was estimated, and intraclass
correlations (ICCs) were computed. The ICC for the second level (task repetition) was
0.386 and the ICC for the third (person) level was 0.410, which showed that the similar
amount of variation in the subjective level of fatigue was connected with individual
differences, as well as with the study design and the repetition of experimental task under
different circumstances.

Next, the model with the time variable was computed. This variable was tested for
individual variability in time trends, but this random effect was found to be insignificant;
thus, the time variable was included only as a fixed effect. The model with the time variable
was not significantly better than the intercept-only model, with χ2

(1) = 2.024, p = 0.155. The
conditional R2 of this model was 0.82, while the marginal R2—i.e., connected with fixed
effects only—was 0.01. Thus, the considerable amount of variability in subjective fatigue
was accounted for by the grouping structure and not by the changes during the course of
the experimental task.
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In the last step of the analysis, the PERCLOS indicator was added as a first-level
predictor. This model showed an improvement on the previous model at the level of
statistical tendency, with χ2

(1) = 3.573, p = 0.059. The conditional and marginal R2 were at
the levels of 0.76 and 0.15, respectively. This showed that PERCLOS was visibly connected
with the explaining variance of the FSS-S scores, as the increase in R2 for fixed effects
was approximately 0.14. The variance decomposition showed that this improvement was
mostly connected with the visible increase in the explained variance at the level of personal
differences and at the level of experimental task conditions. The delta R2 was 0.37 at the
second level—i.e., task conditions—and 0.33 for variance at the between-person level. The
PERCLOS indicator did not further explain the residual variance of the model. The Akaike
Information Criterion (AIC) for this model was 295.9.

Then, an alternative model with the ECD indicator instead of PERCLOS was estimated.
This model was significantly better than the model with the time variable, with χ2

(1) = 5.673,
p = 0.017. The conditional and marginal R2 were 0.77 and 0.20, respectively. The increase of
the marginal R2 was approximately 0.19, making ECD a significant predictor connected
with explaining the variability of subjective fatigue. The variance decomposition showed a
visible increase in the explained variance at the level of personal differences (delta R2 = 0.63)
and at the level of experimental task conditions (delta R2 = 0.22). The ECD indicator did
not further explain the residual variance of the model. The AIC for this model was 293.77
and thus showed a slightly better fit than the model with PERCLOS as the main predictor.

Finally, the model with the FEC indicator instead of PERCLOS or ECD was estimated.
This model did not show any improvement on the model with the time variable, with
χ2

(1) = 0.883, p = 0.347. The conditional and marginal R2 were at the levels of 0.87 and
0.04, respectively. Hence, among the three eye closure-associated indicators, FEC had the
lowest explanatory power in relation to the variance of subjective fatigue. The variance
decomposition showed an increase in explained variance only at the residuals (within-
person, within-conditions) level, with a delta R2 of 0.19, but the FEC indicator as a fixed-
effect predictor was not statistically significant. The AIC for this model was 298.56, showing
the worst fit among the alternative models and a poorer fit than the time variable-only
model as a fixed-effect predictor.

The summary of all the analysed models is shown in Table 3, while the parameters of
the final models with the PERCLOS, ECD, and FEC indicators are presented in Tables 4–6,
respectively. The graphic representation of the models for PERCLOS and ECD is shown in
Figure 5. The model for FEC was omitted due to the insignificant relationship between the
main predictor and the response variable. It should be noted that an interaction between
the time variable and one of the eye closure-associated indicators was tested for every
model, but in any case, it did not improve the fit of the model; hence, it was omitted in the
presentation of the results.

Table 3. Comparison of multilevel models for subjective fatigue.

Model AIC −2 Log Likelihood df χ2

M1 Intercepts only 297.5 289.46 4
M2 Time variable 297.4 287.44 5 M2 − M1 = 2.024

M3 Final (PERCLOS) 295.9 283.90 6 M3 − M2 = 3.573
M4 Final (ECD) 293.8 281.77 6 M4 − M2 = 5.673 *
M5 Final (FEC) 298.6 286.56 6 M5 − M2 = 0.883

* p < 0.01.
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Table 4. Results of the final three-level model for subjective fatigue with PERCLOS as a time-
varying predictor.

Effect
Parameter
Estimate

Standard
Error t-Value

p
(2-Sided)

95% Confidence Interval
Lower Upper

Random effects at level 3 (subjects)
Intercepts 237.17 - - - 0.000 11,154.32

Random effects at level 2 (task conditions)
Intercepts 216.98 - - - 2.503 899.07

Random effects at level 1 (measurement occasions)
Residuals 177.71 - - - 91.85 404.97

Fixed effects (averaged over task conditions and persons)
Intercepts 28.859 7.503 3.846 0.004 12.069 44.951

Time 0.532 5.443 0.098 0.923 −11.456 11.548
PERCLOS

(scaled) 10.571 4.823 2.192 0.036 −0.410 −21.191

Table 5. Results of the final three-level model for subjective fatigue with ECD as a time-varying predictor.

Effect
Parameter
Estimate

Standard
Error t-Value

p
(2-Sided)

95% Confidence Interval
Lower Upper

Random effects at level 3 (subjects)
Intercepts 131.58 - - - 0.00 906.83

Random effects at level 2 (task conditions)
Intercepts 269.56 - - - 41.08 931.88

Random effects at level 1 (measurement occasions)
Residuals 163.98 - - - 84.66 380.96

Fixed effects (averaged over task conditions and persons)
Intercepts 26.935 6.610 4.075 0.003 12.150 41.409

Time 4.380 4.591 0.954 0.356 −5.542 13.828
ECD

(scaled) 11.611 4.183 2.776 0.009 2.089 21.631

Table 6. Results of the final three-level model for subjective fatigue with FEC as a time-varying predictor.

Effect
Parameter
Estimate

Standard
Error t-Value

p
(2-Sided)

95% Confidence Interval
Lower Upper

Random effects at level 3 (subjects)
Intercepts 347.27 - - - 0.00 1742.12

Random effects at level 2 (task conditions)
Intercepts 474.89 - - - 99.49 1695.55

Random effects at level 1 (measurement occasions)
Residuals 126.27 - - - 64.58 309.98

Fixed effects (averaged over task conditions and persons)
Intercepts 23.374 9.225 1.534 0.031 2.713 43.387

Time 11.501 5.679 2.025 0.058 −3.261 23.299
FEC

(scaled) −5.697 4.622 −1.233 0.230 −15.892 7.399
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Figure 5. Estimated marginal effects for mixed linear models with (a) PERCLOS and (b) ECD as the main predictors.

4. Discussion
4.1. Significance of the Results

We have presented the design and implementation of a driver’s face image recorder
and tested its ability to detect fatigue based on eye closure-associated indicators. In our
approach, we have checked to what extent these indicators could be used as predictors
of individual fatigue levels. The results reveal that two of the three indicators used are
closely related to fatigue, but they show different aspects of it. The PERCLOS indicator
was proposed almost 30 years ago and has been well documented in the literature since
then. Changes in PERCLOS acquired from the subjects at the beginning and at the end of
the simulator task correlate with changes declared by them in the FSS questionnaire before
and after the simulator task, respectively. In general, when driving a car, an increase of
fatigue in drivers is observed, the intensity of which can be measured using the PERCLOS
indicator. On the other hand, PERCLOS can also be used to determine the resistance of
drivers to fatigue and indirectly to assess the difficulty level of the task performed.

In 2007, the authors of [50] observed that anomalous behaviours of drivers cannot
be detected by using the PERCLOS indicator alone, except for the peaks over a threshold.
They proposed the observation of two different indicators—i.e., ECD (introduced a year
earlier in [49]) and FEC—in order to learn the model of normal behaviour of each driver
and to give greater power to separate normal from anomalous behaviours. In 2014, the
authors of [51] confirmed the high value of the ECD indicator in determining fatigue. The
results of our study show that the ECD index well reflects the individual differences in
subjective fatigue that occur both between drivers and in an individual driver between
two experimental situations—i.e., in ‘rested’ and ‘drowsy’ conditions. Hence, ECD allows
the differentiation of drivers in terms of fatigue and for a preliminary assessment to be
made of the fatigue level at the beginning of a task. Depending on the needs, the ECD
indicator can be used to analyse the quality of driving a car, as greater fatigue implies
worse driving quality.

Subtle differences in sensitivity to various aspects of fatigue make PERCLOS and
ECD an inseparable pair of indicators for detecting fatigue. Other authors, who do not
exclude eye blinks from determining PERCLOS and ECD, point out the advantages of
combining these two indicators for improving drowsiness detection [51]. The PERCLOS
indicator is not strongly affected by eye state classification errors over a given period; that
is, a few frames with eye state classification errors over the course of several hundreds of
frames does not significantly influence the proportion of frames in which the driver’s eyes
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are closed for the period covered. However, in drivers who tend to blink frequently, the
measured PERCLOS can be quite high, resulting in a false detection of drowsiness. On the
other hand, ECD is not strongly affected by frequently blinking, but it can be significantly
affected by eye state classification errors. When classification errors occur in the middle
of closed eye sequences, the measured ECD can be significantly reduced, resulting in a
failure to identify drowsiness. Our study from a different point of view confirmed the need
to combine these two complementary indicators to improve the accuracy of fatigue and
sleepiness detection.

In contrast, in our study it was not possible to prove the relationship between FEC and
the state of fatigue of the subjects, although the authors of [50] have shown this indicator
to be relevant for detecting fatigue. Due to the low diagnostic power of FEC revealed in
our study, this indicator is not further considered.

4.2. Study Limitations

While it was possible to show a significant and valid relationship between subjective
fatigue and eye closure-associated fatigue indicators, the low number of subjects and
the high variability of the individual results make it hard to determine single critical
values of PERCLOS or ECD indicators, which could serve as initial symptoms of increased
fatigue. A larger, more representative sample that will provide normative data is needed
to identify reliable warning thresholds for fatigue indicators, which in turn will allow the
described sensor to be implemented to assess driver fatigue in real time and not only as a
post-factum analysis.

Another limitation concerns the method of measuring fatigue. The declared current
state of fatigue was assessed in a standardised manner before and after the simulator task,
without controlling its state during the task itself. Such a scheme limits the possibilities of
analysing changes in a driver’s fatigue levels to a linear trend only, and simultaneously
constitutes the weakness of the questionnaire method itself. If the measurement of the
subjectively perceived level of fatigue were carried out at certain time points during the
whole simulator task, an ongoing fatigue state in response to various traffic situations
as well as a more accurate link with eye closure-associated parameters could be gained.
One possible method to obtain such measurements during a simulator task in a relatively
non-invasive manner for the driver could be periodical requests to subjects to assess their
psychophysiological condition on a several-point scale and, for experimenters themselves to
simply record the responses. The continuous measurement of this variable in a car or truck
simulator would enable observation of any increases or decreases in the driver fatigue level
in relation to the duration of the study and the tasks performed in a virtual environment.

A hardware limitation of the detector is the need to adjust the height at which the
camera is placed individually for the eye level of each subject. Nevertheless, this limitation
will be overcome in the next version of the detector, e.g., by means of an optical devices
optimised for the conditions of the truck cabin.

The above-mentioned limitations narrow the possibilities of analysis and interpreta-
tion, but the obtained results are sufficient to positively evaluate the fatigue detector and
plan an extended study with the participation of a larger group of drivers.

5. Conclusions and Future Work

The camera-based sensor for continuous non-invasive fatigue detection allows drivers
to monitor their condition in an automatised manner. Driver fatigue detection is realised
by analysing values of the PRECLOS, ECD, and FEC indicators. The results show that
the first two indicators have a diagnostic power, while the last one does not provide
significant information on driver fatigue. Apart from confirming the effectiveness of the
fatigue detector, one of the most important findings of the study is the complementarity of
PERCLOS and ECD. Both PERCLOS and ECD could be treated as significant predictors of
subjective fatigue reported by subjects while performing their assigned tasks. However,
PERCLOS seems to be more sensitive to the changes in fatigue that can be observed in
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individual subjects during the course of the task, whereas ECD better captures between-
person differences. Hence, these two indicators should be used together when assessing
driver fatigue.

The novel character of the presented work relies on the synergy achieved by com-
bining the in-house designed sensor with off-the-shelf solutions such as the FaceSDK
library, as well as open-source codes represented by the template matching method. The
proposed detector is distinguished by the readiness to integrate with any currently being
developed system for assessing the psychophysical condition of the driver in simulated
traffic conditions.

Plans for future work include extending the study to more than 30 drivers. The aim of
the study with the participation a large group of drivers will be to determine the PERCLOS
and ECD threshold values indicating fatigue while driving. The determination of the
fatigue detection thresholds will be used by the constructors to equip the detector with
new functionalities, allowing drivers to receive alerts when fatigue symptoms are detected,
including orders to stop driving and rest. One of the main challenges will also be to develop
a tool to measure subjective fatigue non-invasively while driving. Moreover, we plan to
carry out experiments with simultaneous recording of facial images and acquisition of
physiological data from drivers—i.e., HR, RR, galvanic skin response (GSR), and steering
wheel grip force—to assess the level of mental workload caused by the driving itself.
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