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Abstract
Difficulty in cessation of drinking, smoking, or gambling has been widely recog-
nized. Conventional theories proposed relative dominance of habitual over goal-
directed control, but human studies have not convincingly supported them. Referring 
to the recently suggested “successor representation (SR)” of states that enables par-
tially goal-directed control, we propose a dopamine-related mechanism that makes 
resistance to habitual reward-obtaining particularly difficult. We considered that 
long-standing behavior towards a certain reward without resisting temptation can 
(but not always) lead to a formation of rigid dimension-reduced SR based on the goal 
state, which cannot be updated. Then, in our model assuming such rigid reduced SR, 
whereas no reward prediction error (RPE) is generated at the goal while no resistance 
is made, a sustained large positive RPE is generated upon goal reaching once the 
person starts resisting temptation. Such sustained RPE is somewhat similar to the hy-
pothesized sustained fictitious RPE caused by drug-induced dopamine. In contrast, 
if rigid reduced SR is not formed and states are represented individually as in simple 
reinforcement learning models, no sustained RPE is generated at the goal. Formation 
of rigid reduced SR also attenuates the resistance-dependent decrease in the value 
of the cue for behavior, makes subsequent introduction of punishment after the goal 
ineffective, and potentially enhances the propensity of nonresistance through the in-
fluence of RPEs via the spiral striatum-midbrain circuit. These results suggest that 
formation of rigid reduced SR makes cessation of habitual reward-obtaining particu-
larly difficult and can thus be a mechanism for addiction, common to substance and 
nonsubstance reward.
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1  |   INTRODUCTION

Cessation of habitual drinking, smoking, gambling, or gam-
ing can be quite difficult even with strong intention. Reasons 
for this, and whether there are reasons common to substance 
and nonsubstance reward, remain elusive. Although much ef-
fort has been devoted to developing clinical programs includ-
ing technology-based therapies (e.g., Gustafson et al., 2014; 
Kato et al., 2020; reviewed in Newman et al., 2011; Haskins 
et al., 2017), the lack of mechanistic understanding of the un-
desired addictive habit is an obstacle for further improvement. 
Computational modeling has become a powerful approach to 
elucidating the mechanisms of psychiatric disorders includ-
ing addiction (Huys et al., 2016; Kato et al., 2020; Montague 
et al., 2012; Wang & Krystal, 2014). However, it appears that 
relatively less focus has been given to nonsubstance, com-
pared to substance, addiction, although there have been pro-
posals (e.g., Ognibene et al., 2019; Piray et al., 2010; Redish 
et al., 2007). In the present study, we explored possible com-
putational and neural circuit mechanisms for why resisting 
habitual reward-obtaining behavior can be quite difficult, 
with the following four streams of findings and suggestions 
in mind:

1.1  |  Involvement of the dopamine system in 
both substance and nonsubstance addiction

The dopamine (DA) system has been suggested to be crucially 
involved in substance addiction (Berke & Hyman,  2000), 
possibly through drug-induced DA acting as a fictitious 
RPE that cannot be canceled out by predictions (Keiflin & 
Janak, 2015; Redish, 2004). However, there have also been 
implications of possible involvements of the DA system in 
nonsubstance addiction (Grant et al., 2010). Specifically, pos-
sible relations of medicines of Parkinson disease to patholog-
ical gambling (Dodd et al., 2005; Voon et al., 2006), as well 
as similar changes in the DA system in addiction to substance 
and nonsubstance such as game (Thalemann et al., 2007) or 
internet (Hou et al., 2012), have been suggested.

1.2  |  Goal-directed and habitual 
behavior and their neural substrates, and their 
relations to addiction

It has been suggested that there are two behavioral pro-
cesses, namely, goal-directed and habitual behavior, which 
are sensitive or insensitive to changes in outcome values 
and/or action-outcome contingencies, respectively (Balleine 
& Dickinson,  1998; Balleine & O'Doherty,  2010; Dolan 
& Dayan,  2013). They are suggested to be hosted by dis-
tinct corticostriatal circuits, specifically, those including 

ventral/dorsomedial striatum (or caudate) and those includ-
ing dorsolateral striatum (or putamen), respectively (Corbit 
et al., 2001; Yin et al., 2004, 2005), where ventral-to-dorsal 
spiral influences have been anatomically suggested (Haber 
et  al., 2000; Joel & Weiner, 2000). Computationally, goal-
directed and habitual behavior have been suggested to cor-
respond to model-based reinforcement learning (RL) and 
model-free RL, respectively (Daw et  al.,  2005; but see 
Dezfouli & Balleine, 2012, for a critique of model-free RL 
as a model of habitual behavior). It has been suggested that 
addiction can be caused by impaired goal-directed and/or 
excessive habitual control (Everitt & Robbins, 2005, 2016). 
This is supported by multitudes of animal experiments, and 
there also exist findings in humans in line with this (Gillan 
et al., 2016). However, it has also been shown that human ad-
dicts often show goal-directed behavior, such as those sensi-
tive to outcome devaluation (Hogarth et al., 2019), although 
there are mixed results (as reviewed in Hogarth et al., 2019) 
and sensitivity can also differ between appetitive and aver-
sive outcomes as shown for cocaine addiction (Ersche 
et al., 2016). Also, there have been proposals of many differ-
ent possible causes for addiction (Redish et al., 2007), includ-
ing those related to the way of state representation (Redish 
et  al.,  2008), hierarchical organization of learning systems 
(Keramati & Gutkin,  2013), homeostatic RL (Keramati 
et al., 2017), or limitations of cognitive resources and costs 
of exploration for both model-based and model-free systems 
(Ognibene et al., 2019).

1.3  |  Intermediate of goal-
directed and habitual behavior through 
successor representation of states

A great mystery had been that how model-based and model-
free RLs, whose typical algorithms are so different in for-
mulae, can be both hosted by corticostriatal-DA circuits, 
different parts of which should still share basic architectures. 
Recent work (Gershman, 2018; Russek et al., 2017) has pro-
vided a brilliant potential solution to this by proposing that 
certain types of goal-directed (model-based) behavior, hav-
ing sensitivity to changes in outcome values, can be achieved 
through a particular type of state representation called the 
successor representation (SR) (Dayan, 1993), combined with 
the ever-suggested representation of RPE by DA (Montague 
et al., 1996; Schultz et al., 1997). In the SR, individual states 
are represented by a sort of closeness to their successor states, 
or more accurately, by time-discounted cumulative future oc-
cupancies of these states. Behavior based on this representa-
tion is not fully goal-directed, having difficulty in revaluation 
of state transition or policy, which has been demonstrated in 
actual human behavior (Momennejad et  al.,  2017) referred 
to as “subtler, more cognitive notion of habit” by the authors 
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(Momennejad et  al.,  2017). SR and value update based on 
it have been suggested to be implemented in the prefrontal/
hippocampus-dorsomedial/ventral striatum circuits (Garvert 
et  al.,  2017; Russek et  al.,  2017; Stachenfeld et  al.,  2017), 
while circuits including dorsolateral striatum might imple-
ment habitual or model-free behavior through “punctate” 
(i.e., individual) representation of states or actions.

1.4  |  Sustained DA response to predictable 
reward, possibly related to state representation

The original experiments that led to the proposal of representa-
tion of RPE by DA (Montague et al., 1996; Schultz et al., 1997) 

have shown that DA response to reward disappears after mon-
keys repeatedly experienced the stimulus(-action)-reward as-
sociation and the reward presumably became predictable for 
them. However, sustained, and often ramping, DA signals to/
towards (apparently) predictable reward has been widely ob-
served in recent years (Collins et al., 2016; Guru et al., 2020; 
Hamid et al., 2019; Hamid et al., 2016; Howe et al., 2013; Kim 
et al., 2019; Mohebi et al., 2019; Sarno et al., 2020). There are 
a number of possible accounts for such sustained DA signals, 
positing that they represent RPE (Gershman,  2014; Kato & 
Morita, 2016; Kim et al., 2019; Mikhael et al., 2019; Morita 
& Kato, 2014; Song & Lee, 2020) or something different from 
RPE (Guru et al., 2020; Hamid et al., 2019; Hamid et al., 2016; 
Howe et al., 2013; Mohebi et al., 2019; Sarno et al., 2020) or 

F I G U R E  1   Schematic diagram of the 
model and the assumed goal-based reduced 
successor representation (SR) of states under 
the Non-Resistant policy. (a)-a Schematic 
diagram of the model, adapted, with 
alterations, from figure 1 of Kato and Morita 
(2016). (a)-b The Non-Resistant policy, in 
which only “Go” action is chosen, and the 
Resistant policy, in which not only “Go” 
but also “No-Go” action is chosen with a 
certain probability (PNo-Go). (b)-a Genuine 
(full) SR, in which every state is represented 
by the discounted future occupancies of 
all the states, and the goal-based reduced 
SR, in which every state is represented by 
the discounted future occupancy of only 
the final successor state, i.e., the goal state, 
both under the Non-Resistant policy. γ 
indicates the time discount factor. (b)-b The 
vertical axis indicates the discounted future 
occupancy of the goal state for each state 
(corresponding to the scalar feature of the 
state in the goal-based reduced SR), given 
by x(Sk) = γ10−k (Equation 6) for state Sk 
(k = 1, …, 10; S1 is the start state and S10 
is the goal state) with γ set to 0.97 [Colour 
figure can be viewed at wileyonlinelibrary.
com]

(a)-a

(a)-b

(b)-a

(b)-b
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both (Collins et al., 2016; Lloyd & Dayan, 2015). Of particular 
interest to our present work, one hypothesis (Gershman, 2014) 
suggests that sustained (ramping) DA signals might represent 
sustained RPE generated due to imperfect approximation of 
value function in the system using representation of states by 
low-dimensional features.

Referring to these different streams of findings and sug-
gestions, we propose a computational explanation on why 
resisting habitual reward-obtaining can become particularly 
difficult.

2  |   MATERIALS AND METHODS

2.1  |  States, actions, policies, temporal 
discounting, and addicted/nonaddicted cases

We considered a series of states Sk (k = 1, …, n; S1 is the start 
state and Sn is the goal state) and actions “Go” and “No-Go” 
as shown in  Figure 1(a)-a. At the goal, reward R, whose size 
was set to 1, was assumed to be obtained. We considered 
two policies: the Non-Resistant policy, in which the agent al-
ways takes “Go”, and the Resistant policy, in which the agent 
takes “No-Go” with a certain probability (PNo-Go). PNo-Go was 
mainly set to 0.75, with 0.5 and 0.9 also tested in simulations 
shown in Figure 4(a) and the Figures S1–S3. Under the Non-
Resistant policy, the state value of each state is calculated as 
follows: 

where γ is the time discount factor. The number of states from 
the start state to the goal state (n) was set to 10, and the time 
discount factor (γ) was mainly set to 0.97, with 0.95 and 0.99 
also tested in simulations shown in the Figures S1–S3. This 
resulted in that the value at the start state was 0.979 (≈0.76), 
or 0.959 (≈0.63) or 0.999 (≈0.91), times of the value at the 
goal. We assumed 10 states because it seems intuitively rea-
sonable to assume that the long-standing daily behavior to 
obtain a particular reward, such as going to a favorite pub 
for a beer after work, consists of around several to 10 dis-
tinct actions, for example, clean the desktop, wear the jacket, 
wait for and get on the elevator, walk to the subway station, 
wait for and get on a train, walk to the pub, call the waitstaff, 
and order the beer. These series of actions would typically 
take dozens to tens of minutes. Given this, we determined the 
abovementioned range of time discount factor in reference 
to a study (Buono et  al.,  2017), which examined temporal 
discounting for video gaming and found that the subjective 
value of video gaming 1 hr later was on average around 0.65–
0.8 times of the value of immediate video gaming. Notably, 
however, the temporal discounting reported in that study ap-
pears to have near flat tails, indicating that it would not be 

well approximated by exponential functions, whereas we as-
sumed exponential discounting.

We considered that if a person has long been taking a se-
ries of actions leading to a certain reward without resisting 
temptation (i.e., taking the Non-Resistant policy), a reduced 
SR of states based on the goal state (explained below) have 
potentially been formed so rigidly that it cannot be updated 
after the person changes the policy. We tentatively refer to the 
case with formation of such rigid reduced SR as the addicted 
case, and other case as the nonaddicted case; at the beginning 
of Section 4, we will discuss the rationale for this naming.

2.2  |  Simple RL model with individual state 
representation, simulating the nonaddicted case

We considered a simple RL model with individual (or “punc-
tate”) state representation to simulate the nonaddicted case. 
We assumed that each state has its own estimated state value, 
Vsimple(Sk), and it is updated using (temporal-difference(TD)-
type) RPE δsimple at every time step:

where S(t) and S(t + 1) are the states at time t and t + 1, respec-
tively, and if S(t) is the goal state, the term γVsimple(S(t + 1)) is 
dropped, except for in simulations where punishment was con-
sidered (described below). R(S(t)) is the reward value obtained 
at S(t), which was assumed to be 0 except for the goal state, ex-
cept for in simulations where punishment was considered. RPE 
upon initiation of behavior was assumed to be:

Vsimple was assumed to be updated as follows:

where αsimple is the learning rate, which was set to 0.5 un-
less otherwise mentioned. For simulations of behavior under 
the Non-Resistant policy, initial values of each state value 
Vsimple(Sk) were set to 0. For simulations of behavior under the 
Resistant policy, initial values of each state value were set to the 
values corresponding to the completion of learning under the 
Non-Resistant policy, specifically,

We also simulated the cases where punishment (neg-
ative reward) is introduced in a state following the goal 
state. Specifically, for these simulations, we additionally 
assumed state S11 which is the next state of the goal state 
S10. At S10, S(t  +  1) in Equation (2) was assumed to be 

(1)VNon-Resistant

(

Sk

)

= R�n− k,

(2)�simple = R(S(t)) + �Vsimple(S(t + 1)) − Vsimple(S(t)),

(3)0 + �Vsimple(S1) − 0 = �Vsimple(S1).

(4)Vsimple(S(t)) → Vsimple(S(t)) + �simple�simple,

(5)Vsimple

(

Sk

)

= VNon-Resistant

(

Sk

)

= R�n− k.
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S11, and at S11, R(S11) was set to −2 and the term γVsimple  
(S(t  +  1)) in Equation (2) was dropped. The initial con-
dition corresponding to the completion of learning under 
the Non-Resistant policy without punishment, that is, 
Vsimple(Sk)  =  γ10−k for k  =  1, …, 10 and V(S11)  =  0, was 
assumed, and the agent's behavior under the Non-Resistant 
policy with punishment was simulated.

2.3  |  Model with rigid goal-based reduced 
SR of states, simulating the addicted case

We considered a model with rigid goal-based reduced SR of 
states to simulate the addicted case. Specifically, we consid-
ered a single (i.e., scalar) feature x and assumed that the k-th 
state, Sk (k = 1, …, n; S1 is the start state and Sn is the goal 
state), is represented by

We assumed that the agent estimates the (true) state value 
of each state under a given policy by a linear function of these 
scalar features with a coefficient w:

The (true) state value under the Non-Resistant policy 
(Equation 1) is in fact exactly obtained as a linear function 
of these scalar features with w equal to the reward value ob-
tained at the goal (R):

We assumed that starting from this condition (w  =  R), 
which corresponds to the completion of learning under the 
Non-Resistant policy, the agent learns (estimates) the (true) 
state value under the Resistant policy by updating the coeffi-
cient w using (TD-type) RPE δRSR at every time step:

where if S(t) is the goal state, the term γwx(S(t + 1)) is dropped. 
Specifically, w was assumed to be updated as follows:

where αRSR is the learning rate, which was set to 0.5 unless oth-
erwise mentioned. This way of linear function approximation 
and RPE-based update (Sutton, 1988; Sutton & Barto, 2018) 
has been typically assumed in neuro-computational models and 
is considered to be implementable through synaptic plasticity 
depending on DA, which represents RPE, and presynaptic ac-
tivity, which represents x(S(t)) (Montague et al., 1996; Russek 

et  al.,  2017). The initial value of w was set to R (=1), with 
which the approximate value function exactly matches the true 
value function under the Non-Resistant policy (as mentioned 
above). RPE upon initiation of behavior was assumed to be:

Notably, for the model with rigid reduced SR, we did 
not conduct simulation for the person's behavior under the 
Non-Resistant policy, but only conducted simulations for the 
behavior under the Resistant policy by assuming the initial 
value of w = R (=1). We did, however, calculated the RPEs 
generated in the model with reduced SR under the Non-
Resistant policy in the condition with w = 1, corresponding 
to the completion of learning under the Non-Resistant pol-
icy, by using Equations (6), (9), and (11), resulting in that 
RPE = γ n upon initiation of behavior and RPE = 0 otherwise.

2.4  |  Slow update of the goal-based reduced 
SR of states

In simulations with slow update of the goal-based reduced 
SR itself, we updated the scalar feature of the state (i.e., 
x(S(t))) at every time step, except for the feature of the goal 
state (mentioned below), by using the TD error of the goal-
based reduced SR:

Specifically, the scalar feature was updated as follows:

where αfeature is the learning rate for this update and was set 
to 0.05. As for the goal state, the TD error of the goal-based 
reduced SR for the goal state should be theoretically 0 and thus 
no update was implemented.

2.5  |  Model with genuine SR of states

For comparison, we also considered a model with genuine 
SR of states. We assumed that each state Sk is represented by 
n features xj(Sk) (j = 1, …, n) indicating the time-discounted 
future occupancy of Sj under the Non-Resistant policy:

and the (true) value function under the Resistant policy is ap-
proximated by a linear function of them:

(6)x
(

Sk

)

= �n− k.

(7)Vpolicy(Sk) ≈ wx(Sk),

(8)VNon-Resistant

(

Sk

)

= R�n− k = Rx
(

Sk

)

.

(9)�RSR = R(S(t)) + �wx(S(t + 1)) − wx(S(t)),

(10)w → w + �RSRx(S(t))�RSR,

(11)0 + �wx
(

S1

)

− 0 = w�n.

(12)�feature = 0 + �x(S(t + 1)) − x(S(t)).

(13)x(S(t)) → x(S(t)) + �feature�feature,

(14)xj

(

Sk

)

= 𝛾 j− k(j ≥ k) or 0(j < k),

VResistant

(

Sk

)

≈ Σj=1:n{wjxj

(

Sk

)

}. (15)
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The coefficients wj (j = 1, …, n) are updated by using the 
(TD-type) RPE:

where the middle term including S(t + 1) is dropped if S(t) is the 
goal state, according to the following rule:

where αgenuine is the learning rate and was set to 0.5. The ini-
tial values of wj were set to 0 for j = 1, …, n − 1 and R (=1) 
for j = n, with which the approximate value function exactly 
matches the true value function under the Non-Resistant 
policy.

2.6  |  Influence of the rigid reduced SR 
system on the system with individual action 
representation

For simulations of the influence of the rigid reduced SR sys-
tem on the system with individual action representation, we 
assumed that the action values of “Go” and “No-Go” in the 
system with individual action representation are updated by 
using a combination of the RPEs generated in the rigid re-
duced SR system and the RPEs of action values of either the 
Q-learning-type or the SARSA-type. Specifically, we con-
sidered the action values

for “Go” and “No-Go” at state S (=S1, …, Sn−1), respectively, 
and considered the RPE of Q-learning type:

where “max” is the operation to take the maximum and 
A(t − 1)S(t − 1) is the action actually taken at state S(t − 1), or the 
RPE of SARSA-type:

where A(t)S(t) is the action actually chosen at state S(t). For both 
types, if S(t) is the goal state, the middle term is dropped, and 
if t is the initial time step within an episode, the last term is 
dropped. The value of the previous action, Q(A(t − 1)S(t − 1)), 
was then assumed to be updated by a combination of either of 
these RPEs and the RPE generated in the system with rigid re-
duced SR (Equation 9):

In particular, Q(A(t − 1)S(t − 1)) was assumed to be updated 
as: 

or 

where αcombined is the learning rate, which was set to 0.5, and 
κ (0 ≤ κ ≤ 1) and 1 − κ represent the degrees of the effects 
of the RPEs generated in the system with rigid reduced SR 
and the system with individual action representation, respec-
tively; κ was varied to be 0, 0.2, or 0.4. We assumed that 
these RPE calculations and updates are implemented in the 
circuits shown in Figure    7(a). Notably, as appeared in the 
above equations, we assumed that the RPEs containing the 
reward at S(t) are used to update the value of action taken at 
t − 1 (rather than at t). Initial values of the action values for 
“Go” were set to be the theoretical true values under the Non-
Resistant policy, specifically, 

and initial values of the action values for “No-Go” were set to 
be the values that were one time-step discounted from the initial 
values for “Go” at the same states: 

The initial value of w was set to R (=1), corresponding to 
the completion of learning under the Non-Resistant policy.

For comparison, we also conducted simulations of a 
model that was the same as the one described above except 
that the rigid reduced SR system, generating δRSR, was re-
placed with the simple RL model with punctate (individual) 
state representation, generating δsimple (Equation 2).

2.7  |  Execution of simulations

The agent's behavior under the Non-Resistant policy is deter-
ministic, and so we made theoretical calculations or conducted a 
single simulation (without using pseudorandom number) as for 
the results for the Non-Resistant policy. Regarding the results 
for the Resistant policy, in order to examine average behav-
ior of the model across simulations using pseudorandom num-
bers, simulations were conducted 100 times for each condition. 
Among the 100 simulations, there were likely to be simulations, 
where “No-Go” choice was not taken at some state(s) at some 
episode(s). Such simulations, different from case to case, were 
not included in the calculations of the average and standard de-
viation of RPEs across simulations. There were also likely to be 

(16)
�genuine = R(S(t)) + �Σj=1:n{wjxj(S(t + 1))} − Σj=1:n{wjxj(S(t))},

(17)wj → wj + �genuinexj(S(t))�genuine,

(18)Q
(

GoS

)

and Q
(

No − GoS

)

,

(19)
�QL = R(S(t)) + �max

{

Q
(

GoS(t)

)

, Q
(

No − GoS(t)

)}

− Q
(

A(t−1)S(t−1)

)

,

(20)�SARSA = R(S(t)) + �Q
(

A(t)S(t)

)

− Q
(

A(t−1)S(t−1)

)

,

�RSR = R(S(t)) + �wx(S(t + 1)) − wx(S(t)).

(21)
Q
(

A(t−1)S(t−1)

)

→ Q
(

A(t−1)S(t−1)

)

+ �combined

(

(1 − �)�QL + ��RSR

)

,

(22)
Q
(

A(t−1)S(t−1)

)

→ Q
(

A(t−1)S(t−1)

)

+ �combined

(

(1 − �)�SARSA + ��RSR

)

,

(23)Q
(

GoSk

)

= R�n−1− k,

(24)Q
(

No - GoSk

)

= R�n− k.
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simulations, where “No-Go” choice was taken more than once 
at some state(s) at some episode(s). In such cases, generated 
RPEs were first averaged within an episode, and that value (i.e., 
a single value for each simulation) was used for the calculations 
of the average and standard deviation of RPEs across simula-
tions. Simulations and figure drawing were conducted by using 
Python and R, respectively.

2.8  |  Data availability statement

Program codes for generating all the data presented in the fig-
ures are available in the GitHub (https://github.com/Kshim​
od/Reduc​ed_SR_RL).

3  |   RESULTS

3.1  |  Modeling nonaddicted versus addicted 
cases by models with simple RL versus rigid 
goal-based reduced SR

We modeled a person's series of actions to obtain a certain re-
ward, such as alcohol, nicotine, or nonsubstance such as bet-
ting ticket, gaming, or social interaction, by a series of modeled 
person's actions on a sequence of states from the start state to 
the goal state, where the reward is given (Figure 1[a]). At each 
state except for the goal state, the person can take either of two 
actions, “Go”: proceed to the next state, and “No-Go”: stay at 
the same state (as considered in our previous work, Kato & 
Morita, 2016, in a different context). We considered a case that 
the person has long been regularly taking behavior to obtain 
the reward without resisting temptation. In the model, it cor-
responds to that the person has long experienced transitions to-
wards the rewarded goal according to a policy that takes only 
“Go” at any state, which we refer to as the Non-Resistant policy 
(Figure 1[a]-b). We assumed that through such long-standing 
experiences of behavior according to the Non-Resistant policy, 
the person has potentially established a particular state repre-
sentation, where each state is represented by the discounted 
future occupancy of the final successor state, namely, the re-
warded goal state, under that policy (formulae and equations 
are described in Section 2).

This representation, which we will refer to as the goal-
based reduced SR (Figure 1[b]), can be said to be a dimension-
reduced version of SR; in the genuine SR (Dayan,  1993; 
Gershman,  2018; Russek et  al.,  2017), every state is repre-
sented by a vector of expected cumulative discounted future 
state occupancies for all the states, whereas in the above goal-
based reduced SR, every state is represented by the discounted 
future occupancy of only the goal state. Because the genuine 
SR requires the number of features equal to the number of 
states, dimension reduction has been considered (c.f., Barreto 

et al., 2016; Gardner et al., 2018; Gehring, 2015). Given the 
general suggestion of dimension reduction in state representa-
tions in the brain (Gershman & Niv, 2010; Niv, 2019), it would 
be conceivable that the brain adopts dimension-reduced ver-
sions of SR, such as the goal-based reduced SR assumed above. 
Notably, the state value function under the Non-Resistant pol-
icy in the assumed state and reward structure (Figure 1[a]-a) 
can be precisely represented as a linear function of the scalar 
feature of the goal-based reduced SR (Equation 8 in Section 2). 
Moreover, this representation inherits the sensitivity to changes 
in the reward value at the goal from the genuine SR, and thus, 
the agent (person) having acquired this representation remains 
to be goal-directed in terms of sensitivity to changes in the 
goal value. It would thus be conceivable that such a goal-based 
reduced SR can be acquired through long-standing reward-
obtaining behavior.

We propose that such a goal-based reduced SR under 
the Non-Resistant policy can be established so rigidly that 
it cannot be updated, depending on the property of reward, 
duration and frequency of nonresistant reward-obtaining, and 
individuals. We tentatively refer to the case with establish-
ment of such a rigid reduced SR as the addicted case, and 
other case as the nonaddicted case; later at the beginning of 
Section 4, we will discuss that the addicted case so defined as 
above is potentially in line with several defining characteris-
tics of addiction. For the nonaddicted case, we assumed that 
each state is represented individually (or in the “punctate” 
manner using the terminology in Russek et al., 2017) as in 
conventional simple RL models; we will also show other pos-
sibility for the nonaddicted case later (in the fourth section).

3.2  |  Behavior of the simple RL model, 
simulating the nonaddicted case

Here, we first present the nonaddicted case simulated by a 
conventional simple RL model with individual (punctate) 
state representation, and as compared to it, we will show 
the addicted case simulated by a model with the rigid goal-
based reduced SR in the next section. We simulated that 
the person initially learned the values of each state lead-
ing to the goal state, where a reward was obtained, under 
the Non-Resistant policy by setting the initial value for the 
state value of each state to 0. Figure 2(a) shows the RPEs 
generated at each state in the first, 10th, and 30th episode, 
also showing the RPE upon initiation of behavior (in the 
leftmost S0 position), which was assumed to be the learned 
state value of S1 multiplied by the time discount factor. As 
shown in the figure, in the first episode, a large positive 
RPE was generated at the goal state, while no RPE was 
generated elsewhere. By contrast, in the 30th episode, a 
large positive RPE was generated upon initiation of behav-
ior, while RPE at the goal faded away. This disappearance 

https://github.com/Kshimod/Reduced_SR_RL
https://github.com/Kshimod/Reduced_SR_RL
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F I G U R E  2   RPEs generated in the simple RL model with individual (punctate) state representation, simulating the nonaddicted case. (a) 
RPEs generated in the first episode ([a]-a), 10th episode ([a]-b), and 30th episode ([a]-c) under the Non-Resistant policy, starting from the initial 
condition where the value of every state was 0. RPE upon initiation of behavior is also shown in the leftmost S0 position. (b)-a A single-simulation 
example of RPEs generated in the first episode under the Resistant policy, starting from the initial condition corresponding to the completion of 
learning under the Non-Resistant policy. The blue crosses indicate RPEs generated upon “Go” decisions, whereas the red crosses indicate the 
means of RPEs generated upon “No-Go” decisions, and the brown and black crosses indicate RPEs generated upon initiation of behavior and at 
the goal state, respectively. The magenta circles indicate the summation of RPEs generated upon “No-Go” decisions at the same states. (b)-b Mean 
RPEs generated in the first episode under the Resistant policy. The error bars indicate the average ± SD across simulations; this is also applied 
to the following figures unless otherwise mentioned. (c) Mean RPEs generated in the 25th episode under the Resistant policy. (d) The changes of 
RPEs over episodes under the Resistant policy. The shading indicates the average ± SD across simulations; this is also applied to the following 
figures. (d)-a RPEs generated upon initiation of behavior. (d)-b RPEs generated upon “Go” decisions (blue) and “No-Go” decisions (mean (red) and 
summation (magenta) per episode) at the start state, and RPE generated at the goal state (black) [Colour figure can be viewed at wileyonlinelibrary.
com]
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of RPE for repeatedly experienced reward is a hallmark 
of the conventional temporal difference (TD) RL model 
(Sutton & Barto, 2018), and this pattern resembles the pat-
tern of DA response in the process of learning the value 
of (nonaddictive) reward (Montague et  al., 1996; Schultz 
et al., 1997).

Let us then consider a situation where the person decides 
to attempt cessation of the series of reward-obtaining behav-
ior. We assumed that the person starts to take a new policy, 
referred to as the Resistant policy, in which not only “Go” 
but also “No-Go” action is chosen with a certain probabil-
ity, PNo-Go, at each state preceding the goal (Figure 1(a)-b). 
We simulated the person's behavior under the Resistant pol-
icy with PNo-Go = 0.75 starting from the initial condition that 
corresponds to the completion of learning under the Non-
Resistant policy. Figure 2(b)-a shows a single simulation ex-
ample of RPEs generated in the first episode. In this episode, 
the person chose “No-Go” once at S2, S5, and S8, three times 
at S4 and S9, four times at S7, eight times at S1, and never at S3 
and S6. The blue crosses indicate RPEs generated upon “Go” 
decisions, whereas the red crosses indicate the means of 
RPEs generated upon “No-Go” decisions, and the brown and 
black crosses indicate RPEs generated upon initiation of be-
havior and at the goal state, respectively. The magenta circles 
indicate the summation of RPEs generated upon “No-Go” 
decisions at the same states. As shown in the figure, a large 
positive RPE was generated upon initiation of behavior, and 
small positive and negative RPEs were generated when the 
person chose “Go” and “No-Go” at each state, respectively, 
whereas no PRE was generated when the person eventually 
reached the rewarded goal state. Figure 2(b)-b shows the 
mean and standard deviation across simulations. The same 
features as observed in the example simulation are observed. 
Figure 2(c) shows the RPEs generated at the 25th episode, 
averaged across simulations. Compared to the case of the first 
episode, the magnitude of RPE upon initiation of behavior 
was reduced, and this is considered to reflect that more time 
steps were needed for goal reaching under the Resistant pol-
icy than under the Non-Resistant policy and so more tempo-
ral discounting was imposed. On the other hand, similarly 
to the case of the first episode, small positive and negative 
RPEs were generated upon “Go” and “No-Go” choices, re-
spectively, and no RPE was generated upon goal reaching. 
These patterns were largely preserved after the 25th episode, 
as shown in Figure 2(d).

3.3  |  Behavior of the model with rigid 
reduced SR, simulating the addicted case

We now present the addicted case simulated by the model 
with rigid goal-based reduced SR. We assumed that the 
goal-based reduced SR of states had been formed through 

long-standing behavior under the Non-Resistant policy, al-
though we did not model the formation process itself. We 
thus considered approximation of the state value function by 
a linear function of the features of the reduced SR, that is, 
the discounted future occupancy of the goal state. Figure 3(a) 
shows the RPEs generated under the Non-Resistant policy, in 
the condition where the coefficient of the approximate value 
function (w) was 1, corresponding to the completion of learn-
ing under the Non-Resistant policy. As shown in the figure, a 
large positive RPE was generated upon initiation of behavior, 
and no RPE was generated elsewhere. This is very similar 
to the nonaddicted case modeled by the simple RL model 
(Figure 2[a]-c).

Next, we present the results for the Resistant policy. 
Similarly to the case of the simple RL model in the previ-
ous section, we simulated the person's behavior under the 
Resistant policy with PNo-Go = 0.75 starting from the initial 
condition that corresponds to the completion of learning 
under the Non-Resistant policy (i.e., w  =  1). Figure 3(b)-
a  shows a single simulation example of RPEs generated in 
the first episode. In this episode, the person chose “No-Go” 
once at S3, twice at S5 and S6, four times at S4, seven times at 
S1, S2, and S9, nine times at S8, and never at S7. As shown in 
the figure, a large positive RPE was generated upon initiation 
of behavior, and small negative RPEs were generated when 
the person chose “No-Go”, whereas theoretically no RPE is 
generated upon choosing “Go” (though tiny numerical errors 
existed [the same applies throughout]). Then, when the per-
son eventually reached the rewarded goal state, a relatively 
large positive RPE was generated, different from the nonad-
dicted case modeled by the simple RL model shown in the 
previous section. Figure 3(b)-b shows the mean and standard 
deviation across simulations. The same features as observed 
in the example simulation are observed.

Figure 3(c)  shows the over-episode change of the coef-
ficient w of the approximate value function at the end of 
each episode, averaged across simulations. As shown in the 
figure, w decreases from its initial value (=1) and becomes 
(almost) stationary, meaning that the negative and positive 
RPE-based updates become overall balanced. We examined 
RPEs after the coefficient w becomes nearly stationary, in 
particular, in the 25th episode. Figure 3(d) shows the results 
averaged across simulations. Compared to the case of the first 
episode, the magnitude of RPE upon initiation of behavior 
was reduced. The reduction looks, however, less prominent 
than the nonaddicted case modeled by the simple RL. This 
is considered to be because even though the person actually 
needs much more time steps for goal-reaching according to 
the Resistant policy, a sort of memory of nonresistant fast 
goal-reaching is “imprinted on” the established reduced SR 
under the Non-Resistant policy and affects the estimation of 
state values. At the states preceding the goal, small negative 
RPEs were generated upon “No-Go” decisions, whereas 
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theoretically no RPE is generated upon “Go” decisions, sim-
ilarly to the case of the first episode. Then, when the person 
eventually reached the goal state, a large positive RPE, whose 
mean magnitude was larger than that in the first episode, was 
generated. This is, again, clearly different from the nonad-
dicted case modeled by the simple RL.

We also examined how the amplitudes of RPEs change 
over episodes, and found that after a few initial episodes, 
the amplitudes, averaged across simulations, become nearly 
stationary (Figure 3[e]). In particular, the large positive RPE 
generated at the rewarded goal sustains after many repetitions. 
This is quite different from the conventional diminishing RPE 
for repetitive (nonaddictive) reward, and somewhat similar 
to the hypothesized fictitious RPE caused by addictive drug-
induced DA (Keiflin & Janak, 2015; Redish, 2004). But im-
portantly, our model does not assume any direct modulation 

of the DA system by substance, and thus, such a sustained 
large positive RPE for repetitive reward in the addicted case 
only originates from the formation of the goal-based reduced 
SR under the Non-Resistant policy and its rigidity. More spe-
cifically, the difference between the nonaddicted case with 
simple RL and the addicted case with rigid reduced SR is 
considered to reflect different characteristics of updates done 
with the different ways of state representation. Specifically, 
in the case with the goal-based reduced SR, only the coeffi-
cient of approximate value function was updated and the state 
representation established under the Non-Resistant policy 
was (assumed to be) unchanged, resulting in sustained mis-
match between the true and approximate value functions. In 
contrast, in the case of the simple RL with individual (punc-
tate) state representation, the value of each state was directly 
updated so that there is no such sustained mismatch. For both 

F I G U R E  3   RPEs generated in the 
model with rigid goal-based reduced SR 
established under the Non-Resistant policy, 
simulating the addicted case. (a) RPEs 
generated under the Non-Resistant policy, 
in the condition where the coefficient of 
the approximate value function (w) was 
1, corresponding to the completion of 
learning under the Non-Resistant policy. 
(b)-a A single-simulation example of RPEs 
generated in the first episode under the 
Resistant policy, starting from the initial 
condition corresponding to the completion 
of learning under the Non-Resistant policy. 
(b)-b Mean RPEs generated in the first 
episode under the Resistant policy. (c) 
Over-episode change of the coefficient w of 
the approximate value function at the end of 
each episode under the Resistant policy; the 
assumed initial value (w = 1) is also plotted 
at episode = 0 with SD = 0. (d) Mean RPEs 
generated in the 25th episode under the 
Resistant policy. (e) The changes of RPEs 
over episodes under the Resistant policy. 
(e)-a RPEs generated upon initiation of 
behavior. (e)-b RPEs generated at the start 
state and the goal state [Colour figure can be 
viewed at wileyonlinelibrary.com]
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the cases of reduced SR and simple RL, we examined the 
cases with different parameters, and found that basic features 
of the patterns of sustained RPEs were largely preserved (see 
the Supporting Information).

As mentioned above, the addicted case modeled with rigid 
reduced SR and the nonaddicted case modeled with simple 
RL differed also in the degree of over-episode reduction of the 
RPE upon initiation of behavior under the Resistant policy. 
Let us consider a situation in which there is a certain cue for 
behavior leading to reward. The predicted value of such a cue 
is considered to be equal to the RPE generated upon initiation 
of behavior. We examined how the predicted value of the cue 
changed when the person took the Resistant policy with dif-
ferent degrees of strictness (PNo-Go = 0.5, 0.75, or 0.9), com-
paring the nonaddicted and addicted cases. Figure 4(a) shows 
the results. As shown in the figure, in both cases, continued 
resistance resulted in a decrease in the predicted value of the 
cue, and the degree of the decrease depended on the strict-
ness of the resistance, but the decrease was less prominent in 
the addicted case (red symbols) than in the nonaddicted case 
(black symbols). This is considered to contribute to making 

cessation of reward-obtaining behavior more difficult in the 
addicted case than in the nonaddicted case.

The addicted case modeled with rigid reduced SR and the 
nonaddicted case modeled with simple RL are expected to 
further differ in the responsiveness to subsequent introduc-
tion of punishment at the state following the rewarded goal 
state. Specifically, in the nonaddicted case modeled with sim-
ple RL, such subsequent introduction of punishment causes 
a reduction of the learned value of each state and thereby 
a reduction of the predicted value of the cue for behavior, 
and if the punishment is large enough, the cue value becomes 
negative (Figure 4(b), black). By contrast, in the addicted 
case modeled with rigid reduced SR, given that no backward 
transition from the state following the goal state to the goal 
state has been experienced, the scalar feature (discounted fu-
ture occupancy of the goal state) of the state following the 
goal state can be considered to be 0. Then, even though the 
punishment causes negative RPE at the state following the 
goal state, it does not cause an update of the coefficient of 
the approximate value function (because x(S(t)) in Equation 
10 in Section 2 is 0) and thus does not reduce the learned cue 
value (Figure 4(b), magenta), unless the state representation 
itself will change.

3.4  |  Cases where goal-based reduced SR 
is not rigid but can be updated or genuine SR 
is used

In the previous section, we considered rigid reduced SR that 
cannot be updated after the policy has been changed. Here we 
consider the case where goal-based reduced SR is once es-
tablished under the Non-Resistant policy but it can be slowly 
updated after the policy is changed to the Resistant policy 
through TD learning of state representation itself (Gardner 
et al., 2018; Gershman et al., 2012). Figure 5(a) shows the 
scalar feature of each state (i.e., discounted future occupancy 
of the goal state) after 50, 100, and 200 episodes under the 
Resistant policy (black dotted, dashed, and solid lines, re-
spectively), averaged across simulations, in comparison to 
the original ones established under the Non-Resistant pol-
icy (gray line). As shown in the figure, the curve became 
steeper as episodes proceeded. This is considered to reflect 
that longer time is required, on average, for goal reaching 
under the Resistant policy than under the Non-Resistant 
policy and thus the expected discounted future occupancy 
of the goal state should be smaller for the Resistant policy. 
Figure 5(b) shows the RPEs generated in the 200th episode, 
averaged across simulations, and Figure 5(c) shows the over-
episode changes in the RPEs. As shown in these figures, a 
large positive RPE was initially generated upon goal reaching 
but it gradually decreased, while positive RPEs with smaller 
amplitudes gradually appeared upon “Go” decisions in the 

F I G U R E  4   Decrease in the predicted value of the cue for 
behavior leading to reward by resistance to temptation, and the effects 
of punishment. (a) The predicted value of the cue for behavior leading 
to size 1 reward at the completion of learning under the Non-Resistant 
policy (leftmost) or at the 25th episode under the Resistant policy 
with PNo-Go = 0.5, 0.75, or 0.9 starting from the initial condition 
corresponding to the completion of learning under the Non-Resistant 
policy. Black symbols: the nonaddicted case modeled with simple RL. 
Red symbols: the addicted case modeled with rigid reduced SR. (b) 
Effects of subsequent introduction of punishment at the state following 
the goal state. The black symbol indicates the predicted value of the 
cue at the 25th episode after the introduction of size 2 punishment 
under the Non-Resistant policy in the nonaddicted case modeled with 
simple RL, starting from the initial condition corresponding to the 
completion of learning without punishment. In the addicted case, the 
predicted value of the cue is theoretically considered to be unchanged 
from the value without punishment, as indicated by the magenta 
symbol, because of the reason described in Section 3 [Colour figure 
can be viewed at wileyonlinelibrary.com]
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states other than the goal, and so the pattern of RPEs gradu-
ally approached that of the simple RL model in these regards. 
Notably, the RPE upon initiation of behavior became even 
smaller than the case of simple RL (compare Figures 2[d]-
a and 5[c]-a), presumably reflecting that whereas infrequent 
fast reaching may greatly raise the RPE in the simple RL, the 
average slow reaching would be imprinted on the slowly up-
dated reduced SR, resulting in the smaller RPE. These results 
indicate that even if goal-based reduced SR under the Non-
Resistant policy is once established, if it is not so rigid that it 
can be updated albeit slowly, cessation of reward-obtaining 
would eventually become less difficult if the person does not 
give up resisting temptation.

We also considered a case where the states are repre-
sented by the genuine SR, rather than the reduced SR. Figure 
6(a)  shows the RPEs generated in the 25th episode, and 
Figure 6(b) shows the over-episode changes in the RPEs. As 
shown in the figures, the patterns of RPEs are similar to those 
in the case of the simple RL model with individual (punc-
tate) state representation (Figure  2[b], [c]) and differ from 
those in the case of the model with the rigid reduced SR. 
Therefore, cessation of reward-obtaining is considered to be 
not very difficult in this case, or in other words, this case is 
also considered to be a nonaddicted case. Figure 6(c) shows 
the coefficients wj of the approximate value function after the 
1st episode (Figure 6(c)-a) and 25th episode (Figure 6(c)-b), 
and Figure 6(d) shows the over-episode changes of the coef-
ficients for the features corresponding to the start state (red 
line), the state preceding the goal (S9) (blue line), and the goal 
state (black line). As shown in these figures, the coefficients 

for the features corresponding to the states preceding the goal 
became negative. It is considered that because of these nega-
tive coefficients, the true value function under the Resistant 
policy could be well approximated even by a linear function 
of the features (discounted occupancies) under the Non-
Resistant policy.

3.5  |  Influence of the rigid reduced SR 
system on the system with individual action 
representation

As mentioned in Section  1, it is suggested that there exist 
multiple value learning systems in the brain, with the sys-
tem employing SR residing in the prefrontal/hippocampus-
dorsomedial/ventral striatum circuits. Another system 
adopting individual (punctate) representation might locate in 
the circuits including dorsolateral striatum. Moreover, there 
are anatomical suggestions of ventral-to-dorsal spiral influ-
ences in the striatum-midbrain system (Haber et  al.,  2000; 
Joel & Weiner,  2000), and theoretical proposals that such 
a spiral circuit implements heterarchical RL (Haruno & 
Kawato, 2006) and that the bias of RPE due to drug-induced 
DA accumulates through the spiral circuit and causes unde-
sired compulsive drug taking in long-term addicts (Keramati 
& Gutkin, 2013). Inspired by these, we also examined a case 
with multiple representation/learning systems. Specifically, 
we assumed that the prefrontal/hippocampus-dorsomedial/
ventral striatum circuits host the goal-based reduced SR 
of states (rather than the genuine SR) whereas the circuits 

F I G U R E  5   RPEs generated under 
the Resistant policy in the case where the 
goal-based reduced SR established under the 
Non-Resistant policy itself slowly changed 
and approached the goal-based reduced SR 
under the Resistant policy. (a) Scalar feature 
of each state (i.e., x(Sk)) after 50, 100, and 
200 episodes (black dotted, dashed, and 
solid lines, respectively), in comparison 
to the original ones (gray line) that are the 
same as those shown in Figure 1(b)-b. (b) 
Mean RPEs generated in the 200th episode. 
(c) The changes of RPEs over episodes 
under the Resistant policy [Colour figure 
can be viewed at wileyonlinelibrary.com]
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including dorsolateral striatum adopt an individual (punctate) 
representation of each action, that is, “Go” or “No-Go”. This 
latter assumption was made based on the suggestions that the 
dorsal/dorsolateral striatum is involved in value learning with 
actions (O'Doherty et al., 2004; Takahashi et al., 2008). We 
then assumed that the information of the RPEs generated in 
the system with rigid goal-based reduced SR of states flows 
into the system with punctate (i.e., individual) action repre-
sentation through the spiral circuit (Figure 7(a)). Critically, 
different from the abovementioned previous model (Keramati 
& Gutkin, 2013), which assumed that the value of the upcom-
ing state but not of the previous state in the ventral circuit 
flows into the dorsal circuit, we assumed that the information 
of the values of both upcoming and previous states used for 
(TD-type) RPE calculation originates from the striatum, and 
effectively the entire RPE in the ventral circuit flows into the 
dorsal circuit (in this regard, somewhat similar assumption 
was made in [Takahashi et al., 2008]). If both the upcoming 
and previous values are sent via the direct striatum-midbrain 

connections, for example, through the matrix and patch/
striosomal neurons as referred to in Morita et al. (2012), the 
suggested spiral connections could also convey both informa-
tion, though it needs to be verified. If either value (or both) is 
sent to the midbrain via the indirect pathway through the glo-
bus pallidus or ventral pallidum, as proposed in (Doya, 2000; 
Houk et  al.,  1995; Morita & Kawaguchi,  2019; Morita 
et  al.,  2012), our assumption requires spiral connectivity 
for both direct and indirect pathways, which also needs to 
be validated. We also noticed that a recent study specifically 
suggested a function of the hierarchical cortico-basal ganglia 
circuits in habit learning (Baladron & Hamker, 2020), but our 
model considers a different mechanism.

Regarding the system with individual action representa-
tion, we assumed that “Go” and “No-Go” at each state other 
than the goal state are represented in a punctate manner (i.e., 
individually) and their values (i.e., action values) are updated 
by using a combination of the RPEs generated in the rigid 
reduced SR system and the RPEs of action values. As for 

F I G U R E  6   RPEs generated under the 
Resistant policy in the model with genuine 
SR. (a) Mean RPEs generated in the 25th 
episode. (b) The changes of RPEs over 
episodes under the Resistant policy. (c) 
Coefficients wj of the approximate value 
function after the first episode ([c]-a) and 
25th episode ([c]-b). (d) Over-episode 
changes of the coefficients wj for the 
features corresponding to the start state (red 
line), the state preceding the goal (S9) (blue 
line), and the goal state (black line) [Colour 
figure can be viewed at wileyonlinelibrary.
com]
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the latter, we considered two types: the Q-learning-type and 
the SARSA-type, both of which have been suggested to be 
represented by DA (Morris et al., 2006; Roesch et al., 2007). 
We conducted simulations of behavior under the Resistant 
policy (PNo-Go  =  0.75) starting from the initial condition 
corresponding to the completion of learning under the Non-
Resistant policy as for the “Go” values and the coefficient 
of the approximate value function (initial values of the “No-
Go” values were also set in a reasonable way, as described in 
Section 2), with the degrees of the effects of the RPE in the 

rigid reduced SR system and the RPE in the system with indi-
vidual action representation varied (κ and 1 − κ, respectively, 
in Equations (20) and (21) in Section 2).

Figure 8(a)-a shows examples of across-episode changes 
of the values of “Go” and “No-Go” at the start state, the mid-
dle (5th) state, and the pregoal (9th) state in the cases in sin-
gle simulations with the Q-learning-type RPE. When there 
was no influence of the rigid reduced SR system (κ = 0), all 
the action values look unchanged from their initial values, as 
theoretically expected. As the relative influence of the rigid 

F I G U R E  7   Schematic illustration 
of the spiral striatum-midbrain circuit 
and the hypothesized influence of the 
RPE generated in the circuit including the 
ventral/dorsomedial striatum on the circuit 
including the dorsolateral striatum. (a) The 
case where the ventral/dorsomedial circuit 
hosts the system with goal-based reduced 
SR of states whereas the dorsolateral circuit 
hosts the system with individual action 
representation. In the ventral/dorsomedial 
circuit (left), the cortex represents the 
features (discounted future occupancies 
of the goal state) of the upcoming and 
previous states and the striatum represents 
their approximate state values obtained by 
the linear function of the features with the 
coefficient w. In the dorsolateral circuit 
(right), the cortex represents the upcoming 
and previous actions and the striatum 
represents their action values. The oblique 
line indicates the influence through the 
spiral striatum-midbrain projections, and κ 
(0 ≤ κ ≤ 1) and 1 − κ represent the degrees 
of the effects of the RPEs generated in the 
ventral/dorsomedial circuit and dorsolateral 
circuit, respectively, on the dorsolateral 
circuit. (b) The case where the ventral/
dorsomedial circuit hosts the system with 
individual state representation while the 
dorsolateral circuit hosts the system with 
individual action representation. In the 
ventral/dorsomedial circuit (left), the cortex 
represents the upcoming and previous states 
and the striatum represents their state values
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reduced SR system increased (κ = 0.2 and κ = 0.4), the values 
of “Go” and “No-Go” at the start and middle states initially 
decreased, but the values of “Go” and “No-Go” at the pregoal 
state increased, and eventually the action values at all these 
three states became larger than the values in the case without 
the influence of the rigid reduced SR system. The initial de-
creases of action values at the start and middle states are con-
sidered to be because of the negative RPEs upon “No-Go” 
choices in the rigid reduced SR system, whereas the eventual 
increases of action values are considered to come from the 
large positive RPE upon goal-reaching in the rigid reduced 
SR system.

Figure 8(b)-a shows examples of the “Go” and “No-Go” 
values in single simulations with the SARSA-type RPE. 
When there was no influence of the rigid reduced SR system 
(κ = 0), the values of actions except for “Go” at the pregoal 
state generally decreased from their initial values. This is 
reasonable, because the on-policy values of these actions 
under the Resistant policy should be smaller than the val-
ues under the Non-Resistant policy due to extra time steps 
required for goal reaching. As the relative influence of the 
rigid reduced SR system increased (κ = 0.2 and κ = 0.4), the 
values of “Go” and “No-Go” at the pre-goal state increased, 
presumably due to the large positive RPE upon goal reach-
ing in the rigid reduced SR system, while the effects on the 
action values at the start and middle states appear to be more 
mixed.

Figure 8(a)-b  shows the values of “Go” and “No-Go” 
at each state, and Figure 8(a)-c  shows their differences 
(Q(GoSk)  −  Q(No-GoSk)), averaged across the 41st to 60th 
episodes and also across simulations, with the Q-learning-
type RPE. Figure 8(b)-b,c shows the results with the SARSA-
type RPE. As shown in these figures, in both cases with the 
different types of RPE of action values, the values of “Go” 
were on average larger than the values of “No-Go”, and the 
value difference on average increased as the relative influ-
ence of the rigid reduced SR system increased (κ = 0.2 and 
κ = 0.4), although there were large variations in the case of 
the SARSA-type RPE. Therefore, if the “Go” and “No-Go” 
values were assumed to affect the agent's choice propensity, 
which was in reality predetermined to be a fixed probability 
(PNo-Go = 0.75) in our model as described above, the RPE 
information flowing from the rigid reduced SR system to the 

system with individual action representation through the spi-
ral circuit could potentially enhance deterioration of the resis-
tance to temptation. This result is intuitively understandable 
because, from the standpoint of the system with individual 
action representation, the incoming positive RPE from the 
rigid reduced SR system upon goal reaching would act as an 
extra reward.

For comparison, we also examined the case where the in-
formation of the RPEs generated in the simple RL model with 
individual state representation, rather than the system with the 
rigid reduced SR of states, flows into the system with indi-
vidual action representation (Figure 7(b)). Figure 9 shows the 
results. Different from the case with the RPE influence from 
the rigid reduced SR system, the RPE influence from the sim-
ple RL model did not increase but rather decreased the differ-
ences between the “Go” and “No-Go” values, in both cases 
with Q-leaning type (Figure 9(a)-c) or SARSA-type (Figure 
9(b)-c) RPE of action values. As shown before (Figure  2), 
in the simple RL model with individual state representation, 
negative and positive RPEs are generated upon “No-Go” and 
“Go” choices, respectively. However, through the influence to 
the system with individual action representation, these RPEs 
are used for updating the value of the previous action, which 
is either “No-Go” at the same state or “Go” at the preceding 
state (except when the agent is at the start state). Therefore, the 
negative and positive RPEs upon “No-Go” and “Go” choices 
in the simple RL model do not directly affect the values of 
chosen actions themselves. These results indicate that the spi-
raling RPE influence from the rigid reduced SR system, but 
not from the simple RL model, could potentially enhance de-
terioration of the resistance to temptation.

4  |   DISCUSSION

We assumed that long-standing behavior to obtain a certain 
reward without resistance to temptation can lead to a forma-
tion of rigid goal-based reduced SR. Then we have shown 
that if it is formed, (1) while no RPE is generated at the goal 
as far as the person does not resist temptation, a sustained 
large positive RPE is generated upon goal reaching once the 
person starts to resist, (2) resistance-dependent decrease in 
the predicted value of the cue becomes less prominent, (3) 

F I G U R E  8   Influence of the RPEs generated in the system with goal-based reduced SR of states to the system with individual action 
representation. (a) Results with the Q-learning-type RPE of action values. ([a]-a) Examples of over-episode changes of the values of “Go” and 
“No-Go” at the start state, the middle (5th) state, and the pre-goal (9-th) state in the case with different degrees of the relative effect of the RPE 
generated in the system with goal-based reduced SR of states (κ = 0 (left panels), 0.2 (middle panels), and 0.4 (right panels)) in single simulations. 
([a]-b) The values of “Go” (blue lines) and “No-Go” (red lines) at each state in the case with κ = 0 (left panels), 0.2 (middle panels), and 0.4 
(right panels), averaged across the 41st to 60th episodes and also across simulations. The error bars indicate ± SD across simulations. ([a]-c) The 
differences of the values of “Go” and “No-Go” at each state (Q(GoSk) − Q(No-GoSk)) in the case with κ = 0, 0.2, and 0.4, averaged across the 41st 
to 60th episodes and also across simulations. The error bars indicate ± SD across simulations. (b) Results with the SARSA-type RPE of action 
values. Configurations are the same as those in (a) 
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subsequent introduction of punishment at the state follow-
ing the goal does not reduce the predicted value of the cue, 
and (4) influence of RPEs on the system with individual ac-
tion representation through the spiral striatum-midbrain cir-
cuit could potentially enhance the propensity of nonresistant 
choice. Defining characteristics of addiction include (i) crav-
ing or urge, (ii) inability to manage to stop, (iii) occurrence 
of relapse, and (iv) continuation despite loss or problem. The 
above (1)–(4) are considered to be potentially related to these 
characteristics, in particular (1) and (4) to (i)–(iii), (2) to (i) 
and (iii), and (3) to (iv). Therefore, we propose that formation 
of rigid reduced SR is a potential mechanism for addiction, 
common to substance and nonsubstance reward.

4.1  |  Further possibilities about the 
effects of the generated RPEs on behavior

As shown in Section 3, the large positive RPE at the goal 
generated in the rigid reduced SR system could act as an 
extra reward for the system with individual action repre-
sentation. In the worse case, we speculate that it could po-
tentially even act as fictitious RPEs that cannot be fully 
canceled out by predictions within the action representation 
system and thereby causes unbounded value increase and 
compulsion, similarly to what has been suggested for drug-
induced DA (Redish,  2004). The anatomically suggested 
ventral-to-dorsal spiral influences (Haber et al., 2000; Joel 
& Weiner, 2000) more precisely refer to the projections of 
more ventral parts of striatum to more dorsal parts of mid-
brain. Therefore, if every DA neuron in the dorsal parts of 
midbrain receives value information from both the ventral 
and dorsal parts of striatum with a fixed ratio as assumed 
in Figure 7(a), positive RPEs generated in the reduced SR 
system can be canceled out by negative RPEs of action val-
ues at the level of inputs to the DA neuron. However, if 
there exist some DA neurons in the dorsal parts of midbrain 
that receive value information only from the ventral parts 
of striatum, such a cancelation cannot occur at the level of 
inputs. Then, if the amplitude of the positive RPE gener-
ated in the reduced SR system is so large, resulting DA 
release from such DA neurons might not be able to be fully 
canceled out by a decrease or pause of DA release from 
surrounding DA neurons given the asymmetry of the posi-
tive and negative phasic responses of DA neurons (Bayer 
& Glimcher, 2005).

Other than the possible effects of the spiraling RPE infor-
mation, positive and negative RPEs themselves could cause 

subjective positive and negative feelings, respectively, given 
the suggestion that subjective momentary happiness of hu-
mans could be explained by reward expectations and RPEs 
(Rutledge et al., 2014).

4.2  |  Strengths of the present work/model

A strength of our model is that it does not assume drug-
induced direct modulations of the DA system but still consid-
ers a key role of DA, and so our model can apply to any kinds 
of substance or nonsubstance reward and potentially explain 
the suggested similar involvements of the DA system in ad-
dictions to substance and nonsubstance rewards. Habitual, 
or even addicted, reward taking can arise not only for “DA-
hijacking” substance but also for natural substance, such as 
food, or nonsubstance, such as gambling, gaming, smart-
phone use, or relation with other persons. Moreover, it has 
been suggested that the DA system is also involved in behav-
ioral addiction to nonsubstance reward (Grant et al., 2010). 
Specifically, there have been suggestions of possible rela-
tions of medicines of Parkinson disease to pathological gam-
bling (Dodd et al., 2005; Voon et al., 2006) and of similar 
changes in the DA system in addiction to substance and non-
substance such as game (Thalemann et  al.,  2007) or inter-
net (Hou et al., 2012). In our model, resistance to temptation 
causes a large positive DA/RPE signal at the rewarded goal 
in the rigid reduced SR system. Crucially, different from the 
conventional DA/RPE response to reward, which disappears 
once the reward becomes predictable, the DA/RPE signal in 
the rigid reduced SR system continues to be generated. It has 
thus a similarity to the drug-induced DA release, providing a 
potential mechanism for the suggested similar involvements 
of the DA system in substance and nonsubstance addictions. 
Previous studies proposed mechanisms for, or applicable 
to, nonsubstance addiction related to state representation 
(Redish et al., 2007), high DA release in the nucleus accum-
bens (Piray et al., 2010), and the complexity of after-effects 
(Ognibene et al., 2019). Our proposed mechanism is distinct 
from, and potentially complementary to, them.

Another, more general strength of the present work lies 
in its message that inaccurate value estimation due to rigid 
(inflexible) low-dimensional state representation, and result-
ing sustained RPEs that could transmit from one system to 
another, can potentially lead to behavioral problems and even 
psychiatric disorders. The SR is a neurally implementable 
way of partially model-based RL, but one of its critical 
drawbacks is policy-dependence (Momennejad et al., 2017; 

F I G U R E  9   Influence of the RPEs generated in the system with individual state representation to the system with individual action 
representation. Configurations are the same as those in Figure 8, except that κ in this figure represents the degree of the effect of the RPE generated 
in the system with individual state representation. (a) Results with the Q-learning-type RPE of action values. (b) Results with the SARSA-type RPE 
of action values [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Piray & Daw,  2019; Russek et  al.,  2017). Dimension re-
duction in state representation in the brain is generally 
suggested (Gershman & Niv, 2010; Niv, 2019), but it is in-
evitably accompanied by the risk of inaccuracy. The hierar-
chical cortico-basal ganglia structure has been suggested to 
have functional significances (Baladron & Hamker,  2020; 
Botvinick et  al.,  2009; Collins & Frank,  2013; Frank & 
Badre, 2012; Haruno & Kawato, 2006), but it could relate to 
drug addiction (Keramati & Gutkin, 2013). The present work 
proposes that a combination of these negative sides can be 
related to behavioral problems in general, and to addiction 
in particular.

4.3  |  Drawbacks/limitations of the present 
work/model

The present model explains why cessation of behavior lead-
ing to certain rewards, for which rigid reduced SR has been 
established, is particularly difficult, but does not explain why 
rigid reduced SR is formed for some rewards but not oth-
ers in the first place. We consider that it can depend on the 
property of reward, duration and frequency of nonresistant 
reward-obtaining, and individuals, but exact mechanisms for 
the formation of rigid reduced SR remains to be addressed. 
Also, although our model generally points to the empiri-
cally suggested similar involvements of the DA system in 
both substance and nonsubstance addiction, the results of 
our simulations do not specifically link to known behavioral 
or physiological results reported for addiction. For this, we 
will discuss possible neuroimaging experiments in the next 
section.

Next, our model critically depends on the assumption 
that the goal-based reduced SR can be formed in humans 
and implemented in the brain, but we could not find any 
direct evidence for them. As for behavioral evidence, we 
will discuss possible experimental validation in the next 
section. Regarding neural implementation, we found po-
tentially supporting findings in the literature. Specifically, 
a finding that the BOLD signal in the ventromedial pre-
frontal cortex and hippocampus was negatively correlated 
with the distance to the goal in a navigation task (Balaguer 
et al., 2016) appears to be in line with such a goal-based 
reduced SR; if those regions engaged predominantly in 
the genuine SR in that task, their overall activity may not 
show a monotonic increase towards the goal. It is conceiv-
able that the genuine SR can be encoded in the hippocam-
pus (Stachenfeld et al., 2017), but the goal-based reduced 
SR can become dominant through intensive training on 
a particular task or through long-standing habitual be-
havior towards a particular goal. Another study (Howard 
et al., 2014) has shown that the BOLD signal in the poste-
rior hippocampus was positively correlated with the path 

distance to the goal (increased as the path became farther) 
during travel periods whereas it was negatively correlated 
with an interaction between the distance and direction to 
the goal (increased as the path became closer and more 
direct) at decision points (and prior studies potentially in 
line with either of these results are cited therein Morgan 
et al., 2011; Sherrill et al., 2013; Spiers & Maguire, 2007; 
Viard et  al.,  2011)). The goal-based reduced SR that we 
assumed can potentially be in line with the activity at deci-
sion points, rather than during travel periods, in that study.

Yet another important limitation of the present work is 
that we modeled the person's resistance to temptation by 
directly setting the probability of “No-Go” choice rather 
than describing the mechanism of action selection (deci-
sion making) of the person who has an intention to quit 
the habitual reward-obtaining. In terms of value-based ac-
tion selection, the Non-Resistant policy in our model is just 
optimal, and the Resistant policy is not, unless large pun-
ishment is introduced. For this issue, we consider that in 
addition to the systems for value learning and value-based 
action selection/decision making, there would also exist 
distinct system(s) for rule learning and rule-based deci-
sion making, presumably including prefrontal (especially 
anterior prefrontal/fronto-polar) cortical circuits (Miller 
& Cohen,  2001; Sakai,  2008; Strange et  al.,  2001). Rule 
can be set both externally (e.g., by law, or by other per-
son) or internally (as a self-control). Rule-based behavior 
could theoretically be also regarded as a sort of value-based 
behavior, driven by punishments (negative values) given 
when breaking the rules or ethical values emerged when 
adhering to the rules but can be more absolute or compul-
sory, and it seems unclear whether such values can also be 
integrated with other values into a common currency for 
decision making. Incorporation of the rule-based system 
into the model is an important future direction.

4.4  |  Possible experimental validation and 
clinical implication

The goal-based reduced SR, the critical assumption of our 
model, can be considered to be an example of reduced SR 
where each state is represented by the discounted future oc-
cupancies of not all the states but only the states with imme-
diate rewards or punishments; such states themselves could 
become specifically represented through salience signals. It 
would be possible to conduct behavioral experiments to ex-
amine whether humans adopt such reduced SR or the genu-
ine SR, somewhat similar to the experiments (Momennejad 
et al., 2017) that compared the reevaluation of reward, tran-
sition, and policy. Specifically, if reduced SR based on the 
states with immediate rewards/punishments is used, adapting 
to changes in reward placement (i.e., in what states reward is 



      |  3787SHIMOMURA et al.

obtained) should be more difficult than adapting to changes 
in reward size. At the neural/brain level, our model predicts 
that distinct patterns of RPEs are generated in the systems 
with the goal-based reduced SR (Figure  3) and individual 
(punctate) state representation (Figure  2), which could be 
reflected in BOLD signals in the striatum where there exist 
rich DA projections. This prediction can potentially be tested 
by fMRI experiments and model-based analyses (Daw, 2011; 
O'Doherty et al., 2007).

From clinical perspectives, it is essential to know whether 
the phenomena described by the present model actually occur 
in people who have a particular difficulty in cessation of long-
standing behavior to obtain reward, and whether the gener-
ated RPEs indeed contribute to the difficulty. A potential way 
is to conduct brain imaging for those people executing a task 
that simulates their daily struggles against reward-obtaining 
behavior, including failures to resist temptation. If it is then 
suggested that the large positive RPE upon goal reaching 
generated in the system with the goal-based reduced SR is an 
important cause of the difficulty, a possible intervention is to 
provide alternative reward (physical, social, or internal) upon 
“No-Go” decisions expecting that the state representation 
will change and approach the one under the Resistant policy.
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