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Abstract

Specialized acrobatic leaping has been recognized as a key adaptive trait tied to the origin and subsequent radiation of
euprimates based on its observed frequency in extant primates and inferred frequency in extinct early euprimates.
Hypothesized skeletal correlates include elongated tarsal elements, which would be expected to aid leaping by allowing for
increased rates and durations of propulsive acceleration at takeoff. Alternatively, authors of a recent study argued that
pronounced distal calcaneal elongation of euprimates (compared to other mammalian taxa) was related primarily to
specialized pedal grasping. Testing for correlations between calcaneal elongation and leaping versus grasping is
complicated by body size differences and associated allometric affects. We re-assess allometric constraints on, and the
functional significance of, calcaneal elongation using phylogenetic comparative methods, and present an evolutionary
hypothesis for the evolution of calcaneal elongation in primates using a Bayesian approach to ancestral state reconstruction
(ASR). Results show that among all primates, logged ratios of distal calcaneal length to total calcaneal length are inversely
correlated with logged body mass proxies derived from the area of the calcaneal facet for the cuboid. Results from
phylogenetic ANOVA on residuals from this allometric line suggest that deviations are explained by degree of leaping
specialization in prosimians, but not anthropoids. Results from ASR suggest that non-allometric increases in calcaneal
elongation began in the primate stem lineage and continued independently in haplorhines and strepsirrhines. Anthropoid
and lorisid lineages show stasis and decreasing elongation, respectively. Initial increases in calcaneal elongation in primate
evolution may be related to either development of hallucal-grasping or a combination of grasping and more specialized
leaping behaviors. As has been previously suggested, subsequent increases in calcaneal elongation are likely adaptations for
more effective acrobatic leaping, highlighting the importance of this behavior in early euprimate evolution.
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Introduction

Extant primates are unusual among mammals in having

relatively large brains, large forward facing eyes with high visual

acuity, and hands and feet that are specialized for grasping [1,2].

Additionaly, many strepsirrhine, tarsiers and certain platyrrhine

primates are also unique among mammals in their ‘‘grasp-leaping’’

locomotion [3]. This arboreal behavior is characterized by the use

of grasping feet to anchor on a horizontal or vertical support while

the hind limbs extend and accelerate the body in a direction that

has some vertical component. As the hind limbs reach full

extension and the support is released, the body motion is ballistic.

Importantly, termination of the leap involves relatively precise

‘‘grasping’’ of the support on landing. Theoretically, such precise

grasping requires quick reflexes and exceptional eye-hand

coordination [4] (Fig. 1). The ‘‘Vertical Clinging and Leaping’’

(VCL) locomotor mode in primates involves preferential use of

‘‘vertical supports’’ and in some cases more acrobatically

specialized leaping styles [5,6], but is otherwise similar to

‘‘grasp-leaping.’’

While key morphological correlates of grasp-leaping are

debated [7], grasp-leaping behaviors are nonetheless often inferred

as having been present in the common ancestor of living primates

[3,8,9], and are regularly implicated as a driving influence in the

early adaptive radiation of euprimates [3,8,9]. If this is correct,

then selection for improvements in leaping performance may

explain the evolution of certain euprimate characteristics, even

those that are not directly related to generating acceleration for a

leap. Even forward facing eyes might have evolved as part of an

adaptive suite that allowed improved rapid and acrobatic

negotiation of an arboreal setting. On the other hand, if leaping

behaviors were not important to the ancestral modern primate, as
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suggested by researchers who have used marsupial analogies to

study primate origins [10,11], then visual features must have

evolved for a biological role unrelated to leaping. A major

alternative idea for the adaptive significance of euprimate features

is the nocturnal visual predation hypothesis [12,13], which has

received mixed support over the years [14–16]. In the most recent

explanation of this hypothesis [17] it is proposed that at least the

unusually specialized features of the visual system and associated

skull features, including a postorbital bar, orbital convergence, and

frontated orbits, arose in response to a selective pressure favouring

the visual detection and stealthy capture of insects at night. This

idea has been supported by comparative data showing that among

extant groups of closely related animals, species that are nocturnal

visual predators have greater orbital convergence [14]. Addition-

ally, vertebrates with the most convergent orbits tend to be

predators (e.g., raptorial birds) [18].

The fossil record provides the only direct evidence to evaluate

whether visual and leaping features arose at the same time in

primate evolution. Fossil stem primates (‘‘plesiadapiforms’’) are a

diverse group [19] that first appear at the beginning of the

Paleogene and reach their greatest diversity prior to the

appearance of any fossils likely to represent crown primates or

‘‘primates of modern aspect’’ (Euprimates [20]). All known

‘‘plesiadapiforms’’ appear to lack certain key features characteristic

of euprimates (e.g., a postorbital bar, orbital convergence, and

flattened nails on the non-hallucal digits) while other euprimate

Figure 1. The biomechanical role of the ankle in leaping with a tarsifulcrumating foot. A, Incremental stages in hind limb extension that
accelerates the center of mass in a largely vertical direction in order to produce inertia that carries the animal through the air after the limbs are fully
extended. The inset shows the relationship of distal segment (DL) of the calcaneus to the rest of the foot: it forms the ‘‘load arm’’ in a class 2 lever
system. The lever arm (the heel) comprises the rest of the calcaneal length (TL). B, Measurements used in this study shown on a left calcaneus.
Abbreviations: CD, cuboid facet depth; CW, cuboid facet width; TL, total proximodistal length; DL, distal segment length. C, Left feet of primates
exhibiting different degrees of leaping specialization scaled to same metatarsus length and aligned at fulcrum of ankle. Taxa that never use leaping
behavior have much shorter tarsal bones as shown on the left. The way in which differential degrees of leaping specialization and body-size interact
to influence and complicate this relationship is debated [7].
doi:10.1371/journal.pone.0067792.g001
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Figure 2. Extant prosimian calcanei exhibit a diversity of sizes and proportions. A, Almost all major prosimian genera are represented at
the same scale. B, The same taxa are represented, scaled to length of the proximal segment and arranged (within familial groups) so that the smallest
members are on the left, while the largest are on the right. This organization helps one visualize qualitatively, the allometric trends plotted in
subsequent figures. Abbreviations: Ac, Arctocebus calabarensis; Al, Avahi laniger; Cma, Cheirogaleus major; Cme, Cheirogaleus medius; Dm,
Daubentonia madagascariensis; Ee, Euoticus elegantulus; Ef, Eulemur fulvus; Em, Eulemur mongoz; Gd, Galagoides demidovii; Gs, Galago senegalensis; Hg,
Hapalemur griseus; Hs, Hapalemur simus; Ii, Indri indri; Lc, Lemur catta; Lm, Lepilemur mustelinus; Lt, Loris tardigradus; Mc, Mirza coquereli; Mg,
Microcebus griseorufus; Nc, Nycticebus coucang; Oc, Otolemur crassicaudatus; Og, Otolemur garnetti; Pp, Perodicticus potto; Pv, Propithecus verreauxi; Vv,
Varecia variegata.
doi:10.1371/journal.pone.0067792.g002
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features are present in at least some ‘‘plesiadapiforms’’ (e.g.,

prehensile proportions of the hands and feet, a mobile forearm,

and a divergent, opposable hallux) [15,16,18]. Though current

perceptions of cranial and postcranial diversity in plesiadapiforms

are tempered knowing that very few skulls or skeletons have been

recovered relative to ‘‘plesiadapiform’’ taxonomic and dental

diversity, the available stem primate fossil record strongly suggests

that postcranial features for grasping and locomotion in a fine-

branch niche preceeded visual and leaping specializations

[15,16,19]. In contrast, even the oldest and most dentally primitive

euprimates known from both cranial and postcranial morphology

(species of Teilhardina) have a postorbital bar and orbital

convergence [21] and have been argued by some authors to

exhibit leaping specializations [5,22,23]. However, because

Teilhardina is still potentially somewhat removed from the

‘‘euprimate ancestor,’’ and because debate remains [7] about

how to interpret leaping behaviors from bones, the fossil record

remains ambiguous as to the timing of acquisition of primate-like

visual specializations relative to postcranial features that may

relate to leaping.

Advances in statistical methods that use data from extant and

fossil taxa in conjunction with a specified phylogenetic tree (or

sample of trees) to estimate morphological and behavioral trait

values in ancestral taxa [24] provide the potential for more

rigorously supported hypotheses regarding the role of leaping in

primate origins. To produce meaningful results such an approach

should maximize inclusion of taxonomic diversity [24]. Dozens of

fossil species known from dental remains give a small glimpse into

ancient euprimate diversity [25–27]. Unfortunately, among

aspects of the skeleton correlated with locomotor behavior, few

are preserved with any degree of comprehensiveness.

Because the form of the tarsals is both relatively well known for

early fossil euprimates and reflects functional attributes of the foot

that vary with behavior [7,28–30], studies focusing on the tarsus

have relatively good potential to help address questions about

locomotion and positional behavior in the early evolution of

primates. While the relationship between calcaneal form and

leaping can be complicated by strong allometric affects [7,31–35],

it has been suggested that among small taxa an elongated distal

segment of the calcaneus reflects proclivity for acrobatic leaping

[29,30]. Extreme calcaneal elongation in small taxa is correlated

with the specialized niche of Vertical Clinging and Leaping (VCL)

[5]. On the other hand, there is not a clear signature of elongation

that signifies leaping when taxa of very different body sizes are

considered: The largest specialized leapers (i.e., extant Indriidae),

have calcanei with absolute degrees of elongation that are virtually

identical to those of small taxa [7,33] (Fig. 2). This clearly equates

to substantially less elongation relative to body mass in these large

taxa. This situation complicates the use of elongation as a proxy

for leaping ability: the absolute length of the calcaneus and its

segments increase with body size among leapers going from

tarsiers and small galagos to large galagos and then decreases

when considering still larger taxa such as Prolemur simus and some

indriids. This has led to the proposition (also supported by sound

biomechanical reasoning) that with increasing body size, the distal

limb segment gives up its role in acceleration production [5,32,33].

However, as noted 30 years ago by Matt Cartmill [12], Lepilemur

and Hapalemur griseus are similar in mass to Otolemur crassicaudatus

and appear to rely on leaping to an even greater degree [5], but

have much less absolute and relative elongation (Fig. 2). Recog-

nition of these phenomena in the literature is also reflected by the

statement of Dagosto et al. [36], that ‘‘no features of the calcaneus

clearly distinguish extant leaper/quadrupeds from VCLs’’ (p.196).

Even in the face of this complexity and related ambiguities,

phenetic similarities are still interpreted by some as reflective of

locomotor equivalence regardless of body size [37].

It has even been suggested that, with the exception of the case of

small-bodied vertical clingers and leapers, there is no relationship

between leaping and calcaneal elongation [7]. Thus, calcaneal

elongation would have evolved almost solely to accommodate the

loss of foot leverage that occurred in the acquisition of a mobile,

grasping-specialized hallucal metatarsal, which shifts the fulcrum

of the distal limb segment from the metatarsal heads to the tarso-

metatarsal joint [29]. A comprehensive allometric analysis of

calcaneal elongation by Moyà-Solà et al. [7] showed that

euprimates have a distal calcaneal segment which, when corrected

for body size differences, is longer than that of most non-primate

mammals. They argued that because this also applies for non-

leaping primates (e.g., lorises, orangutans, howler monkeys),

calcaneal elongation among primates relative to other mammals

is not explained by unique leaping abilities. In addition, lack of a

leaping ‘‘signal’’ in calcaneal distal elongation was further

demonstrated by the finding that leaping taxa such as indriids

do not exhibit a relatively longer distal segment length than more

generalized lemurids. They noted that the only calcaneal form

from which leaping behaviors can be inferred is that in which the

degree of calcaneal elongation matches that of tarsiers and

galagos. Miocene galagids, omomyiforms, and eosimiids were

argued by Moyà-Solà et al. [7] to exhibit no evidence for leaping

proclivity. Based on their analyses, they considered the evidence

for leaping in the early euprimates lacking and concluded that the

grasp-leaping hypothesis for euprimate origins could not be

supported on these grounds. While the current study was in press,

another study was published [38] describing what is possibly the

most basal omomyiform species yet discovered, Archicebus achilles.

The holotype for this new species, IVPP V18618, is a skull and

skeleton more complete than any other available for an omomyi-

form. The combination of features described for this taxon and its

basal position in primate phylogeny could be taken as providing

additional support for Moyà-Solà et al.’s [7] hypothesis. This

partial skeleton was argued to exhibit leaping features in the femur

[38], but to have a calcaneus with a shorter distal segment than in

T. belgica. This could suggest that calcaneal elongation and leaping

demands are decoupled. However, the specimen also already has a

strongly divergent hallux and tarsifulcrumating foot, so it is

unclear what increases in calcaneal elongation in T. belgica would

indicate about improved grasping.

In this study, we re-assess the allometric constraints on, and

functional significance of, calcaneal elongation based on measure-

ments from a new data set of 270 individual specimens

representing 112 species of non-primate euarchontans, stem

primates, all major prosimian genera except Phaner and Allocebus,

and the majority of platyrrhine and catarrhine genera (Tables 1–

2). Our primary analytical tool is regression. To account for

phylogenetic autocorrelation, we use Phylogenetic Generalized

Least Squares (PGLS) for regression and phylogenetic ANOVA.

Finally, we reconstruct the evolution of calcaneal elongation using

a Bayesian approach to ancestral state reconstruction (ASR).

We focus our re-assessment on the following questions: 1) Does

variation in body mass explain variation in relative calcaneal

elongation across primates? 2) Does variation in locomotor

behavior explain variation in relative calcaneal elongation across

primates? 3) Is locomotion predictable from calcaneal elongation,

and if so, in what contexts? 4) What do ancestral state

reconstructions of calcaneal elongation and body mass reveal

about the role of leaping in the origin and early evolution of

primates? In the course of addressing these questions we further

test two specific conclusions of Moyà-Solà et al. [7]. Namely, that

Calcaneal Elongation in Primates
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Table 1. Extant taxon means and standard errors for body mass, distal segment lengths, elongation ratios, and residuals (see
Table 2 for footnote explanations).

Taxon Higher Taxon N Behavior1 est ln(BM)2 SE ln(DL) SE ln(DL/TL)3 SE Res A4 Res B4

Euoticus elegantulus Galagonidae 1 AQ 5.849 – 2.65 – 20.452 – 0.331 0.828

Galago senegalensis Galagonidae 5 VCL/L 5.596 0.022 2.98 0.034 20.324 0.785 0.442 1.221

Galagoides demidoff Galagonidae 3 VCL/L 4.351 0.166 2.69 0.027 20.266 0.806 0.415 1.242

Otolemur crassicaudatus Galagonidae 4 VCL/L 7.322 0.026 3.10 0.013 20.445 0.373 0.438 0.909

Otolemur garnetti Galagonidae 3 VCL/L 6.886 0.018 3.03 0.035 20.437 1.249 0.417 0.948

Loris tardigradus Lorisidae 4 SC/T 5.269 0.075 1.35 0.023 20.836 2.127 20.092 20.328

Nycticebus coucang Lorisidae 2 SC/T 6.146 0.013 1.45 0.016 21.016 1.255 20.213 20.447

Nycticebus javanicus Lorisidae 1 SC/T 6.426 – 1.53 – 20.995 – 20.173 20.437

Arctocebus calabarensis Lorisidae 2 SC/T 5.341 0.011 1.15 0.003 20.945 3.936 20.196 20.546

Perodicticus potto Lorisidae 4 SC/T 6.813 0.08 1.60 0.061 21.004 2.121 20.155 20.464

Hapalemur griseus Lemuridae 4 VCL/L 6.67 0.1 2.11 0.037 20.769 0.723 0.070 0.082

Hapalemur simus Lemuridae 9 VCL/L 7.893 0.033 2.36 0.018 20.85 1.008 0.072 0.027

Avahi laniger Indriidae 1 VCL/L 7.193 – 2.05 – 20.93 – 20.055 20.109

Propithecus verreauxi Indriidae 4 VCL/L 7.752 0.035 2.29 0.008 20.91 1.217 0.003 20.008

Indri indri Indriidae 3 VCL/L 8.655 0.038 2.68 0.037 20.825 0.242 0.149 0.156

Varecia variegata Lemuridae 3 AQ 8.254 0.083 2.43 0.015 20.899 0.84 0.048 0.006

Eulemur fulvus ssp. Lemuridae 6 VCL/L 7.511 0.045 2.31 0.015 20.807 0.981 0.089 0.072

Lemur catta Lemuridae 3 AQ 7.683 0.01 2.34 0.018 20.832 1.393 0.076 0.059

Lepilemur mustelinus Megaladapidae 5 VCL/L 6.593 0.05 2.20 0.026 20.725 0.94 0.109 0.192

Daubentonia madagascariensis Daubentoniidae 1 AQ 7.874 – 2.26 – 20.893 – 0.028 20.069

Cheirogaleus major Cheirogaleiidae 1 AQ 5.791 – 1.92 – 20.747 – 0.032 0.112

Cheirogaleus medius Cheirogaleiidae 4 AQ 5.424 0.07 1.64 0.059 20.711 0.962 0.043 20.076

Microcebus griseorufus Cheirogaleiidae 4 VCL/L 4.117 0.045 1.81 0.032 20.477 1.213 0.188 0.421

Mirza coquereli Cheirogaleiidae 2 VCL/L 5.641 0.03 2.09 0.001 20.607 2.056 0.162 0.320

Tarsius bancanus Tarsiidae 4 VCL/L 4.906 0.034 3.00 0.033 20.256 0.768 0.463 1.413

Tarsius tarsier Tarsiidae 3 VCL/L 5.094 0.034 2.97 0.013 20.281 0.6 0.451 1.336

Tarsius syrichta Tarsiidae 3 VCL/L 5.001 0.032 2.90 0.018 20.289 0.261 0.437 1.290

Alouatta caraya Atelidae 3 SC/T 8.707 0.175 2.38 0.036 21.113 1.305 20.135 20.157

Aotus azarae Cebidae 1 AQ 6.937 – 2.04 – 20.905 – 20.048 20.055

Aotus infulatus Cebidae 1 AQ 7.239 – 1.97 – 20.872 – 0.006 20.200

Aotus nancymaae Cebidae 1 AQ 7.255 – 1.99 – 20.924 – 20.045 20.184

Ateles belzebuth Atelidae 1 SC/T/SUS 9.222 – 2.68 0.000 20.877 – 0.136 0.014

Ateles fusciceps Atelidae 1 SC/T/SUS 9.463 – 2.61 – 20.947 – 0.082 20.116

Ateles geoffroyi Atelidae 1 SC/T/SUS 9.588 – 2.66 – 20.906 – 0.131 20.097

Lagothrix lagotricha Atelidae 2 AQ 8.604 0.005 2.47 0.006 20.943 1.789 0.028 20.041

Callicebus moloch Pithecidae 2 AQ 7.242 0.023 1.96 0.063 20.871 1.588 0.007 20.211

Pithecia pithecia Pithecidae 2 VCL/L 8.053 0.234 2.10 0.007 20.981 0.609 20.048 20.274

Cacajao calvus Pithecidae 3 AQ 8.493 0.018 2.52 0.012 20.858 2.917 0.105 0.036

Chiropotes satanas Pithecidae 3 AQ 8.322 0.09 2.31 0.026 20.929 0.79 0.022 20.131

Leontopithecus rosalia Callitrichidae 1 AQ 6.333 0 1.80 – 20.887 0 20.071 20.144

Callimico goeldii Callitrichidae 2 VCL/L 6.627 0.077 1.71 0.066 20.892 4.461 20.056 20.307

Callithrix jacchus Callitrichidae 1 AQ 5.703 – 1.51 – 20.864 – 20.091 20.276

Callithrix pygmaea Callitrichidae 2 VCL/L 4.733 0.137 1.10 0.013 20.853 0.197 20.146 20.444

Saguinus midas Callitrichidae 1 AQ 6.837 – 1.89 – 20.847 – 0.003 20.180

Saguinus mystax Callitrichidae 2 AQ 5.897 0.008 1.59 0.018 20.84 1.22 20.054 20.245

Saimiri boliviensis Cebidae 2 AQ 6.899 0.051 1.95 0.021 20.832 1.525 0.023 20.135

Saimiri sciureus Cebidae 1 AQ 6.79 – 1.95 – 20.827 – 0.020 20.108

Cebus apella Cebidae 3 AQ 8.039 0.037 2.32 0.038 20.848 3.108 0.084 20.050
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1) calcaneal elongation residuals do not coincide with degree of

leaping in euprimates and 2) calcaneal elongation can be

explained by the acquisition of a grasping foot. For the first issue,

our use of phylogenetic comparative methods allows for an

evaluation of the possibility that phylogenetic covariance and clade

shifts (as defined by Nunn [24]) in calcaneal elongation might have

obscured behavioral associations with leaping when looking at

primates as a whole, an issue not addressed by Moyà-Solà et al.

[7]. The second issue is also tested through novel application of

phylogenetic comparative methods, with an emphasis on compar-

ing basal euprimates to their closest relatives. The fossil record of

stem primates provides a direct test for assessing whether changes

in calcaneal elongation correspond to the acquisition of a grasping

foot [19]. If a grasping foot explains increases in calcaneal

elongation, then increases in hallucal specialization in stem

primates should be accompanied by acquisition of euprimate-like

distal calcaneal segment length. Finally, we evaluate the signifi-

cance of new morphology presented by the basal omomyiform,

Archicebus achilles [38] in the context of our analyses.

Instead of comparing absolute calcaneal measures to species

mean mass from the literature [7], we take an approach that is

biomechanically more pertinent, easier to interpret, and provides

greater sample sizes for analysis. We plot ratios of calcaneal distal

segment length (DL) (i.e., distal to the crurotarsal, or ‘‘upper

ankle’’ joint) to total calcaneal length (TL) on body mass estimates

(BM) generated from the length and width of the calcaneal cuboid

facet of the same calcaneal specimen (see Materials and
Methods). The defined ratio is equivalent to a load arm-lever

arm ratio. This metric therefore summarizes the functionally

relevant components to leaping. When this ratio is relatively high,

accelerations for a given rate of contraction by the plantar flexors

will be high (as needed by small-bodied leapers). When it is low,

mechanical advantage will be high (as needed by large-bodied

leapers) and acceleration will be lower [31]. Our analyses of new

fossils of early euprimates, together with a comprehensive sample

of extant primates, non-primate euarchontans, and fossil-stem

primates, provide a view of the fundamental allometry of this

system and allow for a more definitive, cohesive interpretation of

the functional significance of variation in calcaneal elongation in

early euprimates. In addition, these analyses will lead to a

reconstruction of the variation that occurred during the transition

up to, and through, the early evolution of euprimates.

In the sections that follow, we begin by demonstrating a strong

correlation between body mass and measurements representing

the area of the calcaneocuboid facet in extant primates; the area of

this facet also accurately predicts mass of extant non-primate

euarchontans indicating its general applicability to stem primates

as well. Following this, the remainder of our investigation into

calcaneal allometry builds out from patterns observed among five

species of the long-ranging (,2 million years) fossil genus Cantius,

Table 1. Cont.

Taxon Higher Taxon N Behavior1 est ln(BM)2 SE ln(DL) SE ln(DL/TL)3 SE Res A4 Res B4

Allenopithecus nigroviridis Cercopithecinae 1 AQ 8.307 – 2.41 – 20.958 – 20.008 20.027

Nasalis larvatus Colobinae 3 SC/T 9.734 0.057 2.75 0.026 21.014 1.057 0.033 20.044

Erythrocebus patas Cercopithecinae 1 SC/T 8.581 – 2.48 – 20.985 – 20.016 20.026

Lophocebus albigena Cercopithecinae 1 AQ 8.984 0 2.55 – 21.029 0 20.033 20.056

Theropithecus gelada Cercopithecinae 2 SC/T 9.455 0.146 2.61 0.089 21.123 2.503 20.095 20.114

Trachypithecus cristata Colobinae 1 VCL/L 8.635 – 2.21 – 20.965 – 0.008 20.309

Trachypithecus obscura Colobinae 1 VCL/L 8.645 – 2.44 – 20.967 – 0.006 20.082

Papio ursinus Cercopithecinae 1 SC/T 10.066 – 2.74 – 21.15 – 20.080 20.137

Presbytis melalophos Colobinae 1 AQ 8.576 – 2.51 – 20.912 – 0.057 0.006

Procolobus badius Colobinae 2 VCL/L 8.853 0.169 2.55 0.144 20.917 3.558 0.071 20.024

Pygathrix nemaeus Colobinae 1 VCL/L 9.436 – 2.74 – 20.912 – 0.115 0.021

Colobus guereza Colobinae 1 VCL/L 9.425 – 2.50 – 21.127 2 20.101 20.217

Chlorocebus cynosuros Cercopithecinae 1 AQ 8.648 – 2.49 – 20.896 – 0.078 20.032

Chlorocebus aethiops Cercopithecinae 2 SC/T 8.322 0.037 2.33 0.056 20.993 5.141 20.042 20.111

Macaca fascicularis Cercopithecinae 3 SC/T 8.331 0.052 2.27 0.059 20.987 5.802 20.035 20.173

Macaca nigra Cercopithecinae 1 SC/T 8.677 – 2.49 – 20.928 – 0.048 20.039

Pongo pygmaeus Hominidae 3 SC/T/SUS 10.944 0.143 2.74 0.027 21.262 6.058 20.132 20.356

Gorilla gorilla Hominidae 3 SC/T 11.618 0.151 2.87 0.109 21.512 2.417 20.336 20.395

Pan troglodytes troglodytes Hominidae 1 SC/T 10.954 2 2.87 – 21.201 – 20.071 20.229

Pan troglodytes verus Hominidae 2 SC/T 10.761 0.057 2.74 0.028 21.278 7.971 20.161 20.311

Hoolock hoolock Hylobatidae 1 SC/T/SUS 9.305 – 2.08 – 20.961 – 0.057 20.607

Hylobates lar Hylobatidae 1 SC/T/SUS 9.017 – 2.13 – 21.192 – 20.193 20.485

Symphalangus syndactylus Hylobatidae 1 SC/T/SUS 8.536 – 2.16 – 21.068 – 20.102 20.334

Ptilocercus lowii Scandentia 3 NA 3.658 0.037 0.64 0.031 20.974 1.103 20.340 20.635

Tupaia sp. Scandentia 3 NA 4.883 0.046 1.18 0.205 20.954 1.34 20.236 20.401

Cynocephalus volans Dermoptera 2 NA 6.984 0.169 1.68 0.885 20.95 0.333 20.090 20.426

doi:10.1371/journal.pone.0067792.t001
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which is thought to represent no more than two anagenetic

lineages of notharctine primates [39]. A previous study of Cantius

calcanei [40] established relative stasis in calcaneal shape

combined with significant gradual increases in absolute size

through time. The strength of using these fossil lineages as a

starting point in our evaluation of the effects of body size variation

on calcaneal morphology is that it 1) allows investigation of

morphology across a body size range beyond what can be

observed within an extant species, 2) eliminates the confounding

factor of other morphological differences that might represent

Table 2. Fossil taxon means and standard errors for body mass, distal segment lengths, elongation ratios, and residuals.

Taxon Higher Taxon N Behavior1 est ln(BM)2 SE ln(DL) SE ln(DL/TL)3 SE Res A4 Res B4

Cantius mckennai Notharctinae 3 NA 6.472 0.129 2.10 0.039 20.849 1.155 20.023 0.122

Cantius abditus Notharctinae 6 NA 7.05 0.1 2.25 0.016 20.889 0.945 20.024 0.127

Cantius feretutus Notharctinae 2 NA 6.658 0.056 2.08 0.022 20.888 1.214 20.050 0.055

Cantius trigonodus Notharctinae 4 NA 6.714 0.162 2.21 0.022 20.846 1.962 20.004 0.171

Cantius ralstoni Notharctinae 1 NA 6.12 – 1.98 0.004 20.789 – 0.013 0.090

Notharctus sp. Notharctinae 9 NA 7.743 0.093 2.29 0.016 20.894 1.106 0.018 20.006

Smilodectes gracilis Notharctinae 2 NA 7.824 0.071 2.30 0.018 20.918 1.357 0.000 20.016

Anchomomys frontanyensis Cercamoniinae 2 NA 4.74 0.046 1.68 0.030 20.662 1.825 0.046 0.135

Adapis parisiensis Adapinae 6 NA 6.972 0.035 1.61 0.045 21.241 1.483 20.381 20.493

Adapis sp. Adapinae 1 NA 7.71 – 1.98 – 21.119 – 20.209 20.308

Leptadapis magnus Adapinae 11 NA 8.768 0.065 2.32 0.026 21.186 2.197 20.204 20.232

Asiadapis cambayensis Asiadapinae 1 NA 5.83 – 1.45 – 20.939 – 20.157 20.368

Marcgodinotius indicus Asiadapinae 5 NA 4.786 0.082 1.13 0.028 20.869 1.506 20.158 20.427

Teilhardina belgica Omomyiformes 4 NA 3.818 0.029 1.28 0.034 20.643 0.941 0.002 20.035

Absarokius sp. Omomyiformes 1 NA 4.52 – 1.73 – 20.611 – 0.082 0.240

Tetonius homunculus Omomyiformes 1 NA 4.403 – 1.58 – 20.685 – 0.000 0.119

Arapahovius sp. Omomyiformes 1 NA 4.095 – 1.60 – 20.524 – 0.140 0.216

Washakius insignis Omomyiformes 1 NA 4.862 – 1.72 – 20.626 – 0.090 0.144

Shoshonius cooperi Omomyiformes 1 NA 4.62 – 1.70 – 20.619 – 0.081 0.185

Omomys carteri Omomyiformes 5 NA 5.833 0.051 2.05 0.028 20.641 0.843 0.141 0.232

Ourayia uintensis Omomyiformes 1 NA 7.065 – 2.38 – 20.722 – 0.144 0.254

Hemiacodon gracilis Omomyiformes 1 NA 6.079 – 2.03 – 20.671 – 0.128 0.150

Necrolemur antiquus Omomyiformes 1 NA 5.559 – 2.57 – 20.404 – 0.360 0.820

Komba robustus Lorisiformes 2 NA 5.691 0.004 1.97 – 20.605 4.829 0.167 0.187

Eosimias sinensis Eosimiidae 3 NA 4.45 0.249 1.30 0.087 20.741 2.409 20.053 20.173

Parapithecidae var. Parapithecidae 5 NA 6.526 0.202 2.06 0.057 20.961 2.524 20.132 0.068

Proteopithecus sylviae ?Parapithecidae 1 NA 5.641 – 1.70 – 20.825 – 20.056 20.071

Mesopropithecus dolichobrachion Indrioidea 1 SC/T/SUS 8.046 – 2.49 0.009 21.182 – 20.249 0.118

Paleopropithecus sp. Indrioidea 3 SUS 9.254 0.095 2.04 – 21.510 7.428 20.495 20.634

Babakotia radioflai Indrioidea 3 SUS 8.622 0.132 1.79 0.099 20.854 1.459 0.118 20.726

Archaeolemur.sp. Indrioidea 5 SC/T 9.628 0.011 2.20 0.000 21.120 1.188 20.080 20.567

Pachylemur insignis Lemuridae 1 SC/T 9.043 – 2.50 0.017 21.234 – 20.234 20.121

Megaladapis.sp. Megaladapidae 3 VC 10.473 0.180 2.88 0.051 21.067 3.987 0.031 20.099

Plesiadapis cookei Plesiadapidae 1 NA 7.683 – 1.72 – 21.156 – 20.248 20.561

Nannodectes gidleyi Plesiadapidae 1 NA 5.9 – 1.12 – 21.165 – 20.378 20.715

Carpolestes simpsoni Carpolestidae 1 NA 5.149 – 0.97 – 20.926 – 20.190 20.678

Dryomomys szalayi Micromomyidae 1 NA 2.359 – 20.19 – 21.146 – 20.600 21.140

Phenacolemur simonsi Paromomyidae 1 NA 4.96 – 0.88 – 21.103 – 20.380 20.720

1Behavior codes based on the literature (see methods): Abbreviations: VCL, vertical clinging & leaping; L, specialized/frequent leaper and/or grasp-leaper; AQ, arboreal
quadruped with unspecialized/infrequent leaping; SC, slow climber (virtually no leaping); T, terrestrial; SUS, suspensory; NA, not applicable (extinct taxon). SC/T/SUS,
taxon is characterized by one or more of the three indicated categories.
2Natural log of body mass (BM) estimated from cuboid facet size using the following equation: ln[BM] = 1.3274*ln[CW*CD]+3.0238 (see Table S1 in File S1 for data).
3Natural log of the ratio of calcaneal distal length (DL) to calcaneal total length (TL).
4Res, Residual Elongation from lines calculated in caper using ‘‘All Euprimates’’ with n = 100 species (average from trees 1–4) (Fig. 8)]. Res A: ln[DL/TL] = 20.068(SE
60.011)*ln[BM]+ 20.39(SE 60.08); Res B (based on regression of absolute distal calcaneal length versus body mass): ln[DL] = 0.25(SE 60.022)*ln[BM]+0.36(SE 60.17).
Other abbreviations: est, estimate; ln, natural logarithm; n, sample size; SE = standard error.
doi:10.1371/journal.pone.0067792.t002

Calcaneal Elongation in Primates

PLOS ONE | www.plosone.org 7 July 2013 | Volume 8 | Issue 7 | e67792



selection for significantly different locomotor styles (typical when

comparing different species not representing different points along

an evolving lineage), and 3) allows an analysis of taxa separated

evolutionarily by much less time than most extant sister taxa,

which appear to have diverged at least several million years ago in

most cases [41].

Materials and Methods

Sample
We measured the calcaneus of 73 extant species (individual

n = 168) and 38 fossil species (individual n = 102) euarchontan

species. Included is UF 252980, a newly discovered specimen that

is determined to be among the oldest and most complete known

for C. ralstoni (see Results). To our knowledge, for the measure-

ments of interest (CW, DC, DL, and TL: see below), our sample is

the largest ever analyzed for the euprimates Cantius (five species;

n = 16) and Notharctus and Smilodectes (two species; n = 11). Other

fossil euprimate taxa include omomyiforms (ten species; n = 17),

asiadapines (two species; n = 6), adapines (three species; n = 18),

Anchomomys frontanyensis (n = 2), Komba robustus (n = 2), parapithecids

(two species; n = 6), and eosimiids and/or ‘‘protoanthropoids’’

(n = 5). Our extant sample includes lemuriforms (14 species;

n = 50), lorisiforms (ten species; n = 29), Tarsius (three species;

n = 10), platyrrhines (21 species; n = 36), cercopithecoids (16

species; n = 23), and hominoids (7 species; n = 12). A sample of

extant non-primate euarchontans includes Ptilocercus lowii (n = 3),

Tupaia sp. (n = 3), and Cynocephalus volans (n = 2). The sample of

fossil non-euprimate euarchontans includes plesiadapids (two

species; n = 2), Dryomomys szalayi (n = 1), Phenacolemur simonsi

(n = 1), and Carpolestes simpsoni (n = 1). See Tables 1–2 for summary

of sample. See Table S1 in File S1 for all data.

Fossil Specimens
As per the standards of PLoS ONE, we provide a list of fossil

specimens used in this study and indicate individuals and/or

institutions that granted permission for their study parenthetically

in this list. As well, where relevant, we indicate permit numbers.

Furthermore, we affirm that all necessary permits were obtained

for the described study, which complied with all relevant

regulations. Institutional abbreviations are found in the next

section. All fossil specimens and extant specimens can be found

listed with measurements and other details in Table S1 in File S1.

Specimens used in this study include the following: UM 79150

Cantius ralstoni, UM ‘‘SLC VC Msc6’’ Cantius ralstoni, UM 98604

Omomys carteri, UM 87990 Plesiadapis cookei, UM 101963 Carpolestes

simpsoni, UM 41870 Dryomomys szalayi (permission to study from P.

Gingerich); UF 252980 Cantius ralstoni [collected under Bureau of

Land Management permits to JIB (PA04-WY-113, PA10-WY-

185)]; USGS 5897 Cantius mckennai, USGS 25029A Cantius

mckennai, USGS 25029B Cantius mckennai, USGS 6769 Cantius

trigonodus, USGS 6765 Cantius trigonodus, USGS 21829 Cantius

trigonodus, USGS 21767 Cantius trigonodus, USGS 21765 Cantius

trigonodus, USGS 21776 Cantius frugivorus, USGS 21828 Cantius

frugivorus, USGS 6792 Cantius frugivorus, USGS 21774 Cantius

abditus, USGS 21775 Cantius abditus, USGS 21827 Cantius abditus,

USGS 21825 Cantius abditus, USGS 21771 Cantius abditus, USGS

6783 Cantius abditus (permission to study from K. Rose and

USNM); AMNH 16852 Cantius trigonodus, AMNH 1727 Notharctus

sp., AMNH 131956 Notharctus sp., AMNH 131955 Notharctus sp.,

AMNH 55061 Notharctus sp., AMNH 11474 Notharctus sp., AMNH

13766 Notharctus sp., AMNH 131945 Notharctus sp., AMNH 11478

Notharctus sp., AMNH 129382 Notharctus sp., AMNH 131774

Smilodectes sp., AMNH 131763 Smilodectes sp., AMNH 10016 Adapis

parisiensis, AMNH 88820 Tetonius cf. homunculus, AMNH 88821

Tetonius cf. homunculus, AMNH 29164 cf. Omomys, AMNH 88824

Washakius insignis, AMNH 12613 Hemiacodon gracilis, AMNH 17379

Nannodectes gidleyi (permission to study from J. Meng); GU 709

Marcgodinotius indicus, GU 751 Marcgodinotius indicus, GU 1644

Marcgodinotius indicus, GU 1643 Marcgodinotius indicus, GU 710

Marcgodinotius indicus, GU 760 Asiadapis cambayensis (permission to

study from K. Rose); NMB QE 644 Adapis parisiensis, NMB QE

741 Adapis parisiensis, NMB QE 779 Adapis parisiensis, NMB QF 558

Adapis parisiensis, NMB QH 640 Adapis parisiensis, NMB QE 530

Adapis sp., NMB QW 1676 Leptadapis magnus, NMB QE 604

Leptadapis magnus, NMB QE 830 Leptadapis magnus, NMB QE 920

Leptadapis magnus, NMB QF 421 Leptadapis magnus (permission to

study from L. Costeur); ACQ 265 Leptadapis magnus, ACQ 266

Leptadapis magnus, ACQ 267 Leptadapis magnus, ACQ 268 Leptadapis

magnus, PQ 1746 Leptadapis magnus, PQ 1747 Leptadapis magnus

(permission to study from M. Godinot); IPS 7748 Anchomomys

frontanyensis, IPS 7769 Anchomomys frontanyensis (measurements taken

from [24]); IRSNB M 1247 Teilhardina belgica, IRSNB M 1236

Teilhardina belgica, IRSNB M 1237 Teilhardina belgica, IRSNB

16786-03 Teilhardina belgica (permission to study from T. Smith);

UCM 67850 Arapahovius gazini, UCM 67907 Absarokius sp., UCM

67679 Omomys carteri, UCM 68745 Omomys carteri, UCM 69065

Omomys carteri, UCM 67678 Omomys carteri (permission to study

from H. Covert); CM 69765 Shoshonius cooperi, IVPP 12313

Eosimias, IVPP 12280 Eosimias, IVPP 11851 eosimiid, IVPP 11847

eosimiid, IVPP 11848 eosimiid (permission to study from K.C.

Beard); SDNH 4020-60933 Ourayia uintensis (permission to study

from R. Dunn); PMZ A/Z 637 Necrolemur zitteli (permission to

study from A. Rosenberger via P. Schmid); KNM-SO 1364 Komba

robustus (measurements from cast held by E. Seiffert); DPC 10926a

Prolemur simus, DPC 10926b Prolemur simus, DPC 10926c Prolemur

simus, DPC 10975a Prolemur simus, DPC 6818 Prolemur simus, DPC

6652a Prolemur simus, DPC 6652c Prolemur simus, DPC 10988a

Prolemur simus, DPC 9925 Prolemur simus, DPC 11843-B cf. Varecia

variegata, DPC 10975b cf. Indri indri, DPC 24776 Proteopithecus

sylviae, DPC 8810 Parapithecidae (?Apidium), DPC 15679 Para-

pithecidae, DPC 2381 Parapithecidae, DPC 20576 Parapitheci-

dae, DPC 17214A(L&R) Paleopropithecus cf. ingens, DPC 17164

Paleopropithecus sp., DPC 11824 (L&R) Babakotia radofilai, DPC

11818 Babakotia radofilai, DPC 6833 Mesopropithecus dolichobrachion,

DPC 11822 Pachylemur insignis, DPC 9106 (L&R) Archaeolemur cf.

edwardsi, DPC 12879 (L&R) Archaeolemur sp., DPC 18740

Archaeolemur majori, DPC 18936 Megaladapis cf. madagascariensis,

DPC 13733 Megaladapis madagascariensis, DPC 9089 Megaladapis cf.

madagascariensis/grandidieri (permission to study from G. Gunnell);

USNM 442240 Paromomyidae sp. indet.

Institutional Abbreviations
AMNH, American Museum of Natural History, New York,

NY, USA; CGM, Egyptian Geological Museum, Cairo, Egypt;

DPC, Duke Lemur Center Division of Fossil Primates, Durham,

NC, USA; CM, Carnegie Museum of Natural History, Pittsburgh,

PA, USA; GU, H.N.B Garhwal University, Srinagar, Uttarak-

hand, India; IPS, Institut de Paleontologia de Sabadell ( = Institut

Català de Paleontologia Miquel Crusafont), Spain; IRSNB,

Institut Royal des Sciences Naturelles del Belgique, Brussels,

Belgium; IVPP, Institute of Vertebrate Paleontology and Paleo-

anthropology, Chines Academy of Sciences, Beijing, China;

KNM, Kenya National Museum, Nairobi, Kenya; MCZ, Museum

of Comparative Zoology, Harvard University, Cambridge, MA,

USA; MNHN, Muséum National d’Histoire Naturelle, Paris,

France; NMB, Naturhistoisches Museum Basel, Basel, Switzer-

land; NMNH, Smithsonian Institution National Museum of
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Natural History, Washington, D.C., USA; NYCEP, New York

Consortium in Evolutionary Primatology, New York, NY, USA;

PMZ, Paleontology Museum of the University of Zurich, Zurich,

Switzerland; SBU, Stony Brook University, Stony Brook, NY,

USA; SDNHM, San Diego Natural History Museum, San Diego,

CA, USA; UCM, University of Colorado Museum of Natural

History, Boulder, CO, USA; UF, University of Florida, Florida

Museum of Natural History, Gainesville, FL, USA; UM,

University of Michigan, Ann Arbor, MI, USA; USGS, U.S.

Geological Survey, Denver, CO, USA; UNSM, University of

Nebraska Science Museum, Lincoln, NB, USA; USNM, United

States National Museum, Smithsonian Institute, Washington DC,

USA; RS, Randall Susman personal collection.

Analysis
Generation of digital sample. All measurements were

taken on 3D digital surface models. These were created by

various scanning modalities. Most specimens were scanned using

one of five instruments: at SBU, two different ScancoMedical

brand machines were used (VivaCT 75, mCT40); at the AMNH

Microscopy and Imaging Facility, a Phoenix brand v/tome/x s240

was used; and for specimens of Nasalis, Gorilla, Pan, and Pongo a GE

eXplore Locus SP machine was used at the Ohio University mCT

Facility. Some gorillas and a couple other large species were

scanned with GE Medical CT scanner. A few specimen scans were

generated with Breuckmann Structured light scanner provided to

the New York Consortium in Evolutionary Primatology by

funding of the National Science Foundation. Finally, several

specimens were not scanned but measured manually with calipers

(the measurements are quite basic: Fig. 1B) Specimens were

mounted in foam or packed in cotton to prevent movement while

scanning. Most specimens were scanned at a resolution of 39

microns or less. The highest resolutions used were on the order of

3–5 microns for the very smallest fossil specimens. The scanning

resolution was usually high enough to result in an initial surface

with 1–5 million faces, but all specimens were down-sampled to

between 300,000 and 500,000 faces after fitting an initial surface

to the data. See appendix for the original scan resolution of each

specimen based on a microCT data set.

Measurements and Standard Regressions. In most re-

gards, our approach is traditional: we measure total length (TL)

and distal segment length (DL) of the calcaneus [28,33,40]

(Fig. 1B). Moyà-Solà et al. [7] used a slightly different approach,

and split the anterior (distal) and posterior (proximal) halves of the

calcaneus at the midpoint of the ectal facet. Unless selection acts

differently on either side of the proximodistal midpoint of ectal

facet (i.e., to stretch or compress each half in order to effect

different degrees of calcaneal distal elongation), the patterns

generated by their method, versus more standard methods should

be equivalent. In addition, illustrations in Hall-Craggs [42] show

the center of rotation of the astragalotibial joint to be anteriorly

adjacent to the ectal facet. Regardless, we think the measurement

landmark on the ectal facet used is of minor concern relative to the

concern that the particular landmark of choice can be determined

repeatably: i.e., the distal boundary of the ectal facet used here is

very easy to repeatably locate in almost all included taxa. Instead

of then using log-transformed raw data in our analyses, as in

Moyà-Solà et al. [7], we calculated elongation ratios as described

in the introduction: Calcaneal Elongation = ln(DL/TL).

Regardless of the variable of choice (raw measures or ratios),

assessing allometric trends in fossil primates has been hindered

previously by lack of body mass (BM) information on isolated

calcanei (Moyà-Solà et al. [7] use species mean body mass and

mean calcaneal segment lengths). We have generated a regression

to estimate body mass based on cuboid facet area as represented

by the product of the maximum mediolateral width (cuboid facet

width: CW) and maximum dorsoplantar depth (cuboid facet

depth: CD) of this facet from a taxonomically comprehensive

sample of primates (Fig. 2B), which allows estimation of body mass

for any calcaneus with a largely intact cuboid facet. The sample for

this regression includes 129 individuals from all major clades (see

Table S1 in File S1). Body mass data were obtained mainly from

Smith and Jungers [43] with some data coming from Primates in

Perspective [44] and Walker’s Mammals of the World [45]. Given a

strong correlation between body mass and the calcaneal cuboid

facet area one might question the wisdom of using mass estimates

derived from measured variables instead of simply using the

measured variables themselves. To explain our reasoning some

reporting of results is necessary up front.

The equation derived from the linear relationship between

logged body mass and logged cuboid facet area is the following:

ln(BM) = 1.3274*ln(CW*CD)+3.0238, r2 = 0.98. The obtained

slope of 1.3274 of the regression and its confidence interval

(95% CI: 1.29–1.36) excludes the value 1.5, which is the

expectation for an isometric relationship between area and

volume. Therefore, regressions of cuboid facet area (CW*CD)

and calcaneal elongation directly would not be accurate repre-

sentations of mass-related scaling of calcaneal elongation despite

an excellent correlation between body mass and the area of the

calcaneal cuboid facet. We therefore are obliged to use body mass

estimates, rather than CW*CD as a covariate for calcaneal

elongation. These estimates were used without Quasi-Maximum

Likelihood Estimate (QMLE) correction [46]. We decided not to

use the QMLE after comparing slopes and intercepts that resulted

using both corrected and uncorrected data. Slopes were always

either identical or the difference between slope estimates was never

more than 0.5% (i.e., one half of one percent) of the standard error

of the slope estimates. The difference between intercept estimates,

likewise, was never more 50% of the standard error of the

estimates (i.e., well within 95% confidence limits). Thus we found

no reason to increase the number of estimated parameters by

adding a QMLE correction. In Table S1 in File S1, we report anti-

logged transformations of body mass estimates used in these

analyses for individual specimens; in this case a QMLE correction

is applied to give the reader an accurate sense of the estimates.

One might also worry about the phylogenetic specificity of this

relationship. However, subdividing the sample into ‘‘prosimian’’

and anthropoid groups reveals no significant changes in slope or

intercept (‘‘prosimians’’ [n = 73, slope 95% C.I. = 1.299–1.395;

intercept 95% C.I. = 2.875–3.159], anthropoids [n = 56, slope

95% C.I. = 1.320–1.435; intercept 95% C.I. = 2.541–3.015]).

Thus, the taxonomically combined regression can be safely

applied to any primate without having major concern about

how its phylogenetic relationships might bias body mass estimates

of the regression.

Regressions of calcaneal elongation on estimated body mass

were also run as ordinary least squares in the program PAST. It

could be argued that reduced major axis is a more appropriate

method for estimating relationships between variables analyzed

here [47], since we are, at this point, modeling a relationship

between two variables, instead of predicting one from the other.

Nevertheless, we have two important reasons for using least

squares in this study: 1) when assessing allometry using a ratio of

two linear measurements (as we have done) the null hypothesis

(isometry) is a slope of zero and/or no significant relationship

between body mass and the ratio of interest. Therefore, when

using ratios against body mass, least squares is the most

conservative approach for testing for departures from isometry
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as it tends to underestimate the slope of a line when the correlation

is low. OLS cannot necessarily be considered a conservative

approach when using absolute measures against body mass: to

demonstrate allometry between mass and another measurement it

must be shown that the slope of the relationship is significantly

different from what is predicted for isometric scaling. A slope of

zero, or the lack of a significant relationship, actually implies

allometry when regressing an absolute measure on body mass.

Furthermore, for a positively allometric relationship, a poor

correlation could cause the slope to drop enough to mimic

isometry or negative allometry. This situation cannot result when

using least squares to regress body mass against a ratio – poor

correlations bring the slope towards zero (suggesting isometry)

whether the true relationship is positive or negative allometry.

Secondly, and more pragmatically relative to the design of our

study, there is no well-tested code for phylogenetic RMA currently

available.

Phylogenetic Methods. Phylogenetic statistical methods use

the pattern of connectivity and branch lengths in a phylogenetic

tree to assess the presence of phylogenetic correlation of values in

test variables, and to adjust standard error estimates on statistical

tests to account for violation of the typical assumption in

parametric tests that data points are metrically independent of

each other.

It is intuitive and well-demonstrated [24] that different patterns

of connectivity and the branch lengths of the phylogenetic distance

matrix can result in different ‘‘phylogenetically adjusted’’ patterns.

Nevertheless, it is generally acknowledged from simulation studies

[24] that even when there are errors in the phylogeny, the results

are more accurate than when assuming a ‘‘star phylogeny’’ ( = no

phylogeny). In this study we utilize the ‘‘Phylogenetic Generalized

Least Squares’’ (PGLS) [48] approach to incorporate phylogenetic

information. We use this for three different specific analyses: 1)

evaluation of trait correlation, 2) ANOVA on calcaneal elongation

and distal segment length residuals from a phylogenetically-

adjusted regression line, and 3) ancestral state reconstruction

(ASR). The first two analyses were run using the caper [72] package

implemented in R 2.15.0. The third was run using the Continuous

module in BayesTraits 1.1B [70]. For all phylogeny-adjusted

analyses, species mean values were used to represent each OTU

of the sample.

The PGLS regressions and Bayesian reconstructions of contin-

uous ancestral states presented here are each based on one of six

different time-scaled phylogenetic trees of living and extinct

primates, the overall topologies of which were computed by

combining various source trees ([i.e., trees from previously

published analyses, combined with new analyses performed

specifically for this study [see below]) using the Matrix Represen-

tation with Parsimony (MRP) or ‘‘supertree’’ approach. MRP was

used to combine the extant primate phylogeny of Springer et al.

([49], based on 61,199 base pairs from 69 nuclear genes and 10

mitochondrial genes) with the molecular analysis of Janečka et al.

[50], the morphology-based trees of Tornow ([51], for omomyi-

forms; his Figure 10), Rose et al. ([52], for basal omomyiforms,

their figure 13C), and Bloch et al. ([19], for plesiadapiforms; their

Figure 4). These trees were combined with strict consensus

topologies derived from de novo parsimony analyses of a matrix that

has been used in several recent studies [52–57]; modified most

recently by Gladman et al. [58] and Boyer and Seiffert (in press)

that includes plesiadapiforms and several Paleogene primates

(omomyiforms, adapiforms, and early anthropoids). This matrix

was analyzed in PAUP 4.0b10 under various constraints so that

the evolution of distal calcaneal elongation could be evaluated

across several competing phylogenetic hypotheses: 1) with a

molecular scaffold enforced, based on the results of Springer et al.

[49], but with all extinct taxa unconstrained, 2) with the same

molecular scaffold enforced, and adapiforms constrained to be

more closely related to tarsiers and/or anthropoids than strepsir-

rhines [59], and 3) with the same molecular scaffold enforced, with

tarsiers constrained to be more closely related to anthropoids than

to any omomyiform [35,52,60,61]. All parsimony analyses were

performed (in PAUP 4.0b10 [62]) with random addition sequence

and TBR branch-swapping across 10,000 heuristic search

replicates. Some multistate characters were treated as ordered

and were scaled so that transitions between ‘‘fixed’’ states in an

ordered morphocline were equal to one step (polymorphisms were

assigned their own state, intermediate between ‘‘fixed’’ states in

each morphocline). MRP matrices were created and concatenated

in Mesquite 2.75, and parsimony analyses were also run in PAUP

4.0b10.

Subfossil lemurs posed special problems for the MRP approach

because not all have been included in bona fide phylogenetic

analyses, leaving us with no option but to graft them onto the

MRP supertrees in their most probable phylogenetic positions,

given recent assessments of their morphology. The subfossil

lemurid Pachylemur appears to be the sister taxon of the lemurid

Varecia based on genetics [63] and morphology [64,65]; as such we

placed this genus mid-way along the Varecia branch. The only

palaeopropithecid that has been included in a molecular

phylogenetic analysis is Palaeopropithecus [66], and that study

supported its proposed placement as an indrioid. We used the

palaeopropithecid topology proposed by Jungers et al. ([67], i.e.

(Mesopropithecus, (Babakotia, Palaeopropithecus))), and placed this clade

as the sister group of extant indriids. Internodes within

Palaeopropithecidae were spaced evenly, as there are currently

no objective means for estimating divergence times within the

family. Finally, the archaeolemurid Archaeolemur was placed as the

sister group of palaeopropithecids and indriids, again following

Jungers et al.’s [67] and Orlando et al.’s [66] placement of

archaeolemurids with indrioids (note, however, that Orlando et al.

did not resolve the relationships of archaeolemurids, palaeopro-

pithecids, and indriids). Megaladapis was placed as the sister taxon

of Lemuridae, following Orlando et al. [66], and was grafted onto

the lemurid stem lineage at its mid-point. In other parts of the tree,

some additional assumptions had to be made due to a lack of

taxonomic overlap in the source trees: 1) not all of the tarsiids for

which we have calcaneal measurements were included in the MRP

analysis, so Springer et al.’s tarsier phylogeny was grafted onto the

tarsiid branch following computation of the MRP supertree; 2)

Gunnell’s [39] notharctine phylogeny did not show sufficient

taxonomic overlap with other trees to allow for notharctines’

resolved placement relative to non-notharctine primates, so we

assumed notharctine monophyly and grafted Gunnell’s consensus

tree (his Figure 5 [39]) onto the Cantius abditus branch, and 3) the

species of Chiropotes that we measured was not present in Springer

et al.’s tree, so that genus was collapsed into a single OTU in our

tree. Finally, in order to reconstruct ancestral character states on 1)

a tree that would be consistent with the hypothesis of a

plesiadapiform-dermopteran clade [68,69], and 2) another tree

that would be consistent with a closer relationship of carpolestid

plesiadapiforms to primates than to plesiadapid plesiadapiforms

[15], we also modified the primary supertree by 1) moving

plesiadapiforms to join dermopterans in an arrangement matching

that proposed by Beard [69], and 2) moving Carpolestes simpsoni to

be the sister group of living primates to the exclusion of all other

euarchontans, with all other relationships remaining consistent

with the primary supertree.
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To convert the resulting supertrees into time-scaled phylogenies,

we used the divergence times that Springer et al. [49] calculated

using independent rates and soft bounds (their Text S2.4). The

Ptilocercus-Tupaia divergence was not estimated in Springer et al.’s

analysis; we placed this split at 61.8 Ma (i.e., the average of the

mean divergence estimates calculated by Janečka et al. [50] and

Roberts et al. [70]). Ghost lineages were minimized by placing

extinct clades along stem lineages at successive 1 Ma intervals,

working down from crown nodes. Within extinct clades,

internodes were separated by 1 Ma unless adjacent sister taxa

were geologically older. In the trees that recovered omomyiforms

as paraphyletic with respect to tarsiids, the branch connecting

Necrolemur to Tarsiidae was placed at 46 Ma because there is

compelling fossil evidence that closer relatives of tarsiers were

already present at ,45 Ma (i.e., Tarsius eocaenus [71]). In order to

evaluate whether a more recent haplorhine-strepsirrhine diver-

gence (as implied by the molecular slowdown identified by Steiper

and Seiffert [57]) had an impact on the reconstructed pattern of

calcaneal evolution, we provided one additional modification of

the primary supertree by adjusting the age of the primate crown

node to reflect the ages of the oldest primate fossils (Teilhardina and

Cantius) rather than the molecular divergence dates provided by

Springer et al. [49]; divergence dates for more nested primate

clades were the same as in the primary supertree.

Using the trees described above as input, three different sets of

PGLS regressions were performed to determine how ankle

elongation scales with body mass: 1) ln-transformed distal/total

calcaneal length v. ln-transformed body mass as estimated from

the cuboid facet area, 2) ln-transformed absolute distal calcaneal

length v. ln-transformed body mass as estimated from the cuboid

facet area, and 3) ln-transformed proximal calcaneal length v. ln-

transformed body mass as estimated from the cuboid facet area.

PGLS regressions in caper [72] employed the phylogenetic scaling

parameter lambda (l), a constant by which internal branch lengths

are multiplied (l of 0 would change all internal branch lengths to a

length of 0). If trait evolution is well-modeled by Brownian motion,

there will be a strong correlation between trait differences and

branch lengths, and l will approach 1.0. A l value of 0 indicates

that there is no correlation between trait values and branch

lengths. In caper [72], other scaling parameters are available (d,

which adjusts overall path lengths, and k, which adjusts individual

branch lengths), but employing multiple branch length transfor-

mations simultaneously renders interpretation difficult; as such

here we have only allowed l to vary, and d and k were fixed as 1.

Phylogenetic ANOVA was used to assess whether significant

among group variance in residual elongation values (Tables 1–2,

Res A-B), exists for three different behavioral groups. The

categorization for each taxon was determined through literature

references [25,72–77]. We treated animals that used acrobatic

leaping behaviors from vertical or horizontal supports as a

behavioral group, those that use primarily quadrupedal behaviors

as another, and those that were slow-climbers or mainly

terrestrialists as a third. We did not include animals that are

committed to quadrumanual suspension (e.g., sloths, colugos, and

presumably subfossil ‘‘sloth-lemurs’’) in our analyses due to

uncertainty about the demands that such behaviors place on the

postcranium. Assignment of behavioral categories is described in

more detail in Results. We report F statistics and P-values for

these analyses. Post hoc comparisons were also executed. A

sequential Dunn-Šidák adjustment to a= 0.05 was used to

determine significance of P-values.

We used BayesTraits 1.1B to calculate means and 95% HPDs for

ancestral states of both ln estimated body mass and the ratio of

distal calcaneal segment length versus total calcaneal length. Mean

values for each variable were used as the input data for each of the

117 OTUs in the primary supertree. Before reconstructing

ancestral states, we ran several model tests to determine whether

there were directional trends in the data given the input

topologies, and whether inclusion of phylogenetic scaling param-

eters improved the likelihood of the reconstructions. For each tree,

we ran two independent MCMC chains (10,050,000 iterations) for

each of the following combinations: 1) non-directional model

(model ‘‘A’’, constant variance random-walk) with no scaling

parameters; 2) non-directional model with parameter d; 3) non-

directional model with parameter k; 4) non-directional model with

parameter l; 5) directional model (‘‘model B’’) with no scaling

parameters; 6) directional model with parameter d; 7) directional

model with parameter k; 8) directional model with parameter l.

The RateDev value was individually tuned for each analysis to

achieve acceptances between 20–40%. The first 50,000 iterations

were discarded from each chain as ‘‘burnin’’, and the traces and

mean log-likelihoods from the two independent chains were

compared in Tracer 1.5 [78] to ensure convergence. Models for

reconstruction of ancestral states were chosen by comparing

harmonic means and averages of the mean log-likelihoods from

each MCMC chain; i.e., models incorporating scaling parameters

were only used for final reconstructions of ancestral states if the

inclusion of a phylogenetic scaling parameter provided a log-

likelihood that was 1.0 units greater than analyses that included no

scaling parameters [79]. Ancestral reconstructions on each tree

were based on two independent MCMC chains of 20,050,000

iterations (first 50,000 discarded as burnin, with the DataDev

value tuned to achieve acceptances between 20–40%), using the

distributions for the selected phylogenetic scaling parameters that

were calculated in the previous step. Mean values and posterior

densities for each reconstruction were taken from the combined

results of the two independent MCMC runs.

Results

Allometry of the Earliest Euprimates
In 2007, we collected an isolated calcaneus that we attribute to

the notharctine adapiform Cantius ralstoni UF 252980 (Fig. 3) based

on size and morphology (see Fig. S1) from the Cabin Fork region

[52,55,80,81] of the Bighorn Basin, Wyoming. It is the first

proximodistally complete specimen known for the species and is

the oldest known Cantius specimen for which calcaneal elongation

can be calculated. It is also the oldest known adapiform and

potentially the oldest known stem strepsirrhine for which

elongation can be calculated. It is thus notable that this specimen

has the highest elongation ratio of any measureable Cantius. See

Table S1 in File S1 for data. The new calcaneus attributed to

Cantius ralstoni also has the smallest cuboid facet area of all

specimens measured for Cantius, indicating a correspondingly small

body size (Table S1 in File S1).

The coincidence of small size and high elongation in this

specimen suggests an inverse correlation in these parameters

among Cantius. Plotting body mass against calcaneal elongation

(Fig. 4) indeed shows a significant inverse correlation for Cantius

(ordinary least squares: ln [DL/TL] = 20.077*ln[BM]+ 20.343;

p = 0.0012, n = 16).

This finding establishes a reasonable expectation that absolute

size may explain calcaneal elongation among taxonomically larger

groupings of notharctines. When Notharctus and Smilodectes are

added to this sample, the correlation remains significant while the

slope and intercept do not change significantly, as a result of

overlapping 95% confidence intervals for both relationships

(Table 3).
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Figure 3. Relevant fossil calcanei exhibit a diversity of sizes and proportions. A, All relevant euprimate fossil (but not subfossil) genera
measured and analyzed in this study are depicted at the same scale. B, the same taxa are depicted scaled to proximal segment length. The row
corresponds to the scaling relationship of the taxa while the left-right position corresponds to body size. Note the left specimens (smaller) have
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The inter-generic robusticity of this relationship justifies

evaluating the effect of including other primitive euprimates.

Among omomyiforms, Teilhardina is well established as the most

basal member of the group e.g., [21,52,82], and also the only to

co-occur with the earliest species of Cantius. Adding data for

Teilhardina results in no significant change to either coefficient

relative to the line including Cantius, Notharctus, and Smilodectes

(Fig. 4; Table 3; ordinary least squares (OLS): ln [DL/

TL] = 20.0654*ln[BM]+ 20.407; p,0.0001, n = 31). Alterna-

tively, adding data from various other early primates does in fact

change the relationship in significant ways. Most notably, adding

data on asiadapines from India [37], either significantly reduces

the estimated slope or results in non-significant correlations

(Table 3). On the other hand if asiadapines are treated as a

separate subsample, regression analysis yields a strong correlation

with a slope similar to that for the early Eocene North American

primates, but with a lower mean intercept estimate as compared to

their North American counterparts (Table 3). Furthermore,

treating omomyine omomyiforms separately also yields a line

with a strong correlation and similar slope, but elevated intercept

relative to the early Eocene line. These initial regressions were run

with data on individuals, but most relationships remain significant

when using species mean values (Table 4). Phylogenetic Gener-

alized Least Squares (PGLS) regression on species means for

Teilhardina, Cantius, Notharctus, and Smilodectes results in a significant

relationship with no significant differences in regression coeffi-

cients compared to OLS regression. The equation resulting from

the PGLS regression is ln [CDL/CTL] = (20.070 to

0.072)*ln[BM] - (0.38 to 0.37), n = 8. Value ranges represent

variance due to phylogeny used, not confidence intervals (which

include 20.065, the value from the ordinary least squares

regression): see Table 5 for standard error on coefficient estimates.

Intrageneric Allometry in Modern Primates
Patterns similar to those described above have been noted

among extant primates at the family level using species means for

relatively longer calcanei than the right speciments (larger). Abbreviations and specimen numbers (with numbers applying left to right; ‘‘R’’ stands for
‘‘reversed’’): Ac, Asiadapis cambayensis (GU 760); Mi, Marcgodinotius indicus (GU 709,710); Eosimias sinensis (IVPP 12313R,12280R,11851); Cr, Cantius
ralstoni (UF 252980; UM 79150; UM SLC VC misc6; CAB12–0209); Cm, Cantius mckennai ((USGS 5897R); Ct, Cantius trigonodus (USGS 21829); Ca, Cantius
abditus (USGS 6783R); Cfe, Copelemur feretutus (USGS 21828R); Cfr, Cantius frugivorus (USGS 21781R); Nz, Necrolemur zitteli (A/V 637); Ab, Absarokius
sp. (UCM 67907R); Wi, Washakius indicus (AMNH 88824); Sc, Shoshonius cooperi (CM69765); Ar, Arapahovius gazini (UCM 67850R); Tb, Teilhardina
belgica (IRSNB 16786–03R); Kr, Komba robustus (KNM-SO 1364); Ou, Ourayia uintensis (SDSN 4020–60933); Hg, Hemiacodon gracilis (AMNH 12613); Oc,
Omomys carteri (UCM 67678); Sg, Smilodectes gracilis (AMNH 131766R, 131774); Nth, Notharctus tenebrosus. (AMNH 11474R, 129382R, 131763R,
13766); Ap, Adapis parisiensis (NMB QE741R, QE644R, QE779); A-sp, Adapis sp. NMB QE 530; Lm, Leptadapis magnus (NMB QF421R, QE830R, QW 1676,
QE604).
doi:10.1371/journal.pone.0067792.g003

Figure 4. Plotting early fossil forms reveals allometric scaling within and between certain clades. Different interecepts but similar slopes
of scaling of distal calcaneal elongation index to body mass (as reconstructed from cuboid facet area) characterize different groups of early primates.
There is a low- (based on Asiadapinae), intermediate- (based on all or subsets of the following taxa: Cantius, Notharctus, Smilodectes and Teilhardina)
and high-elongation line (based on Omomyinae: see Table 2); see also Fig. 3B. The intermediate elongation line appears to be primitive, as the non-
primate taxa plotting near the low line (some scandentians and plesiadapiforms) actually exhibit a non-significant relationship between mass and
elongation. Dashed lines represent ordinary least squares lines for different groups. Adapiforms are represented by a line describing Cantius species
only and one representing all notharctids. The gray area represents the space in between the mean for the two lines. Polygons: Red, Cantius and
Teilhardina; Light blue, Notharctus; Dark blue, asiadapines; Yellow, Omomyines; Solid yellow, Omomys; Green, Anchomomys. Th, Tetonius homunculus.
See Figure 3 caption for taxon abbreviations.
doi:10.1371/journal.pone.0067792.g004
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calcaneal elongation and body mass [33]. We re-assessed these

patterns, modifying the approach slightly to match the structure of

our comparisons among fossil euprimates. We specifically included

samples representing closely related species that are either

currently classified in the same genus, or that were, at one time,

considered members of the same genus on the basis of sister taxon

relationships that are still considered valid. Some of these

‘‘generic’’ groups of species therefore require explanation. Our

‘‘Hapalemur’’ group includes Hapalemur griseus and Prolemur simus

[83]: P. simus is typically classified as Hapalemur [84] and is

Table 3. Coefficients and confidence intervals for ordinary least squares regressions of ln(DL/TL) on estimated ln(BM) in extant and
fossil taxa.

Regression
Sample abv n slope

slope
SE intercept

int
SE r t

P
(uncorr) SLCI SUCI ILCI IUCI IR 1 IR 2

*Cantius Ca 16 20.077 0.019 20.344 0.129 20.73 24.0 0.001 20.118 20.036 20.619 20.068 20.051 20.046

Notharctus No 11 20.058 0.037 20.445 0.286 20.47 21.6 0.147 20.141 0.024 21.082 0.192 20.003 20.002

*Notharctines Nn 27 20.045 0.009 20.559 0.068 0.47 24.7 0.000 20.064 20.025 20.699 20.419 20.007 20.008

*Asiadapines As 6 20.077 0.024 20.499 0.120 20.85 23.2 0.033 20.139 20.015 20.807 20.191 20.206 20.201

Cantius &
asiadapines

CaAs 22 20.006 0.009 20.833 0.060 20.13 20.6 0.555 20.025 0.014 20.958 20.708 0.029 0.020

*Cantius &
Teilhardina

CaT 20 20.076 0.005 20.354 0.029 20.97 216.6 0.000 20.085 20.066 20.414 20.294 20.049 20.044

- Notharctines &
asiadapines

NnAs 34 20.013 0.006 20.788 0.043 20.36 22.1 0.040 20.026 20.001 20.875 20.701 0.013 0.005

*Notharctines &
Teilhardina

NonT 31 20.065 0.004 20.407 0.030 20.94 214.9 0.000 20.074 20.057 20.468 20.346 20.022 20.019

*Cantius &
anaptomorphines

CaAn 22 20.079 0.005 20.328 0.031 20.96 215.9 0.000 20.090 20.069 20.391 20.264 20.053 20.047

*Notharctines &
anaptomorphines

NnAn 33 20.069 0.004 20.380 0.029 20.94 215.8 0.000 20.078 20.060 20.440 20.320 20.024 20.020

Anaptomorphines An 6 0.000 0.041 20.646 0.166 0.00 0.0 0.995 20.105 0.106 21.073 20.219 0.264 0.254

*Omomyines Om 10 20.052 0.010 20.344 0.057 20.88 25.2 0.001 20.075 20.029 20.473 20.215 0.146 0.146

*North American
Eocene primates

NAE 44 20.083 0.008 20.260 0.050 20.86 210.7 0.000 20.098 20.067 20.361 20.160 20.012 20.006

*Galagidae Ga 15 20.065 0.004 0.026 0.027 20.97 215.0 0.000 20.074 20.056 20.031 0.083 0.417 0.419

*Lorisidae Lr 13 20.094 0.023 20.380 0.139 20.78 24.1 0.002 20.145 20.044 20.682 20.077 20.226 20.217

*Microcebus &
Mirza

McMr 6 20.085 0.014 20.125 0.066 20.95 26.0 0.004 20.122 20.049 20.295 0.045 0.101 0.108

Cheirogaleus Ch 5 20.039 0.062 20.502 0.341 20.34 20.6 0.571 20.211 0.133 21.448 0.444 0.092 0.090

*Hapalemur Ha 13 20.065 0.013 20.336 0.095 20.84 25.2 0.000 20.092 20.038 20.542 20.130 0.053 0.056

*Lemurids Le 25 20.076 0.010 20.248 0.078 20.84 27.5 0.000 20.097 20.055 20.408 20.087 0.050 0.056

*Lemurids &
cheirogaleids

LeCh 36 20.088 0.005 20.159 0.037 20.94 216.7 0.000 20.099 20.078 20.234 20.084 0.043 0.051

*Lemuriforms Lemf 50 20.086 0.006 20.179 0.043 20.90 214.3 0.000 20.098 20.074 20.265 20.094 0.045 0.052

*Indriids Ind 8 0.081 0.015 21.527 0.117 0.91 5.5 0.001 0.046 0.115 21.804 21.250 0.024 20.003

Tarsius Trs 8 20.105 0.056 0.248 0.279 20.61 21.9 0.108 20.236 0.027 20.411 0.906 0.320 0.331

*Platyrrhines Plat 35 20.032 0.010 20.668 0.077 20.47 23.2 0.003 20.052 20.012 20.824 20.512 20.017 20.021

*Cercopithecoidea Cc 23 20.071 0.027 20.361 0.245 20.49 22.6 0.017 20.128 20.014 20.869 0.147 20.020 20.016

*Hominoidea Hm 12 20.137 0.033 0.170 0.346 20.80 24.2 0.002 20.208 20.065 20.593 0.932 20.012 0.006

*Parapithecidae Par 6 20.136 0.013 20.070 0.082 20.98 210.7 0.000 20.169 20.103 20.280 0.139 20.249 20.231

*Euprimates Eu 253 20.103 0.006 20.121 0.047 20.71 216.2 0.000 20.114 20.088 20.225 20.040 20.031 20.021

Scandentia Sc 8 0.014 0.015 21.025 0.069 0.34 0.9 0.410 20.023 0.050 21.189 20.862 20.010 20.023

Plesiadapiforms Pls 6 0.008 0.022 21.152 0.114 0.17 0.0 0.744 20.050 0.066 21.445 20.858 20.181 20.194

Sundatheria Sun 10 0.008 0.007 21.001 0.001 0.37 1.1 0.287 20.008 0.023 21.004 20.998 20.031 20.043

Non-euprimates NnEu 15 0.012 0.016 21.080 0.083 0.20 0.8 0.459 20.022 0.047 21.258 20.901 20.073 20.086

*Significant correlation between estimated ln(BM) and ln(DL/TL).
-Marginally significant or marginally non-significant.
Abbreviations: abv, sample abbreviation; n, sample size; SE, standard error; int, intercept; r, correlation coefficient; t, student’s t-value; SLCI, slope lower 95% confidence
interval; SUCI, slope upper 95% confidence interval; ILCI, intercept lower 95% confidence interval; IUCI, intercept upper 95% confidence interval; P(uncorr), Probability of
no correlation; IR 1, intercept residual from slope v. regression equation 1 [including indriids: (intercept) = 27.978 (slope) +0.908]; IR 2, intercept residual from slope v.
regression equation 2 [excluding indriids: (intercept) = 27.77 (slope) +0.89].
doi:10.1371/journal.pone.0067792.t003
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consistently reconstructed as a very recently diverged sister taxon

[49]. The ‘‘Galago’’ group includes species classified in the genera

Otolemur, Galagoides and Euoticus by recent authors [49,83].

However, many authors previously classified some or all of these

species in Galago [83,85,86]. Furthermore, the monophyly and

inter-relationships of these genera are in flux (see explanation in

Results). The ‘‘Microcebus’’ group includes species typically

included in Microcebus as well as Mirza coquereli, which is sometimes

also recognized as a species of Microcebus [87]; again, Microcebus and

Mirza are almost certainly sister taxa [49,83]. Figure 5 and

Tables 3 and 4 give complete listings of comparisons and results.

We also made broader intra-familial comparisons (Table 4). We

found a significant pattern of inverse correlation between calcaneal

elongation and body mass for all groups compared except

Cheirogaleus, Tarsius, non-primate euarchontans, and Indriidae.

Figure 6 provides a graphical representation of the variance in

slope and intercept for the different subsamples analyzed. We do

not suggest that regression analysis is an appropriate way of

analyzing these data, nor do we imply that these subsamples and

their coefficients are independent data points. We simply use this

plot to help illustrate how changing subsample composition

changes slope and intercept. It is clear that subsamples with a

steeper slope tend to have a higher intercept. Visualizing the data

in this way helps to reveal groups that have more elongation, while

controlling for slope differences. Generally speaking, extant groups

exhibit higher intercepts for the slope of their relationship

Table 4. Coefficients and confidence intervals for ordinary least squares regressions of ln(DL/TL) on estimated ln(BM) for taxon
means.

regression description abv n slope slope SE intercept int SE r t P(uncorr) SLCI SUCI ILCI IUCI

-Cantius Ca 5 20.1046 0.03358 20.16157 0.222 20.87399 23.115 0.05267 20.198 20.011 20.778 0.455

Notharctus No 2 na na na na na na na na na na na

*Notharctines Nn 7 20.057 0.01583 20.47227 0.11 20.84938 23.599 0.015568 20.096 20.018 20.742 20.202

*Asiadapines As 2 na na na na na na Na na na na na

Cantius & asiadapines CaAs 7 0.00332 0.028 20.416 0.159 0.053698 0.1203 0.74667 20.066 0.072 20.804 20.027

*Cantius & Teilhardina CaT 6 20.0773 0.02762 20.88786 0.173 20.97722 29.21 0.00077219 20.148 20.006 21.333 20.443

-Notharctines & asiadapines NnAs 9 20.0116 0.019 20.79938 0.114 20.24825 20.678 0.51952 20.055 0.032 21.062 20.537

*Notharctines & Teilhardina NonT 9 20.081 0.011 20.310 0.067 20.932 26.804 0.00015299 20.107 20.056 20.464 20.156

*Cantius & anaptomorphines CaAn 8 20.0858 0.01019 20.28429 0.06 20.9602 28.42 0.016271 20.110 20.062 20.425 20.144

*Notharctines & anaptomorphines NnAn 8 20.0773 0.00801 20.32685 0.05 20.95971 29.66 1.10E-05 20.096 20.058 20.446 20.208

Anaptomorphines An 3 0.00719 0.09844 20.6767 0.419 0.072887 0.0731 0.95356 20.416 0.431 22.480 1.127

*Omomyines Om 2 20.0553 0.01112 20.33373 0.061 20.9279 24.978 0.0076093 20.197 0.086 21.113 0.446

*North American Eocene primates NAE 16 20.0838 0.01304 20.24704 0.078 20.8641 26.424 1.59E-05 20.112 20.056 20.414 20.080

*Galagidae Ga 4 20.0654 0.00689 0.027312 0.002 20.98887 29.399 0.011132 20.087 20.044 0.022 0.033

*Lorisidae Lr 5 20.0871 0.03843 20.4369 0.232 20.79458 22.267 0.10826 20.194 0.020 21.080 0.206

Microcebus & Mirza McMr 2 na na na na na na Na na na na na

Cheirogaleus Ch 2 na na na na na na Na na na na na

Hapalemur Ha 2 na na na na na na Na na na na na

*Lemurids Le 5 20.0788 0.01343 20.23237 0.102 20.95909 25.868 0.0098712 20.116 20.042 20.516 0.052

*Lemurids & cheirogaleids LeCh 11 20.0911 0.01074 20.14755 0.073 20.94279 28.483 1.38E-05 20.115 20.067 20.310 0.015

*Lemuriforms Lemf 14 20.0859 0.01372 20.18906 0.097 20.87489 26.258 4.21E-05 20.116 20.056 20.398 0.020

Indriids Ind 3 0.07606 0.01596 21.4866 0.016 0.97774 4.6602 0.13457 0.007 0.145 21.555 21.419

Tarsius Trs 3 20.1309 0.12643 0.37934 0.632 20.71932 21.036 0.48891 20.675 0.413 22.341 3.100

*Platyrrhines Plat 19 20.0243 0.01099 20.71205 0.083 20.47317 22.215 0.040741 20.047 20.001 20.887 20.537

Cercopithecoidea Cc 13 20.0797 0.04098 20.26949 0.364 20.50607 21.946 0.077637 20.169 0.010 21.062 0.523

*Hominoidea Hm 7 20.1166 0.03989 20.02617 0.408 20.79415 22.922 0.032936 20.214 20.019 21.024 0.972

Parapithecidae Par 2 na na na na na na na na na na na

*Euprimates Eu 98 20.0967 0.00907 20.15368 0.067 20.73606 210.65 5.89E-18 20.115 20.079 20.287 20.021

Scandentia Sc 2 na na na na na na na na na na na

Plesiadapiforms Pls 6 0.00786 0.02246 21.1518 0.114 0.17238 0.0297 0.74399 20.050 0.066 21.445 20.858

Sundatheria Sun 3 0.00647 0.00401 20.99285 0.021 0.85013 1.6145 0.35305 20.011 0.024 21.085 20.901

Non-euprimates NnEu 8 20.0018 0.02498 21.0376 0.136 20.02866 20.07 0.9463 20.061 0.057 21.359 20.716

*Significant correlation between estimated ln(BM) and ln(DL/TL).
2marginally significant or non-significant.
Abbreviations: abv, sample abbreviation; n, sample size; SE, standard error; int, intercept; r, correlation coefficient; t, student’s t-value; SLCI, slope lower 95% confidence
interval; SUCI, slope upper 95% confidence interval; ILCI, intercept lower 95% confidence interval; IUCI, intercept upper 95% confidence interval; P(uncorr), Probability of
no correlation.
doi:10.1371/journal.pone.0067792.t004
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(indicating greater average calcaneal elongation) than do fossil

groups. A clear exception is the low residual intercepts of lorisids.

The Calcaneal Allometry of All Primates
Although comparisons of close relatives reveal significant

correlations, adding more distantly related groups and utilizing

bigger sample sizes begins to blur the relationship. To assess the

presence of a ‘‘fundamental’’ allometry in calcaneal elongation, we

assembled a comprehensive sample representing all major primate

groups. OLS regression shows a significant inverse correlation

between calcaneal elongation and body mass (Table 4; ordinary

least squares: ln [CDL/CTL] = (21)*(0.103)*ln[BM] - (0.12),

n = 260). One might question whether this slope (Fig. 7) is more

a function of coincidental phylogenetic autocorrelation or clade

shifts [24] in elongation and body mass (by clade shift, we mean

morphological differences established early in the evolution a clade

and retained to some degree by most later-occurring members of

the clade). That is, the very highest elongations are represented

mainly by small-bodied galagos and tarsiers, while the low

elongations are represented mainly by the large bodied apes. A

PGLS regression on species means was used to assess whether this

relationship held while accounting for large scale clade offsets as

might be produced by phylogenetic autocorrelation in trait values.

The result of this analysis is still a highly significant inverse

correlation that in fact, matches the slope and intercept of the

Eocene taxa treated alone (PGLS regression: ln [CDL/

CTL] = (21)*(0.066–0.069)*ln[BM] - (0.39–0.38), n = 98. Value

ranges represent variance due to cladogram used, not confidence

intervals: see Table 5 for standard errors on coefficient estimates).

Finally we ran a number of analyses representing different

subgroups of the total sample (see Table 5 for full results). Overall,

results show that 1) generally, sub-sampling does little to change

slope (Table 5), and 2) the degree of phylogenetic co-variance of

trait values is stronger in the larger, phylogenetically more diverse

samples (see Table 5 for l values).

The expectation of a consistent allometric pattern of calcaneal

elongation assumes the presence of a tarsifulcrumating foot, which

is ubiquitous among extant prosimians. This assumption is

challenged by the observation that the metatarsifulcrumating foot

occurs several times in anthropoid evolution. We therefore also

separated our sample into extant prosimians and extant anthro-

poids and ran two additional PGLS regressions. We found that

each clade still exhibited a strong significant correlation between

calcaneal elongation and estimated mass (Table 5).

Scaling of Individual Segments of the Calcaneus
To assess the contribution of individual components of the

elongation index to leaping we regressed distal and proximal

calcaneal length against estimated body mass (Table 6). Using the

PGLS approach shows that as a group, euprimates have significant

negative allometry of the distal segment (as shown by Moyà-Solà

et al. [7]), and significant positive allometry of the proximal

segment. Interestingly, there is evidence of stronger phylogenetic

signal of distal segment length, and a poor body size correlation;

Figure 5. Plot of fossils with extant forms imposed shows similar allometric scaling relationships characterize in living taxa. To
better understand the phenetic associations of the fossils and to help consider the functional implications of their proportions, we plot them with
extant taxa. Each data point represents an individual. Dark gray polygons represent species groups. Light gray polygons bound different extant
prosimian radiations: Upper polygon, Galagidae; middle polygon, lemuriformes; lower polygon, Lorisidae. (see Figures 2 and 3 for taxon
abbreviations). ‘‘IVPP’’ specimens are eosimiids from Shanguang fissure fills with taxon identifications given in Gebo et al. (2000).
doi:10.1371/journal.pone.0067792.g005
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while in contrast there is a weaker phylogenetic signal in the

proximal segment length and a very strong correlation with body

mass.

Thus, as body mass increases, there is both a disproportionately

smaller increase in length of the distal segment, and a dispropor-

tionately larger increase in length of the proximal segment, which

together result in a correlation between body mass and elongation

index.

Behavioral Variance in Calcaneal Elongation
The foregoing analyses confirm that a large amount of variance

in calcaneal elongation is related to body mass, not any simple

behavioral category per se. We therefore assessed the behavioral

significance of elongation differences with a method that takes this

allometry into account. Specifically we took residuals from the

allometric line describing the major variation in all euprimates

(i.e., treated it as a line of subtraction) and used phylogenetic

ANOVA (using the caper package of R [88]) to assess significant

behavioral variance. Three behavioral categories were used: 1)

vertical clinging & leaping and/or grasp-leaping (VCL/L), 2)

arboreal quadrupedalism (AQ), and 3) slow-climbing/terrestrial

(SC/T). We did not include taxa that are predominantly

suspensory because we had no well-informed predictions for what

pattern of elongation selection should favor for an animal that

loads its limbs in tension. A phylogenetic ANOVA using PGLS

allows for auto-correlation between trait values and phylogenetic

distance, adjusting estimates of group means and their standard

errors accordingly. We first used PGLS to estimate the common

slope and intercept for all primates (which matches closely the

slope of many ‘‘intrageneric’’ and ‘‘subfamilial’’ groups, including

notharctines: Table 3, 4, 5) and then took the residuals for each

species with respect to this line (Table 1). We ran three sets of

ANOVAs: 1) on all extant primates in our sample; 2) on all

anthropoids; 3) on all prosimians. We ran the prosimian analysis

using three different trees due to an unconventional (and relatively

poorly supported) position for the galagid Euoticus elegantulus

recovered by Springer et al. [49]. In Springer et al.’s data set E.

elegantulus was only sampled for 7% of sites, G. matschiei for 2%, and

G. demidoff for 11%, while G. senegalensis, O. crassicaudatus, and O.

garnetti were sampled for 70–80% of sites. They recovered E.

elegantulus as the basal branching galagid, a result rarely recovered

in other studies. Furthermore, the bootstrap support for mono-

phyly of Galago and Otolemur to the exclusion of Euoticus was less

than 50%. Prior to Springer et al.’s [44] finding, the field had

begun to converge on the idea of a sister relationship between E.

elegantulus and G. senegalensis, with Otolemur outside of this clade, and

G. demidoff and others as more basally diverging yet [41,89–92].

Figure 6. Comparison of ordinary least squares (OLS) lines by plotting slopes and intercepts. When using ordinary least squares, it is
difficult to define a natural group to which to limit a sample for a scaling relationship. We dealt with this in several ways: 1) by starting with small
(genus level) groups, and adding sister taxa until the slope and/or intercept of the line changed significantly, including the loss of a significant
relationship. 2) For extinct taxa, we considered both phylogenetic proximity (not just monophyly). Our approach yielded a large number of regression
equations (Table 2), which are difficult to compare with one another since changes in slope can be expected to yield changes in intercept. Therefore,
we graphically compare the regression equation estimates by using slope of a relationship as the covariate and intercept as a dependent variable.
This shows an expected relationship: more negative slopes have predictably higher intercepts. Fitting a line to this relationship we compare
intercepts (or relative calcaneal elongation) as residuals from this line. This allows us to compare line position when methods like ANCOVA are not
supported due to differing slopes of lines of interest. What can be seen is that parapithecids, asiadapines and lorisids have regression equations with
the lowest residuals, Eocene taxa tend to have slightly negative residuals, lemuriforms have slightly positive residuals, omomyines have higher
residuals, and galagos have the highest residuals. The tarsier relationship is non-significant (as is that for all gray points) so its position is not
technically meaningful. However, the non-significant relationship for Tarsius appears mainly a result of small sample size (likely) given the high slope,
in contrast to other non-significant relationships (‘‘anaptomorphines,’’ scandentians, etc.) which have slopes close to zero. This plot presents data
consistent with other ways of looking at body-size scaled levels of calcaneal elongation used in this study and suggests on average that early Eocene
primates had lower levels of calcaneal elongation than extant lemuriforms.
doi:10.1371/journal.pone.0067792.g006
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Analysis 1 revealed significant differences between the SC/T

group and VCL/L and AQ groups (Table 7). However, the latter

two groups are not significantly different. Analysis 2 of anthropoids

showed a difference only between SC/T and AQ. Finally, the

third set of analyses yielded significant differences among all

prosimian behavioral groups when trees representing the most

frequently supported position of Euoticus were used [41,89–92].

However, when prosimian data were analyzed using the main

supertree compiled for this paper and reflecting the less

conventional position of Euoticus, we obtained results similar to

those for Analysis 1 including all primates in which there is no

difference between VCL/L and AQ (Table 7). To address directly

Moyà-Solà et al.’s hypothesis that specifically distal length (instead

of elongation index) relative to body mass does not correlate with

the degree of leaping, we used a similar approach taking residuals

from the line determined using PGLS (Table 6; ‘‘Res B’’ of table 1).

The results of this approach were similar in most respects to those

utilizing elongation residuals (Table 7).

Ancestral State Reconstruction
The program BayesTraits allows estimation of ancestral states at

all nodes of a tree of interest in which tip-taxon values are

provided. We reconstructed body mass and elongation index at a

number of nodes of interest on six different trees (Table 8, 9, 10,

11, 12, 13, Figs. 8, 9): 1) a maximum parsimony supertree that

included all taxa of interest as described in the methods; 2) same

topology as the first tree, but with basal divergences among

euprimates assigned using fossils, rather than molecular calibra-

tions; 3) maximum parsimony supertree with an additional

constraint that adapiforms must be more closely related to

haplorhines than to crown strepsirrhines (cf. Franzen et al. [59]);

4) same topology as the first tree with an additional constraint that

Tarsius and anthropoids must share a common ancestor to the

exclusion of omomyiforms (cf. Kay et al. [61]); 5) maximum

parsimony supertree that uses the topology of Beard [69] for

plesiadapiforms, linking them to dermopterans; 6) maximum

parsimony tree based on the topology of Bloch and Boyer [15] for

plesiadapiforms (treating Carpolestes simpsoni–the only carpolestid

for which ankle morphology is known–as the euprimate sister

taxon to the exclusion of other plesiadapiforms). Different models

of evolution (i.e. Brownian motion with and without a directional

trend) were assessed for each data set (body mass and elongation)

on each tree. A directional model of trait evolution provided a

better fit for the body mass data on all trees (as has been shown in

other studies [57]). Calcaneal elongation was always best modeled

by pure Brownian motion (Table 8).

Generally speaking, resulting ASRs for most nodes of a given

tree had overlapping 95% HPD levels (Tables S2–S7 in File S1).

Problems with ‘‘over-conservativeness’’ of confidence limits on

ASRs have been discussed in the past [93–95]. Therefore

comparing mean estimates of the same node among different

Figure 7. Comparison of ordinary least squares (OLS) and phylogenetic generalized least squares lines fit to an ‘‘all primate’’
sample. Adding data from all extant primate groups leads to a much steeper ordinary least squares regression slope (b) than given by analyzing
smaller samples of closely related taxa (e.g., a). However, PGLS style regression using the caper package of R shows that phylogenetic autocorrelation
of values has little affect for small samples of closely related taxa (low values of l in Table 5) meaning that OLS and PGLS give nearly identical results.
However, phylogenetic autocorrelation has a strong effect in larger samples (higher l values in Table 5). The maximum likelihood PGLS regression
equations for large samples (c) thus show a much different slope than the OLS equations for these samples. The PGLS slope and intercept are instead
much closer to that for small samples.
doi:10.1371/journal.pone.0067792.g007
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trees provides a different type of confidence assessment. It reveals

the effect on the nodal reconstructions given uncertainty/error in

the tree topology and branch lengths. While we reconstructed

many nodes (Tables S2–S7 in File S1) we were principally

interested in those reflecting the origin and early diversification of

euprimates [euprimateforms, euprimates, crown haplorhines,

tarsiiforms (omomyiforms and Tarsius), crown anthropoids, crown

strepsirrhines, basal adapiforms/strepsirrhines, and notharctines].

Plotting ancestral reconstructions of body mass with those of

calcaneal elongation along with extant values (Fig. 9A) shows the

region occupied by estimates for the ‘‘euprimateform node’’ to be

slightly below (lower average body mass reconstruction) but

overlapping with the region occupied by estimates for the

‘‘euprimate node.’’ The combination of mass and calcaneal

elongation values for all estimates of both nodes are well below the

scaling relationship defined by early Eocene asiadapines, and

instead are matched most closely by Ptilocercus lowii, with all known

extant and fossil euprimates of the relevant size range having

greater calcaneal elongation. The basal haplorhine node (defined

here in all cases as the clade including Tarsius, anthropoids and all

omomyiforms) occupies a region distinct from any other node

reconstructed, being distinguished from the euprimate node region

in having higher estimated calcaneal elongation values. The

combination of mass and calcaneal elongation values is most

closely matched in this case by the eosimiid calcaneus IVPP

11851. The region occupied by estimates for the tarsiiform node,

Table 6. Regression table giving PGLS regression results of ln calcaneal segment lengths with ln of estimated body mass.

Groups Tree l Adj R2 slope SE Int SE t-value P(.t) RSE (DF) F-value (DF) P

All Euprimates (DL) 1 0.991 0.57 0.256 0.022 0.332 0.197 11.63 ,0.00001 0.625(100) 135.3(2,100) ,0.00001

All Euprimates (DL) 2 0.990 0.57 0.252 0.022 0.360 0.138 11.72 ,0.00001 0.633(100) 137.3(2,100) ,0.00001

All Euprimates (DL) 3 0.991 0.56 0.247 0.022 0.364 0.204 11.45 ,0.00001 0.627(100) 131.2(2,100) ,0.00001

All Euprimates (PL) 1 0.703 0.92 0.364 0.011 20.140 0.078 34.33 ,0.00001 0.233(100) 1178(2,100) ,0.00001

All Euprimates (PL) 2 0.838 0.91 0.371 0.011 20.175 0.071 32.74 ,0.00001 0.293(100) 1072(2,100) ,0.00001

All Euprimates (PL) 3 0.743 0.92 0.363 0.010 20.153 0.081 35.26 ,0.00001 0.233(100) 1243(2,100) ,0.00001

Column heading abbreviations: see table 4 legend. Other abbreviations: DL, distal segment length; PL, Proximal segment length.
doi:10.1371/journal.pone.0067792.t006

Table 5. Results of PGLS regressions of distal elongation index [ln(DL/TL)] on ln estimated body mass.

Groups Tree l Adj R2 slope SE Int SE t-value P(.t) RSE (DF) F-value (DF) P

Cantius 1–3 0.000 0.73 20.108 0.032 20.136 0.207 23.43 0.042 0.111(3) 11.77(2,3) 0.038

Notharctines 1–3 0.000 0.69 20.069 0.019 20.391 0.128 23.62 0.015 0.116(5) 13.08(2,5) 0.010

(a) Notharctines+Th 1,3 0.000 0.93 20.070 0.006 20.381 0.045 210.04 ,0.0001 0.055(6) 100.9(2,6) ,0.0001

(a) Notharctines+Th 2 0.000 0.94 20.072 0.007 20.372 0.043 210.57 ,0.0001 0.089(6) 111.7(2,6) ,0.0001

Adap.+Omo. 1 0.924 0.11 20.040 0.021 20.532 0.139 21.88 0.075 0.318(20) 3.54(2,20) 0.048

Adap.+Omo 2 0.879 0.23 20.056 0.021 20.454 0.122 22.67 0.015 0.362(20) 7.14(2,20) 0.0045

Adap.+Omo 3 0.905 0.19 20.047 0.019 20.496 0.116 22.45 0.024 0.313(20) 5.99(2,20) 0.0092

Extant Primates 1,3 0.976 0.30 20.092 0.016 20.119 0.162 25.78 ,0.00001 0.309(74) 33.43(2,74) ,0.00001

Extant Primates 2 0.973 0.30 20.092 0.016 20.123 0.148 25.79 ,0.00001 0.311(74) 33.53(2,74) ,0.00001

Euprimates sin (a) 1 0.953 0.26 20.072 0.012 20.375 0.102 25.85 ,0.00001 0.303(93) 34.24(2,93) ,0.00001

Euprimates sin (a) 2 0.964 0.25 20.072 0.012 20.366 0.081 25.69 ,0.00001 0.329(93) 32.45(2,93) ,0.00001

Euprimates sin (a) 3 0.955 0.27 20.072 0.012 20.367 0.105 26.02 ,0.00001 0.304(93) 36.29(2,93) ,0.00001

All Euprimates 1 0.953 0.24 20.066 0.011 20.397 0.096 25.78 ,0.00001 0.298(100) 33.52(2,100) ,0.00001

All Euprimates 2 0.951 0.27 20.069 0.011 20.383 0.071 26.15 ,0.00001 0.311(100) 27.85(2,100) ,0.00001

All Euprimates 3 0.952 0.27 20.068 0.011 20.382 0.098 26.17 ,0.00001 0.295(100) 38.01(2,100) ,0.00001

Extant Prosimians 1,3 0.871 0.35 20.112 0.027 0.062 0.213 24.30 0.0002 0.316(31) 18.48(2,31) ,0.00001

Extant Prosimians 2 0.860 0.36 20.114 0.026 0.054 0.203 24.33 0.0001 0.323(31) 18.78(2,31) ,0.00001

Extant Anthropoids 1–3 0.872 0.29 20.071 0.017 20.394 0.157 24.24 0.0001 0.305(41) 17.99(2,41) ,0.00001

All Prosimians 1 0.902 0.21 20.066 0.017 20.381 0.123 23.94 0.0002 0.324(54) 15.57(2,54) ,0.00001

All Prosimians 2 0.872 0.26 20.072 0.016 20.362 0.096 24.53 ,0.0001 0.338(54) 20.52(2,54) ,0.00001

All Prosimians 3 0.903 0.25 20.071 0.016 20.360 0.124 24.37 ,0.0001 0.322(54) 19.11(2,54) ,0.00001

All Anthropoids 1–3 0.862 0.41 20.071 0.012 20.426 0.061 25.68 ,0.00001 0.200(44) 32.22(2,44) ,0.00001

Note that when l is 0.000, regressions are equivalent to TIPS data (internal branch lengths = 0). Column heading abbreviations: Adj, adjusted; DF, degrees of freedom;
Int, y-intercept; P, probability; RSE, Residual Standard Error. Taxon abbreviations: Th, Teilhardina. Trees:1, MP supertree with molecular divergence dates from Springer
et al. (2012); 2, MP supertree with fossil dictated early branch lengths; 3, adapiform-haplorhine constraint supertree.
doi:10.1371/journal.pone.0067792.t005
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which is defined as representing the common ancestor of

Teilhardina and other omomyiforms (also including Tarsius in all

cases except Tree 4), is also distinct from regions occupied by other

nodes. It is distinguished from the haplorhine region by estimates

with higher calcaneal elongation. The combination of mass and

calcaneal elongation values is matched most closely by Teilhardina

belgica, Tetonius cf. homunculus, and newly described [38] Archicebus

achilles among sampled taxa (Fig. 9A). These reconstructions

essentially lie along the overall euprimate regression line. The

region of the crown anthropoid nodal estimates is well separated

from those discussed so far by having much larger body mass. The

region occupied by the notharctine nodal reconstructions is similar

to that for anthropoids in body mass, but distinct in greater

calcaneal elongation. The basal adapiform, basal strepsirrhine,

and crown strepsirrhine nodal reconstructions occupy a region

distinct from those for euprimateforms, euprimates, haplorhines

and tarsiiforms, but overlap with those of notharctines and crown

anthropoids. The overlap is due to relatively high body mass

estimates for basal adapiforms/basal strepsirrhines and crown

strepsirrhines in tree 1. In the combination of body mass and

calcaneal elongation values, the notharctine and anthropoid nodes

are closest to the primitive Fayum anthropoid Proteopithecus sylviae

among sampled fossils. Not including the tree 1 reconstructions,

the nodal estimates for basal adapiforms, basal strepsirrhines, and

crown strepsirrhines are overlapping with values for the asiadapine

Marcgodinotius indicus.

A plot of residual calcaneal elongation indices based on the

nodal reconstructions for body mass and elongation (Figure 9B)

suggests a pronounced shift towards increasing relative elongation

over time incrementally from the euarchontan through euprimate

nodes. These trends continue in parallel on both strepsirrhine and

haplorhine sides of the euprimate cladogram. After the divergence

of anthropoids and tarsiiforms, the tarsiiform lineage shows a

continued increase in residual calcaneal elongation, while the

anthropoid lineage stops increasing. The galagid lineage shows a

rate of increasing residual calcaneal elongation similar to tarsii-

forms, while the lorisid lineage predictably shows a reversal

towards lower calcaneal elongation.

Discussion

Our results suggest that calcaneal proportions are strongly

influenced by body mass in primates. This allometric effect is

tractable in being linear, with no apparent asymptotes, breaks in

slope, or reversals in slope over the range observed. The

relationship is apparent in both prosimians and anthropoids,

despite the fact that many anthropoids are not ‘‘tarsifulcrumators’’

[29]. The PGLS coefficients of this linear relationship change little

when using different taxonomic subsamples representing either

closely related species or monophyletic clades (Table 5: however,

see further discussion below). Fleagle [96] has described scaling

relationships that behave this way as potentially explainable by the

need to maintain ‘‘functional equivalence’’ whereby changes in

shape maintain proportionality between mechanically relevant

variables. In this case, those variables are likely the moment of the

plantar flexors and body mass. In Fleagle’s words allometric

relationships can be interpreted as lines of ‘‘functional equiva-

lence’’ in ‘‘cases in which… various groups show a similar slope’’

and/or in cases where ‘‘[slope] meets theoretical expectations from

some mechanical mode’’ (p.8). Both of these criteria are met by the

results of our analyses. Demes and Günther [31] also believed that

maintainence of functional equivalence can be expected to drive

covariation between certain variables and body mass. In such cases

they implied that these relationships could be treated as lines of

subtraction: ‘‘variation around those lines reflects the influence of

different ecological niches and selective strategies’’ (p.139).

Despite the observation that the relationship between body size

and calcaneal elongation changes little under certain permutations

of sample composition, we acknowledge that the recovered ‘‘rule’’

of negative allometry is nevertheless contingent on the composition

of the sample, in the sense that one could easily pick out a sample

of primates of different body size with identical calcaneal

elongation values. Furthermore, certain subsamples of our

analyses (e.g., Eocene Primates: Table 5) show a substantially

different slope and intercept than what we consider to be the

‘‘fundamental allometry’’ of the clade. However, our point is that

when sampling either a) the very earliest primates (within the first

million years of the beginning of their fossil record), b) closely

Table 7. Phylogenetic ANOVA of calcaneal elongation residuals (see Table 1: Res A) and distal calcaneal length residuals (see
Table 1: Res B) for extant and subfossil prosimian species means from PGLS line based on ‘‘all primate’’ sample including posthoc
comparisons.

Data grp tree l df MS F P SC/T v AQ SC/T v VCL/L AQ v VCL/L

Res A All 1 0.991 63 0.055 11.6 ,0.0001 20.107 (24.6/0.0001)* 20.112 (23.6/0.0006)* 20.004 (20.163/0.87)

Res B All 1 0.990 63 0.275 2.47 0.07 20.115 (22.2/0.035) 20.109 (21.6/0.123) 0.007 (0.105/0.92)

Res A Anth 1 0.960 33 0.036 4.22 0.012 20.078 (22.9/0.007)* 20.036 (21.0/0.323) 0.042 (1.32/0.195)

Res B Anth 1 0.739 33 0.028 5.35 0.004 20.085 (21.9/0.055) 0.052 (1.06/0.298) 0.137 (3.14/0.004)*

Res A Pros 1 0.993 27 0.027 30.16 ,0.0001 20.298 (26.4/,0.0001)* 20.340 (27.6/,0.0001)* 20.042 (21.18/0.248)

Res B Pros 1 1.000 27 0.258 6.17 0.002 20.389 (22.5/0.018)* 20.525 (23.15/0.001)* 20.136 (21.16/0.256)

Res A Pros 2 1.000 27 0.00023 32.8 ,0.0001 20.279 (26.2/,0.0001)* 20.353 (28.1/,0.0001)* 20.074 (22.46/0.020)*

Res B Pros 2 1.000 27 0.00262 9.038 0.0003 20.327 (22.2/0.037)* 20.582 (24.0/0.0004)* 20.254 (22.54/0.017)*

Res A Pros 3 0.993 27 0.0278 30.75 ,0.0001 20.282 (26.1/,0.0001)* 20.347 (27.8/,0.0001)* 20.065 (22.13/0.042)*

Res B Pros 3 1.000 27 0.317 7.58 0.0008 20.334 (22.18/0.038) 20.548 (23.72/0.0009)* 20.214 (22.14/0.041)

Column abbreviations: df, degrees of freedom; MS, mean squared error within groups from ANOVA; F, F-statistic for ANOVA; P, probability of significant between groups
variance for ANOVA. For each cell of the post-hoc comparison first the difference between group means is given. Then in parentheses the t-value/p-value for a students
paired sample t-test is given. Correction for multiple post hoc comparisons using a sequential Dunn-Šidák correction for k = 3 comparisons and a= 0.05 (Initial a9 = 1- (1 -
a)1/k = 0.0169. If smallest P-value #0.0169, then for the second smallest P-value, a9 = 1- (1 - a) 1/(k21) = 0.026. If the second smallest P-value #0.026, then a9 = a= 0.05 for
last P-value). Asterisks denote a significant P-value.
doi:10.1371/journal.pone.0067792.t007
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related primates (e.g., all species within a genus or extant family),

or c) as exhaustively as possible, the result is negative allometry

with a very similar slope in all cases. The fact that sampling only

Eocene euprimates results in a very different slope may be

explained by insufficient body size range within certain clades

and/or insufficient overlap in behavior among clades.

An additional regression on proximal and distal calcaneal

segments indicates that the change in calcaneal elongation index

with body mass is effected by increasing the proximal segment to a

greater degree than expected for isometry, and increasing the

distal segment by a lesser degree (Table 6) with increasing body

mass. Furthermore, results of phylogenetic ANOVA on elongation

residuals from this regression (Table 7) suggest that at any given

body size, different locomotor repertoires are associated with

different degrees of calcaneal elongation in prosimian primates,

but not in anthropoids. It is also clear that patterns of calcaneal

elongation are clade specific, with strong phylogenetic co-variation

in distal calcaneal length and the calcaneal elongation index used

in this study. As such, for a given taxon, the calcaneal elongation

values of its close relatives better predicts its elongation than

knowledge of its behavioral category. Therefore, estimating

behavior from fossil data using size-standardized elongation must

be done in the context of its close relatives, if at all.

This ‘‘phylogenetic signal’’ in calcaneal elongation is consistent

with the finding of Moyà-Solà et al. [7] that as a group, primates

exhibit greater calcaneal elongation than non-primates. As has

been noted previously [12], among primates as a whole there is not a

consistent association between degree of calcaneal elongation and

leaping, specifically because anthropoids fail to demonstrate this

relationship. However, especially when inferring functional/

adaptive significance of morphological variation during euprimate

origins, it is critical to recognize additionally that: 1) calcaneal

elongation does correlate with leaping proclivity (or at least

locomotor agility) among prosimians, 2) the ancestral euprimate

likely had lower elongation than any similarly-sized extant

euprimates and 3) there are separate parallel trends of increasing

calcaneal elongation in haplorhine and strepsirrhine descendent

lineages from the ancestral modern primate.

Fundamental Allometry of Primate Calcaneal Ratios
Running separate PGLS regressions for extant and fossil taxa

results in similar slopes (20.06 to 20.08) that may represent

something approaching the ‘‘fundamental allometry’’ of calcaneal

shape change when other factors (behavioral shifts/modifications

and random morphological drift) are taken into account. Clearly,

this indicates that body mass can directly influence calcaneal

elongation and should be considered when comparing this

morphology among primates to infer aspects of locomotion.

That calcaneal elongation and body mass are inversely

correlated is perhaps not surprising if one considers that available

muscle force is expected to scale to the 2/3 power of mass [97],

with large animals having relatively less available muscle force in

proportion to mass (Fig. 10). Less calcaneal elongation allows for

more effective mechanical advantage of the Achilles tendon, soleus

muscle, and gastrocnemius (triceps surae). How much does this

allometry mitigate the divergence between mass-to-be-moved and

available muscle force with increasing body size? We can model

the system and provide an estimate: If we assume euprimate

locomotor modes evolved in a 10 gram(g) primate (as suggested by

[98]), then using the average estimate for the ‘‘all primate

regression’’ (Table 4), the distal calcaneal segment (load arm) is

predicted to be 58% of the total, leaving 42% for the heel (lever

arm). If we assume a calcaneal length of 1 unit total, then the

moment of the distal segment is 0.58*(10 g) and the plantar flexors

must contribute 0.42*(13.8 g) of force to simply resist body weight

when both the load- and lever-arms are horizontal (we model this

situation statically for sake of simplicity). Assuming muscle mass

and physiological cross-sectional area scale isometrically with body

mass, then the force that muscles can produce scales to the 2/3

power of the body mass: for instance, in a 100 g animal, the

plantar flexor muscles would only be able to produce 64 g of force

with the same effort. However, if this animal has calcaneal

elongation percentages similar to that of an animal with a mass of

10 g, then the effort required to move the load arm will have

increased by 115% (i.e. it will be 138 g). On the other hand, if the

allometrically expected decrease in calcaneal elongation is applied

to the 100 g animal, the increase in effort is only 53% relative to

the available muscle area. To look at it another way, without the

allometric trend documented here, the effort multiplication

experienced by a 7 kg animal, relative to a 10 g one (3.8 times)

would be experienced already in a 550 g animal (Fig. 10).

Therefore the observed allometric effect delays major increases in

muscle effort by an order of magnitude in body size. The effect of

allometry on the mechanics of primate leaping is also affected by

the size of euprimates when they first appeared (at least in terms of

effort multiplication from a ‘‘starting point’’). We used 10 g

initially, but 75 g or 100 g appear more likely (from the ancestral

state reconstruction analyses – see above). At these masses, the

entire extant prosimian body size range can be covered while

increasing muscle recruitment effort by a factor of 2.5–2.6, instead

of factors of 4.1–4.6, respectively.

This exercise also allows us to assess the evolutionary conditions

under which a euprimate lineage might most easily deviate from

what is predicted from allometric effects. If relative effort is

multiplied as a consequence of body mass increases, it follows that

it will be diminished by body size decreases. Therefore, in a

lineage evolving to smaller body size, calcaneal elongation can be

increased faster than dictated by allometry such that, relative effort

does not decrease, but instead stays the same compared to the

muscle effort experienced by the ancestor. We can model this in a

way similar to what we did for body size increases: specifically we

can ask the question: ‘‘as body size decreases from the ancestral

state, what is the maximum increase in calcaneal elongation that

will keep the relative muscle effort constant?’’ Again, the answer

depends on the starting size of the ancestor. So for a 10 g primate,

with proportions dictated by the ‘‘Eocene primate line’’

(y = 20.0686 –0.386), evolving smaller (which seems unlikely),

to 5 grams, allows a ,4% increase in the length of the distal

calcaneal segment (relative to what would be dictated by the

allometric relationship) without increasing the relative muscle

effort required. However, reduction in mass from 75 g to 5 g in a

lineage would permit a 17% increase in calcaneal elongation

(relative to the allometric prediction). This equates to elongation

similar to that observed in extant Galago senegalensis, but in a much

Figure 8. Representative trees for ASR state reconstruction. Part A shows trees 1 and 2 which differ in branch lengths towards the base of the
tree only. Tree 1 has divergence dates for major extant clades set by molecular evidence. We institute minimum ghost lineages to incorporate fossils.
Tree 2 has divergence dates set by fossil evidence when available such that the creation of ghost lineages is minimized even more. Node numbers of
interest are given for reference with Table 8, and Figure 10. Part B represents tree 3 in which Eocene omomyiforms and adapids are treated as stem
haplorhines [102,108] which we consider the most substantially different, yet potentially correct alternative hypothesis for euprimate relationships.
doi:10.1371/journal.pone.0067792.g008
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Figure 9. Plots of ancestral state reconstructions for nodes of interest in primate evolution. A, Nodal transitions imposed on fossil
morphospace. We plot ancestral state reconstructions (ASR) of body mass and Calcaneal Elongation index on the morphospace of real taxa to
visualize the PGLS-inferred pattern of calcanaeal evolution in the transition from stem- to Euprimates. Colored polygons with numbered points
represent ancestral reconstructions for a given clade among different trees (i.e., different numbers indicate different trees – see Tables S2–S7 in File
S1; Fig. 8). Note that there is slight overlap in the polygons representing the realm of euprimateform ASRs and Euprimate ASRs. The trajectory of
change from the plesiadapoid ASRs to Carpolestes simpsoni is important for this analysis: it corroborates the idea that increases in grasping capacity
should be linked to increases in calcaneal elongation, as C. simpsoni differs from other plesiadapids in having more proficient grasping capabilities
and greater calcaneal elongation, but no evidence of greater leaping proclivities, otherwise [15]. Alternatively, if C. simpsoni is reconstructed as the
sister taxon of euprimates (6), its position in the phylogeny is consistent with a basal trend of gradually increasing elongation relative to body mass.
Regardless of tree used, the euprimate ancestor has lower elongation for its mass than any sampled taxon. This suggests parallel increases in early
haplorhines and strepsirrhines coincidentally moved Teilhardina and Cantius onto the same regression line as defined by all euprimates. Non-
allometric changes evolved through elongation at relatively constant body mass in haplorhines, and through increases in body mass, with only slight
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smaller animal (1/50th the mass). If we imagine that this 5 g

species then began evolving to larger body mass again, and

following the proportional change expected given our allometric

slope of 0.06–0.08, by the time it reached the size of modern

tarsiers (100–120 g), it would have elongation in the range of

omomyines. Since the slope of the allometric line is not one of

perfect functional equivalency, presumably other anatomical/

behavioral changes will accompany decreasing elongation as body

size increases, allowing the animal to meet the demands of the

environment for its locomotion. If some lineage descended from

these hypothetical tarsier-sized primates became smaller again,

more elongation could result without increasing effort. In this

‘‘ladders and chutes model’’ of changing calcaneal elongation,

extreme levels of elongation in galagos and tarsiers could happen

‘‘least expensively’’ through several within-lineage trends of

decreasing and then increasing body mass.

While this model is simplified for the discussion here and by

definition hypothetical in the face of the actual evolutionary

history of primates, it still provides some potentially useful insights

that can be applied to interpreting the morphology of extant and

fossil primates. For instance, the allometric effect of body size has a

much more significant impact in constraining morphology if the

ancestral primate was in the realm of 10 g than if it were closer to

200 g. Additionally, if the ancestral primate was 10 g, with

proportions similar to what are observed for eosimiids estimated at

that body size, then it is unlikely that reduction of body mass in

these taxa could produce the shifts in elongation that we see in

various modern clades. Either subsequent evolution to larger body

sizes would have had to occur first, with reduction in size to follow

(allowing energetic-cost-diminished elongation), or increases in

elongation without body size decreases must have occurred along

with other modifications to behavior that balanced out the

increased muscular effort required by the decreases in mechanical

advantage. Most likely both of these scenarios have operated in

different lineages to allow for non-allometric increases in calcaneal

elongation during the history of primate evolution.

Behavioral and Evolutionary Significance of Changes in
Calcaneal Elongation

Differences among primates with different degrees of

leaping proclivity. Prior to this study the question of whether

and how distal elongation of the ankle reflects leaping proclivity

had been answered in very general terms using an impressively

comprehensive sample [7]. Results from our analyses suggest a

functional association between presence/degree of leaping spe-

cialization and calcaneal elongation, at least among prosimian

primates. The signal from our phylogenetic ANOVA of elongation

residuals, while weak at the scale of all prosimians, suggests

significant differences among leapers (greatest calcaneal elonga-

tion), arboreal quadrupeds (intermediate calcaneal elongation) and

slow climbers/terrestrialists (low calcaneal elongation). We suggest

that this signal appears weaker than it should due to 1) limited

knowledge of the phylogenetic history of prosimians, 2) imperfect

behavioral categories and 3) the limits on ecological diversity

across prosimians primates, that if it were greater, would add

statistical power to our analyses. Within clades striking correlations

between calcaneal elongation residuals and behavior are apparent.

For instance, calcaneal elongation residuals in cheirogaleids is

strongly correlated with differences in leaping proclivity among

taxa described by Gebo [74], with Cheirogaleus major leaping the

least (6% of locomotor bouts) and having the lowest residual

(0.032), Cheirogaleus medius leaping more (21%) and having a higher

residual (0.048), Mirza coquereli leaping more yet (27%) and having

a higher residual yet (0.162) and Microcebus murinus leaping most

(38%) and having the highest residual (0.182). The relationship

clearly applies across lorisiforms (Fig. 11). However, even on the

smaller scale of galagos included in Gebo’s [74] study, there is

some variation that matches previously identified behavioral

differences: Galago senegalensis leaps more than any other galago

(63%) and has the highest residual (0.442). However, variation in

leaping reliance among other galagos, as documented by Gebo

[74], is not correlated with calcaneal elongation residuals (this is

not including Euoticus, whose lower residual yet is predicted by its

use of large diameter supports and claw-clinging [76], see Fig. 11).

Among larger-bodied taxa the relationships generally hold: within

non-cheirogaleid, non-indriid lemuriforms, Daubentonia is the least

specialized for leaping [75] and has the lowest residual value

(0.028), while Varecia is slightly more acrobatic according to Gebo

[74] (leaps were 21–25% of the locomotor bouts) and its residual is

higher (0.048). Lemur catta leaps more frequently when on the

ground (55%) than Eulemur (44%), but less while in the trees (22%

v. 30–37%). Nevertheless Lemur and Eulemur are both more leaping

reliant overall than Varecia and have accordingly higher residuals

(0.072–0.076). Lepilemur is a more committed leaper (no data in

Gebo [74] though) and has a higher residual yet (0.106). Another

group for which the relationship appears to break down slightly is

Hapalemur that leaps more (56% – although it should be noted that

this value is close to that for Lemur catta on the ground), but has

residuals similar to those of other lemurids that leap less (0.070–

0.072). Interestingly, Hamrick [99] has noted that Hapalemur also

lacks predicted adaptations for vertical clinging in its wrist.

Therefore some unappreciated aspect of Hapalemur’s ecology or

evolutionary history may have muted the development of

adaptations to vertical clinging and leaping. Overall the correla-

tion is striking when considering leaping behavior on a finer scale

than done in our phylogenetic ANOVA and looking within

groups.

Going back to the exceptions (some galagos and Hapalemur), an

important point to consider here is that ‘‘average leaping

reliance,’’ as documented by Gebo [73] as a percentage of all

locomotor bouts observed, is neither a sufficient or necessary

condition for the hypothesis that an animal will exhibit adaptations

for leaping. Many assumptions underlie the expectation for such a

correlation. Another behavioral variable that may conceivably

correlate with morphology as well or better than documented

leaping reliance is ‘‘leaping performance.’’ For example, two

species of the same size may use leaping with similar frequency,

but one may consistently leap farther than the other, or, when

stressed, have a maximum leaping distance that is significantly

farther. It should be noted that such definitions of performance are

not necessarily expected to correlate with energetic efficiency in a

behavior so coarsely defined as ‘‘leaping.’’ However, if one were to

increases in elongation among strepsirrhines. B, Elongation residuals for ASRs relative to the ‘‘all euprimate’’ regression line (y = 20.0686+20.39).
Note this shows that despite different evolutionary trajectories of body mass and elongation change in early strepsirrhines and early haplorhines,
both show similar changes in residual elongation relative to the ‘‘euprimate node.’’ Abbreviations: Aa, Archicebus achilles; Adap, Adapiform/ancestral
strepsirrhine nodes; Anth, Anthropoid nodes; Eup, Euprimate nodes; Eupf, Euprimateform nodes; Hpln, Ancestral Haplorhine nodes; Pcd,
Ptilocercidae; Tpd, Tupaiidae; Trsf, Tarsiiform nodes; Ccd, Cynocephalidae; Pr-anth, Protoanthropoid (including eosimiids) nodes; Nn, Notharctine
nodes; Prs, Proteopithecus sylviae; see previous figures for other abbreviations.
doi:10.1371/journal.pone.0067792.g009
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specify ‘‘leaping’’ more narrowly in terms of substrates used and

distances covered, measurements of ‘‘energetic efficiency’’ might

be more closely equivalent to ‘‘leaping ability’’ in terms of

achievable leaping distances. Studies that evaluate leaping

performance in a sample broad enough to be relevant here have

not yet been done. Finally, ‘‘leaping reliance’’ may be defined not

only as frequency during daily routines, but also by its recruitment

for locomotion fulfilling particular, critical roles. That is, a small

percentage of total daily locomotion may serve in predator

evasion, or alternatively, in ambushing prey. However, if a species

has been observed to use leaping during most predator evasion or

predation events, one could reasonably hypothesize that these

events put a strong selection pressure on high leaping perfor-

mance, even if leaping is a small part of the daily routine.

Previous studies have led to the conclusion that after a certain

size threshold, there is no longer a benefit bestowed by ankle

elongation to large leapers [31–33]. Some of the discussion above

notes patterns in our data on lemurids that suggests against this.

Furthermore, several additional lines of evidence show that while

allometric constraints reduce the degree of elongation in large

taxa, offsets between behavioral categories still exist. For example,

while Gebo and Dagosto [33] concluded that the indriid foot was

primarily adapted for climbing, not leaping, we note that the

calcaneus of Indri indri is a strong positive outlier to lemuriform

regressions as well as ‘‘all primate’’ regressions. This is true

whether one considers the calcaneal ratio, or the absolute length of

the distal calcaneal segment relative to body mass (Table 1, Res A–

B). This suggests a leaping effect on residual calcaneal elongation

in Indri. On the other hand the position of other indriids

contradicts the general trend (they are committed leapers, but

have low residuals) and has been difficult to explain [33].

However, it is well-documented by the sub-fossil record that

known indroid outgroups to the extant Indriidae were not leapers

[100]. Furthermore, it is even possible that more than one clade

within crown Indriidae has adapted to leaping independently, and

that different clades have increased leaping specialization at

different times (i.e., some more recently than others). A debated

hypothesis that, if true, would add plausibility to this idea is that

Mesopropithecus, judged to be anti-pronograde due to an inter-

membral index greater than 100 [100], is the sister taxon to extant

Propithecus [101] (and probably Avahi as well). If an independent

behavioral transition to leaping happened very recently in Avahi

and Propithecus, compared to Indri [66], then some aspects of the

skeleton may still be ‘‘adapting’’ in those taxa. Strong phylogenetic

co-variance in calcaneal elongation residuals demonstrated by our

analyses (Table 7, Fig. 11) in fact implies that this is a reasonable

expectation.

Another more recently posited hypothesis based on molecular

data places the Paleopropithecidae as a sister group of indriids,

and places archaeolemurids as sister of these two clades [66].

Regardless of when or how many times leaping evolved in extant

indriids, this suggests a long evolutionary history of non-leaping,

Figure 10. Modeling force magnification plot. We modeled the biomechanical significance of the empirically demonstrated allometry by
assessing the scaling of the relative force needed to balance the load and lever arms of the calcaneus for a primate of varying body mass. We
modeled this with three different ‘‘ancestral sizes’’ 10 g, 75 g and 1,000 g. For each starting weight we modeled the increase in relative effort
required by the m. triceps surae muscles attaching to the calcaneal tuber for size increase with a constant load arm/lever arm ratio (upper, thin-
dashed lines) and with the expected allometric change in load arm/lever arm ratios (lower, thick-dashed lines). We plot values up to 7 kg, the weight
of the largest extant prosimians, and show that the observed allometry reduces the effort multiplication required by the animals’ hindlimbs by as
much as a 9-to24 ratio. Note also that evolving to smaller body sizes yields a diminished effort for constant and allometrically changing load arm/
lever arm ratios. This opens the possibility for evolving ‘‘off’’ the line when body size decreases, without incurring extra effort on the muscular system
(see text).
doi:10.1371/journal.pone.0067792.g010
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slow-climbing, and/or terrestrialism in the indrioid clade. If the

ancestral indriid was a slow climber and/or terrestrial and had

calcanei with extremely low elongation ratios [certainly a

possibility given that such a condition exists in certain subfossil

species (Table 2)], then all extant indriids may indeed have

experienced increases in elongation that cannot be explained by

allometry and reflect increased leaping compared to their

ancestors. While such changes can only be appreciated with

analyses that extensively sample subfossil lemur morphology, the

limited subfossil data in our study show that residual elongation in

extant indriids is greater than that in Archaeolemur, Paleopropithecus,

and Mesopithecus, which are reconstructed as semi-terrestrial,

antipronograde, and slow-climbing, respectively [100] (see

Fig. 11). While Babakotia actually has high residual calcaneal

elongation, as stated in the methods, we do not have specific

predictions for the elongation constraints of inverted quadrupeds,

and/or highly specialized, sloth-like quadrumanous suspensory

taxa. It may be that quadrumanous suspension allows and/or

selects for greater elongation than is possible/useful for prono-

grade and orthograde animals of similar size in some situations.

The fact that Cynocephalus volans has the greatest degree of

elongation among non-primate euarchontans, despite also being

the most massive in this group, may reflect a similar functional

correlation. Comparison of elongation in sloths to that of other

xenarthrans could provide data to test this idea. On the other

hand, Babakotia and Paleopropithecus have the lowest residual distal

calcaneal segment lengths of any sampled euprimate (see Table 1,

Res. B: 20.726 and 20.634, respectively). The only other

primates with similarly low residuals are the hylobatids (Table 1).

Avahi (20.109), Propithecus (20.008), and Indri (0.156) are all much

higher.

Our explanation for the muted pattern of distal calcaneal

elongation among indriid leapers as a consequence of recent and

potentially multiple transitions to leaping from non-leaping

indrioid ancestors, if correct, is most likely still only part of the

story. This muted pattern is plausibly also contingent on, or driven

by, 1) indriid leaping specializations first evolving in an ancestor of

a larger size than the ancestral galagos and 2) the lack of evidence

for any pronounced lineal decreases in body mass among indrioids

[the evolutionary situation in which our model (above) suggests

that increases in tarsal elongation can be most profound]. Our

ASRs suggest that the ancestral galagid was around 250 g, while

the nodes of the indrioid clade are reconstructed as having been

between ,1,500–2,000 g (Tables S2–S7 in File S1) with little

variation and no obvious trends. These data begin to reconcile

ideas about body size limits for ‘‘ankle powered leaping’’ with

apparent paradoxes such as different structural solutions for

leaping employed by taxa of similar body mass (i.e., Avahi and

Otolemur). While our study suggests there is no strict body size ‘‘cut

off’’ for a tarsal-lengthening effect from leaping specialization, a

Figure 11. Box plots of residual elongation. We plot species mean values for residual elongation from the all primate line (Residual A from
Table 1). The distribution of values within clades corresponds very well to degree of agility of locomotion. For fossils the variation corresponds with
locomotor agility hypotheses based on additional skeletal features [30]. When these residual data sets are examined with phylogenetic ANOVA, a
strong relationship between elongation and behavior is revealed (Table 7) meaning that calcaneal elongation is broadly related to behavior in
contrast to the conclusion of Moyà-Solà et al. [7]. See previous figures for taxon abbreviations.
doi:10.1371/journal.pone.0067792.g011

Calcaneal Elongation in Primates

PLOS ONE | www.plosone.org 27 July 2013 | Volume 8 | Issue 7 | e67792



strong tarsal-elongation response to frequent leaping selection

would appear to be most likely in small-bodied lineages rather

than large ones given the constraints of the observed allometric

line and the finding that (according to our model) tarsal elongation

can happen most easily during lineal decreases in body mass.

Ancestral state reconstructions. Among available non-

euprimate eurchontans no clear allometric trend is present

(Table 2). Taxa exhibiting values for calcaneal elongation that

are on the low end of euprimates (for their body masses) are the

plesiadapoid plesiadapiform Carpolestes simpsoni, tupaiid tree shrews,

and the dermopteran Cynocephalus volans. Looking at the nodal

trend leading from the base of Euarchonta to Euprimates shows

predominantly body size increases and minimal elongation

increases (Tables S2–S7 in File S1). While all reconstructions of

the ancestral plesiadapoid have significantly larger body size and

lower elongation than C. simpsoni, we note that poor taxon

sampling of more primitive species may be driving this pattern. If

more primitive, much smaller (and much older) carpolestids such

as Elphidotarsius florencae, and more basal, small plesiadapoids such

as Chronolestes simul could have been sampled, the ASR for

plesiadapoid body mass would likely have been much smaller.

Likewise if one assumes that the ankle morphology of C. simpsoni is

similar to those of both E. florencae (a distinct possibility) and the

most primitive plesiadapoids, then the overall trend in plesiada-

poid evolution leading to C. simpsoni would be reconstructed as

paralleling that leading to the euprimate ancestor more than can

be inferred from our results (Fig. 9A: note right-most dashed

arrow). This possibility can only be directly addressed through new

fossil discoveries.

Regardless of the accuracy of the plesiadapoid ASR in our

analysis, C. simpsoni has a higher elongation residual than any

estimate for the euprimateform node or any nodes more basal,

suggesting corresponding functional differences in C. simpsoni. The

hindlimb skeleton of C. simpsoni does not exhibit obvious potential

correlates of leaping [15]. Instead, the most striking aspects of C.

simpsoni, which distinguish it from other plesiadapiforms, are its

euprimate-like divergent and seemingly opposable hallux, and

short non-hallucal metatarsals [15]. The grasping hallux and

tarsifulcrimating foot of both euprimates and C. simpsoni appears to

have happened coincident with an increase in distal calcaneal

elongation. These acquisitions may have happened in parallel or

may be homologous [15]. The combination of features in C.

simpsoni is consistent with Moyà-Solà et al.’s [7] hypothesis that a

moderate amount of calcaneal elongation in euprimates is a

function of development of a specialized hallux and tarsifulcru-

mating foot, not leaping. More specifically, by analogy with C.

simpsoni (which shows no other obvious correlates of leaping), we

can explain increasing elongation as a result of compensation for

evolution of tarsifulcrumation alone in any primate lineage that

does not exceed the elongation residual values seen in C. simpsoni.

After evolution of the lineage representing the ancestral stock of

crown primates (represented by the ASR for the Euprimate node

in our analyses: see Fig. 9A), subsequent further elongation

(beyond that seen in C. simpsoni) is reconstructed as having

occurred along branches leading to the ancestral strepsirrhine and

haplorhine lineages (Fig. 9A, B). This further elongation therefore

exceeds the amount explainable by acquisition of a tarsifulcrumat-

ing foot.

Other authors have suggested that the didelphid Caluromys might

be the best available analogue for early euprimates [10,11,98]. A

cursory look at didelphids does not provide any support for Moyà-

Solà et al.’s [7] hypothesis. Despite increased specialization of the

hallux and greater prehensility compared to some of its relatives,

the arboreal marsupial Caluromys philander does not exhibit

increased actual or a higher residual calcaneal elongation [n = 3,

ln(DL/TL) = 21.4060.05; ln(CW*CD) = 1.5360.15 (body mass

estimate using equation derived from primates = 161 g); residual

from all primate allometric line = 20.6860.04] compared to its

more generalized scansorial relative Monodelphis brevicaudata [n = 3,

ln(DL/TL) = 21.3060.06; ln(CW*CD) = 0.5660.08 (body mass

estimate using equation derived from primates = 45 g); residual

from all primate allometric line = 20.6260.07]. At the very least,

this suggests phylogenetic dependency on whether the hallucal

grasp complex is functionally correlated with the distal calcaneal

segment length.

If C. simpsoni is reconstructed as the sister taxon of euprimates to

the exclusion of other plesiadapoids (Table S7 in File S1; Fig. 9A,

note left-most dashed arrow), its position in the phylogeny makes it

a contributer to the basal trend of gradually increasing elongation

relative to body mass – which could relate to selection for both/

either improved grasping and/or leaping early in primate

evolution. Undoubtedly the large differences in the reconstructed

evolutionary history of body size change implied for the lineage

leading to C. simpsoni is greatly influenced by missing data on small-

bodied early plesiadapoids such as Chronolestes simul, Pronothodectes

matthewi, and Elphidotarsius florencae.

The trajectories in both haplorhine and strepsirrhine lineages

suggest significant functional/behavioral shifts associated with

increasing elongation, because these increases do not follow the

allometric slope identified earlier in this study. Haplorhines

evolved mainly by increasing elongation at the same size as the

ancestral euprimate, while strepsirrhines evolved mainly by

increasing in body size with only slight increases in elongation

compared to the ancestral euprimate. Nonetheless, improved

leaping in both clades is suggested by the fact that they both

approach, rather than parallel, the ‘‘all euprimates’’ regression line

(thereby acquiring greater ‘‘body-size standardized’’ elongation

than hypothetical taxa represented by more basal nodes). This

pattern is also clear on a plot of residual elongation against node

depth (Fig. 9B). The evidence for parallel evolution of elongated

tarsals is consistent with the long known fact that omomyiforms

have increased their foot length by significantly lengthening bones

of the foot beyond the transverse tarsal joint (cuneiforms and

cuboid) possibly beyond the degree exhibited by extant cheir-

ogaleids in many cases [30].

It is important to note that the ancestral state reconstructions

here suggest that calcaneal elongation as seen in the early fossils

Teilhardina, Anchomomys or Cantius, or leaping proficiency as seen in

even ‘‘generalized’’ modern strepsirrhines, was not a synapomor-

phy of Euprimates. This is especially relevant given uncertainties

about the functional significance of nails compared to claws and

the observation that anatomical details of distal phalanges

exhibited by early omomyiforms [52] differ markedly from those

of early adapiforms [102]. If nails are particularly relevant in

improving leaping performance then we might even expect that

non-hallucal nails evolved in parallel with improved leaping in two

major clades of euprimates (possibly from a common ancestor

having a more ‘‘Carpolestes-like’’ foot). A leaping adaptation for

nails remains plausible since specialized hallucal grasping alone

does not explain the loss of claws (as specialized graspers Caluromys,

Petaurus, and many other marsupials retain large non-hallucal

claws, while also sporting a large, divergent opposable hallux with

a nail). Furthermore, the idea that nails evolved to aid grasping in

large-bodied arborealists [103] cannot be entertained given the

presence of nails in 30 g Teilhardina and the lack of fossil evidence

for more basal euprimates having been any larger than this.

Another implication of the ancestral state reconstructions is that

the evolution of notharctines is not explained by decreased
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elongation due to increasing body size from an animal similar in

size and ankle proportions to Teilhardina. In other words, the

alignment of Teilhardina with notharctines along the ‘‘all eupri-

mates’’ regression line would appear to be coincidental relative to

the phylogenetic history of the two groups. This also means that it

is difficult to talk about ‘‘behavioral equivalence’’ in these two taxa

relative to the allometric line. This perspective, that Teilhardina and

Cantius have achieved ankle elongation in parallel and cannot be

equated or contrasted behaviorally, would be further supported if

future discoveries of Teilhardina show the typical omomyiform

pattern of cuneiform elongation. This raises the question of ‘‘for

what clades does the allometric relationship explain reconstructed

evolutionary change?’’ There are several. The evolution of

adapines from an asiadapine-like ancestor could be explained by

increases in body mass with allometrically expected decreases in

elongation. Notharctine evolution starting with known Cantius is

explained by increases in body size with allometric decreases in

ankle length. Likewise, Omomyinae have followed an allometri-

cally predicted decrease in ankle elongation from a smaller-bodied,

more basal tarsiiform. Finally, the morphological change in

anthropoid calcaneal proportions can be explained by the

allometric expectation of decreasing ankle elongation from an

eosimiid-like ancestral haplorhine.

Behavioral Interpretation of Specific Early Euprimates
We were able to resolve and account for allometric effects on

calcaneal elongation in this study, providing improved potential

for interpreting the behavioral significance of residual calcaneal

elongation. However, because of the strong phylogenetic co-

variance of calcaneal elongation recovered in our analyses,

reconstructing locomotor behavior from the calcaneus alone must

take into account several lines of information. The presence of

parallel trends of increasing elongation in basal haplorhines and

strepsirrhines (i.e., which goes beyond what might be expected for

improvements related to grasping alone [7]) suggests consistent

presence of selection for improved leaping (given other results

presented here suggesting an association between leaping procliv-

ity and calcaneal elongation in extant prosimians). Selection for

improved leaping implies that leaping must have constituted an

important activity in the locomotor strategies of at least the earliest

ancestors of both haplorhine and strepsirrhine clades. If we try to

answer the question ‘‘how much did they leap and how

effectively?’’ the only answer that is defensible is ‘‘enough that it

improved their fitness if they did it well.’’ As discussed above, this

might mean very infrequently relative to the daily activities of a

given animal. Therefore, leaping frequency need not have

increased, but leaping performance probably did. This again

reveals a gap in the behavioral data needed to assess the functional

significance of calcaneal elongation. Behavioral categories based

on overall frequency of different behaviors [74] are not enough.

What is really needed is a classification based on 1) performance in

certain settings, and 2) frequency of use in specific settings where

fitness gradients are likely to be high (e.g., predator escape,

predation). Defining performance is clearly a difficult task as it

requires artificial behavioral classifications and assumptions about

the critical aspects of performance. Technological advances in lab

and field methodologies should make future collection of such data

increasingly feasible.

With all of these caveats in mind we now re-consider the

behavioral significance of calcaneal elongation in various fossil

primates when allometry and phylogenetic co-variance are

accounted for.

Notharctines. Gebo [30], Rose and Walker [104], Gebo

et al. [40], Fleagle and Anapol [105], Schmitt [106], Silcox et al.

[107] and others have interpreted a similar range of locomotor

behaviors for early North American notharctines. Most authors

suggest that Notharctus and Smilodectes exhibit some degree of VCL

leaping with increased leaping proclivities compared to Cantius, the

most basal notharctine. Previous studies of the calcaneus added

little to these interpretations. For instance, Gebo et al. [40]

documented that Notharctus exhibited less calcaneal elongation

than Cantius. While this is true, it appears to contradict the general

conclusion about notharctine behavioral differences outside of an

allometric context. As we have shown, most of the difference in

calcaneal elongation among early North American notharctines

can be explained by body size differences. However, if one

examines the residual calcaneal elongation values (Table 1;

Fig. 11), Notharctus actually exhibits a higher elongation residual

(indicating more elongation for its body size) than all species of

Cantius. Smilodectes exhibits less elongation than Notharctus, which

actually is consistent with locomotor interpretation based on

analyses of the humeral head [106]. Therefore an allometric

treatment of calcaneal elongation returns a pattern broadly

consistent with that from other regions of the skeleton and

indicative of more leaping in Notharctus than in Cantius

[30,106,107]. Comparing residual calcaneal elongation of these

fossils with that of extant taxa, shows the fossils to exhibit less

residual calcaneal elongation than most arboreal quadrupedal,

leaping and vertical clinging and leaping primates. This likely

indicates that leaping behaviors were not as effective in any early

Eocene adapiforms. This is consistent with a recent analysis of

body proportions by Gingerich [108], showing Notharctus to be

most similar to Cheirogaleus and well-separated from leapers it has

been compared to previously like Lepilemur and Avahi. Therefore,

despite the possibility that differences between Notharctus and

extant leapers are results of clade shifts in morphology that are not

reflected by behavior, the fact that the rest of the skeleton lacks

leaping specializations decreases the likelihood of this for us. By

extension, Cantius and Smilodectes would also be considered

ineffective or infrequent leapers. The inference for these latter

taxa could be tested with analyses of more complete skeletal

material.

Asiadapines. Rose et al. [37] argued that early Eocene

(,53–54 mya) adapiforms Marcgodinotius and Asiadapis from

Gujarat, India, could be reconstructed as active arboreal

quadrupeds with some leaping proclivities based on phenetic

similarity to Cantius. For the calcaneus, taking a phenetic approach

to a locomotor reconstruction is problematic given the results of

this study. Given the small body size of asiadapines compared to

Cantius, the similar levels of calcaneal elongation equate to very low

residual calcanael elongation suggesting a slow-climbing lifestyle

(Table 1; Figs. 4, 5, 6, 7, 11). What is unclear from our ancestral

state reconstructions is whether asiadapines have reverted to

smaller body size and shorter ankles from a larger-bodied, longer-

tarsaled ancestor (as implied by ASRs based on the maximum

parsimony supertree – Table S2 in File S1) or whether the

common ancestor of asiadapines and its sister taxon had body-

mass and elongation proportions more similar to asiadapines. If

the former scenario is true, this definitely suggests a decreased

emphasis on leaping in these taxa relative to the general

strepsirrhine stem. If the latter is true, it is more difficult to

reconstruct their locomotor repertoire relative to other primates.

However, in either case, short ankles at such small body size would

appear to suggest relatively ineffective leaping. Turning to other

features of the asiadapine skeleton: although astragalar depth and

a strong posterior trochlear shelf (present in asiadapines and

Cantius) may demonstrate leaping, this has never been broadly

demonstrated aside from contrasts between lorisids and other
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strepsirrhines. Furthermore, the femur does not demonstrate

leaping proclivities beyond what might be expected in a mainly

quadrupedal Cheirogaleus. One feature not mentioned by Rose

et al. [37] which suggests against leaping is the very distal position

of the third trochanter (it is positioned distal to the lesser

trochanter). This morphology is reminiscent of other taxa which

lack prosimian-like specializations for leaping such as sciurid

rodents, plesiadapiforms [109], and basal stem catarrhines [110].

In sum, we think Rose et al.’s [37] interpretation of these taxa

could be correct, depending upon how the morphology of

asiadapines compares to the ancestors they share with other

strepsirrhines. However, in the context of our analysis the

available data seems to suggest that compared to notharctines

including early Cantius, asiadapines were less specialized for and

probably less effective at leaping.

Adapines. Various authors [30,111] have interpreted Adapis

and Leptadapis as cautious slow-climbers and possibly lorisid-like.

Our results corroborate this perspective.

Anchomomys. Roig et al. [112] and Moyà-Solà et al. [7]

made a different allometry-based argument for the lack of

specialized leaping in Anchomomys frontanenysis. Their study was

apparently motivated by the seemingly high degree of calcaneal

elongation in this small-bodied adapiform. Their conclusion was

thus somewhat surprising given the qualitative appearance of

strong elongation in this bone. In our analyses, Anchomomys exhibits

moderate residual calcaneal elongation compared with other early

euprimates: it is higher than in any notharctines, Teilhardina and

Tetonius, yet lower than in Absarokius and omomyines (Table 1,

Fig. 11). This suggests to us that the Anchomomys lineage

experienced selection for greater improvements in leaping

compared to lineages of notharctines, Teilhardina, and Tetonius,

though we would not argue that it was a specialized vertical clinger

and leaper and are basically in agreement with Roig et al. [112]

and Moyà-Solà et al. [7] on this point.

Omomyiforms. Based on a variety of postcranial elements

Gebo [30] argued that omomyiforms were ‘‘cheirogaleid-like in

their locomotor behavior.’’ He also argued that anaptomorphines

(Teilhardina and Tetonius) relied on specialized leaping to a lesser

degree than omomyines (Arapahovius, Hemiacodon, and Washakius) or

microchoerines. Our results for the same taxa are completely

consistent with this conclusion. The ‘‘anaptomorphines’’ have

residual calcaneal elongation that is lower than and non-

overlapping with that of omomyines in our analyses (Table 1,

Fig. 11). However, our study included additional anaptomorphines

(Absarokius) and omomyines (Omomys). Absarokius shows greater

residual calcaneal elongation than Shoshonius, so the pattern is no

longer as clean. Furthermore, recent phylogenetic analyses based

on large data sets rarely recover ‘‘anaptomorphine’’ and

‘‘omomyine’’ clades as delimited above [54,113,114]. For instance

Arapahovius is now usually reconstructed as phylogenetically closer

to ‘‘anaptomorphines’’ than omomyines. When interpreting

behavior from the calcaneus in omomyiforms an important

additional consideration is the contribution of the distal tarsal

elements to overall tarsal elongation, which is lacking in other

euprimates with calcaneal elongation. Savage and Waters [115]

attribute cuboid bones to both Tetonius and Arapahovius. That

attributed to Tetonius has little more elongation than what is seen in

much larger notharctids, while that of Arapahovius shows more

elongation. This suggests that while the degree of distal calcaneal

elongation in Tetonius has an effect on overall elongation of the

tarsus, which is similar to that in other euprimates, in other

omomyiforms calcaneal elongation is only part of the story. This

therefore accentuates the implied differences in overall tarsus

elongation suggested by differences in residual distal calcaneal

elongation observed in Tetonius as compared to Arapahovius (Fig. 11).

Nevertheless, this additional information on the cuboids is

consistent with the information from the calcanei. Therefore it is

valid to state that Teilhardina and Tetonius (‘‘anaptomorphines’’)

show equivalent distal calcaneal elongation to notharctines that

suggests a similar, mainly quadrupedal Cheirogaleus-like behavioral

repertoire, while Absarokius as well as Arapahovius, Shoshonius,

Washakius, Omomys and Ourayia (‘‘omomyines’’) appear more

similar to Microcebus and other more leaping–reliant extant

lemuriforms. Other authors have come to similar conclusions

based on studies that sampled a greater diversity of elements from

within the skeleton (like Gebo), including Anemone and Covert

[116], Covert and Hamrick [117] and Covert [118]. These

patterns reveal more explanatory power for inferring behavioral

differences from calcaneal elongation than previously recognized.

For instance, Gebo [30] and Dagosto et al. [36] concluded that

calcaneal elongation did not differentiate anaptomorphines and

omomyines, as we would have also done without taking into

account allometric patterns.

Note added in press Archicebus Achilles. Ni and col-

leagues [38] recently described Archicebus achilles, the most complete

associated and semi-articulated partial skeleton and skull of an

omomyiform. The specimen is from the early Eocene of China

and may be close in age to some species of Teilhardina. A. achilles is

similar to Teilhardina in morphology, in dimensions of the

dentition, skull, and orbits; and in estimated body mass (e.g., see

tables S3–4 of [38] and figure S9 of [38]). Nevertheless, the

phylogenetic analysis of Ni et al. [38] recovers this taxon as a more

basal species of omomyiform than any species of Teilhardina based

on subtle differences in dental features interpreted as more

primitive (larger P1, smaller P4 metaconid, and low-crowned lower

premolars) and a shorter, broader distal calcaneal segment. If A.

achilles is closer to the ancestor of tarsiiforms than species of

Teilhardina, then this specimen provides a test of the morphological

hypothesis generated by our ancestral state reconstructions (ASR),

and allows further consideration of our proposal that patterns of

calcaneal elongation reflect the importance of leaping behaviors in

early primate evolution. The observation by Ni et al. [38] that A.

achilles has a distal calcaneus that is shorter than in Teilhardina runs

contrary to the predictions of our ASRs, which show the ancestral

tarsiiform to be essentially identical to Teilhardina in calcaneal

proportions.

To evaluate the calcaneal morphology of A. achilles for ourselves,

we compared the measurements taken on A. achilles by Ni et al.

[38] (Table S2 in [38]) to those we took on Teilhardina belgica and

reported here (Table S1 in File S1). In fact, the measurements

given for A. achilles (TL = 6.5, DL = 3.39, CW = 1.76, CD = 1.28)

are almost identical to those measured by us for T. belgica IRSNB

M1237 prior to the publication of [38] (Table S1 in File S1:

TL = 6.52, DL = 3.377, CW = 1.58, CD = 1.11). While the cuboid

facet measures for A. achilles are slightly larger than those of

IRSNB M1237, we have noticed a similar discrepancy between

our measurements of cuboid facet dimensions on T. belgica and

those of Gebo et al. [119] on the same specimens (compare our

Table S1 in File S1 to table 6 in [119]).

Of course, our ASRs refer to the calcaneal elongation index, not

absolute length of the distal calcaneal segment. The calcaneal

elongation index for A. achilles based on these measures (52% or

20.654 as log-transformed ratio) is slightly greater than that for

IRSNB M1237. In terms of residual values, A. achilles is calculated

at 0.01 (compare to ‘‘Res A’’ of Tables 1–2; Figs. 9A, 11). This is

higher than the average value for T. belgica (0.002) (Table 2, Res A;

Figs. 9A, 11). IRSNB M1247 has the highest residual of any T.

belgica individual we measured, and its value is 0.01, identical to
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that of A. achilles. However, we note that residual values are

affected by mass estimates, and our regressions using the calcaneal

cuboid facet give a higher estimate of mass in A. achilles (62 g) than

obtained by Ni et al. [38] (20–30 g). This value is also slightly

greater than our average estimate for T. belgica (47.25 g: see Table

S1 in File S1). Several pieces of evidence suggest that Ni et al. [38]

underestimate the mass of both Teilhardina and Archicebus by a

small, but (in this context) important margin: 1) They rely partly

on Gingerich’s [120] ‘‘tarsioid’’ regression, which is not actually an

empirical result based on independent data, but is a composite that

assumes the slope of his ‘‘non-tariser primate’’ regression and

extrapolates an intercept using body mass and tooth dimensions of

Tarsius alone - using this line assumes all tarsiiforms have the

greatly enlarged teeth of modern Tarsius, which is not necessarily

justified since this is likely an adaptation for the unusual tarsier

habit of strict faunivory, not likely shared by most omomyiforms;

2) their skull width and body length data show A. achilles to be

slightly larger than Microcebus berthae which ranges up to 38 g

according to their sources; 3) the cuboid facet dimensions they

report for A. achilles match our measurements for Microcebus

griseorufus (Table S1 in File S1) and our body mass estimates for M.

griseorufus at 59–72 g (Table S1 in File S1) are correct to within

about 5% of species/sex means. On the other hand, if we had

been able to take measurements on the cuboid facet directly rather

than using values published by Ni et al. [38], we expect those

values would have been slightly smaller and indicated a body mass

in the 40–50 g range (overlapping with our estimates for T. belgica).

Regardless of the exact body mass, it is clear that T. belgica and A.

achilles are extremely similar in size. Given their identical calcaneal

proportions, they should share a similar calcaneal elongation

residual.

Therefore, the morphology of A. achilles actually matches very

closely the predictions of the hypothesis generated by our ancestral

state reconstructions as it plots within the limits of the mean

estimates for the ancestral tarsiiform (Fig. 9A). Furthermore, the

presence of a low intermembral index, and leaping features in the

femur of A. achilles as noted by [38], are consistent with our

suggestion that calcaneal elongation increased as a result of

consistent pressure for effective leaping in early euprimate

evolution.

What is Leaping for?
A careful consideration of the results of this study suggests

strongly that there was selection for increased calcaneal elonga-

tion, and thus arguably improved leaping, leading up to and

extending into early euprimate evolution. What aspect of the

environment of early euprimates selected for these changes? In

other words – what was/is the biological role [121] of leaping?

The possibilities are numerous. Crompton and others have

provided a compelling argument for predator avoidance being a

primary driver, based on studies of the context in which maximum

leaping performance is utilized in extant prosimians [122].

Leaping might also provide a more energy efficient way of

navigating a discontinuous foraging environment [3,8,9]. Finally,

leaping might have evolved as part of a predatory ambush pattern

as is utilized by some insectivorous primates today. It seems likely

that all of these factors (and more) have either helped to maintain,

or selected for improvements in leaping proficiency in different

primate lineages throughout the clade’s evolution. Determining

which, if any, of these factors dominated at the beginning of

primate evolution is beyond the scope of this paper. Such a

question might ultimately be addressable with a more complete

picture of changes in early primate and euprimate morphology in

combination with information on fine scale changes in the

environmental context of these animals. Such a picture can only

be generated with paleoenvironment reconstructions (including

community structure) that have fine temporal resolution, and with

more complete anatomical and taxonomic sampling of early

primates.

Conclusion
Returning to our original questions, we conclude that there is a

consistent relationship between calcaneal elongation and body

mass among primates as a whole, in which larger taxa have

predictably lower degrees of calcaneal elongation. Behavioral

differences for more acrobatic leaping are associated with greater

calcaneal elongation at all body sizes, while slow, cautious

climbing and terrestriality is associated with lower calcaneal

elongation in prosimians with a tarsifulcrumating foot. Anthro-

poids do not have a leaping related signal imposed on allometric

variation in the calcaneus, probably due to the evolutionarily-

frequent anatomical departure from a tarsifulcrumating foot.

However, arboreal quadrupedal anthropoids have a more

elongate ankle than anthropoid slow-climbers or terrestrialists.

Although variance in calcaneal elongation among fossil taxa

correlates better with previously suggested behavioral differences

for these same species when taking allometry into account, strong

phylogenetic covariance in size-‘‘corrected’’ calcaneal elongation

makes it difficult to reconstruct locomotor behavior by pure

analogy to extant forms. This strong phylogenetic covariance and

ASRs showing that various taxa must have had ancestors first

beginning to specialize in leaping at substantially different body

sizes helps explains why today some similarly-sized, leaping reliant

taxa (e.g., Otolemur and Avahi) have very different degrees of

calcaneal elongation.

Initial increases in calcaneal elongation during the euprimate-

form-euprimate transition may have been due to the acquisition of

a grasping hallux and tarsifulcrumating foot, as suggested by the

presence of a grasping hallux and a more elongate distal calcaneus

in the stem primate Carpolestes simpsoni, which may represent either

the ancestral state for euprimates or a parallel acquisition under

very similar conditions. Subsequent increases in calcaneal

elongation occur in parallel among stem haplorhines and stem

strepsirrhines and are best explained by persistent selection for and

improved performance in acrobatic leaping ability. We also note that

even in the case in which calcaneal elongation increases appear

related to increased grasping ability and to ‘‘recovery of lost load

arm’’ this would actually imply selection for maintenance of some

critical amount of leaping ability during the euprimate transition –

meaning that either way, leaping behaviors were important at the

origin of Euprimates. Clearly increases in calcaneal elongation are

not a de facto consequence of increased hallucal specialization as

illustrated by the lack of elongation in the didelphid Caluromys as

compared to Monodelphis.

Finally, even though it seems justifiable to conclude from

patterns of calcaneal elongation observed in this study that there

was some selection for more agile behavior over the course of the

euprimateform-euprimate transition, the first animals to benefit

from improvements in leaping ability would not likely have been

particularly good leapers by modern standards. This is supported

by the mechanical consequences of their still relatively short limbs

and the lack of a I-II pedal grasp type in larger forms like Cantius.

Accordingly, regardless of the importance of leaping behaviors to

their fitness, the earliest sampled euprimates Teilhardina and Cantius

(and Archicebus) most likely had leaping abilities that were more

closely analogous to those of generalized arboreal quadrupeds like

the dwarf lemurs (Cheirogaleus) based on similar calcaneal

proportions and other proportional similarities throughout the
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skeleton. Therefore, based on these data, we are hesitant to

speculate on the degree to which large forward-facing eyes (which

presumably evolved during the euprimateform-euprimate transi-

tion) were adaptive in the context of a suite of features allowing

highly acrobatic leaping. Nevertheless, prior advancements in the

visual system were likely critical for subsequent improvements in

leaping behavior during early euprimate evolution. Finally, the

parallel acquisition of leaping specialization in haplorhines and

strepsirrhines hints at the possibility of parallel acquisition of other

features that can be functionally related to leaping, even including

those features that have been thought of as euprimate synapo-

morphies in the past.
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