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A B S T R A C T   

Heavy metal pollution of water is a burning issue of today’s world. Among several strategies 
involved for heavy metal remediation purpose, biomineralization has shown great potential. Of 
late, research has been focused on developing effective mineral adsorbents with reduced time and 
cost consumption. In this present paper, the Biologically-Induced Synthetic Manganese Carbonate 
Precipitate (BISMCP) was produced based on the biologically-induced mineralization method, 
employing Sporosarcina pasteurii in aqueous solutions containing urea and MnCl2. The prepared 
adsorbent was characterized using Fourier transform infrared spectroscopy (FTIR), scanning 
electron microscopy (SEM), SEM-energy dispersive X-ray spectroscopy (SEM-EDX), X-ray 
diffraction (XRD) and BET surface area analyzer. EDX analysis showed the elements in the crystal 
BISMCP were Mn, C, and O. XRD result of BISMCP determined the crystal structure, which is close 
to rhodochrosite (MnCO3). Spectral peaks of FTIR at 1641.79 cm− 1 confirmed the appearance of 
C––O binding, with strong stretching of CO3

2− in Amide I. From the six kinds of BISMCP produced, 
sample MCP-6 has the higher specific surface area by BET analysis at 109.01 m2/g, with pore size 
at 8.76 nm and higher pore volume at 0.178 cm3/g. These specifications will be suitable as an 
adsorbent for heavy metal removal by adsorption process. This study presents a preliminary 
analysis of the possibility of BISMCP for heavy metals adsorption using ICP multi-element stan-
dard solution XIII (As, Cr, Cd, Cu, Ni, and Zn). BISMCP formed from 0.1 MnCl2 and 30 ml of 
bacteria volume (MCP-6) produced a better adsorbent material than others concentrations, with 
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the adsorption efficiency of total As at 98.9%, Cr at 97.0%, Cu at 94.7%, Cd at 88.3%, Zn at 
48.6%, and Ni at 29.5%. Future work could be examined its efficiency adsorbing individual heavy 
metals.   

1. Introduction 

Heavy metal pollution has become ubiquitous in nature. The hazardous effect of heavy metals can be marked everywhere from the 
water and soil to the living entity. Being soluble in nature, it causes interference with the human physiological processes which in turn 
leads to several health disorders. Industrial development is the main cause of this heavy metal pollution; hence attention has been paid 
to treat this industrial effluent before releasing it into the environment [76]. Numerous methods have been reported to remove heavy 
metals from the environment, including electrolytic deposition [61], electrochemical [85], ion exchange [64], chemical 
oxidation-reduction [90], electro-dialysis [39], reverse osmosis [39], membrane separation [70], and solar water evaporation [89]. 
Instead of having high efficiency these methods are associated with some limitations as well for example high energy consumption, 
high operation cost, production of toxic sludge etc. The adsorption process is the most commonly used and preferred method for heavy 
metal removal. This process occurs when the adsorbate is bound to the surface or inside the adsorbent [27]. The adsorption process 
uses synthetic or natural adsorbents and is simple, cost-effective, and versatile in nature [64,76]. However, recent studies concerned in 
the development of efficient adsorbent material synthesis, having high-efficiency, high surface area and porosity, but also with reduced 
synthesis time and cost of adsorbents [34]. Some prominent adsorbents, such as carbon, exhibits great ability for adsorption due to 
their large surface area and ease of modification with other chemicals. However, the manufacturing cost is high, disposing of activated 
carbon is difficult, and the regeneration process takes a long time [57,84]. Thus, to overcome these challenges sustainably, green 
synthesis of mineral is on demand which will serve both the purpose of efficiency as well as cost effectivity. 

Biomineralization is one such sustainable approach in which living organisms (bacteria, fungi, algae) combine a number of metal 
ions (Ca, Fe, Mg, and Mn) with different anions (carbonate, phosphate, oxalate, sulfate, oxides, and sulfides) to produce minerals [9,10, 
17,35,43,69,71]. The process can further sub-classified into biologically controlled mineralization, biologically influenced minerali-
zation, and biologically induced mineralization [52]. In biologically controlled mineralization, the organism directly affects the 
nucleation, growth and morphology (such as size, texture and orientation) of the material by controlling the entire biomineralization 
process through cellular activities [65]. Biologically influenced mineralization is known as passive mineralization, such as mineral-
ization on cell surfaces or mucilaginous or Extracellular Polymeric Substances (EPS) [21]. In biologically induced mineralization, 
mineral formation occurs when the organisms alter their local micro-environment and foster the extracellular precipitation of mineral 
phases [54]. This mechanism is known as active mineralization, in which the mineral is formed involving diverse bacterial metabolic 
pathways (e.g., ureolytic/urea hydrolysis, denitrification, sulfate reduction, iron reduction, and anaerobic sulfide oxidation) [21,54, 
59,78]. 

In bacterial-induced mineral precipitation, several bacteria have the ability to participate such as Cyanobacteria, sulfate-reducing 
bacteria, Bacillus, Myxococcus, Halo bacteria, Pseudomonas, and Sporosarcina [81]. It has been proven that Sporosarcina pasteurii 
(S. pasteurii) causes mineralization through the biologically induced mineralization mechanism [6,7]. S. pasteurii is a non-pathogenic, 
ureolytic, aerobic, and alkaliphilic bacteria with a high specific surface area of cells, low aggregation between cells, and the capacity to 
utilize urea as an energy and nitrogen source in metabolism, all of which contribute to their tremendous ability to adapt in the 
environment [87]. In the work of Hatayama [33]; MnCO3 induced aerobically by calcite-forming bacteria was studied using 
E. adhaerens, M. testaceum, Ps. protegens, and R. texasensis on agar medium at 28 ◦C for over seven days. They found that MnCO3 
occurred extracellularly, and the increased pH would generate carbonate ions to form MnCO3 with Mn ions. Furthermore Rivadeneyra 
et al. [67], formed mineral precipitates of rhodochrosite and dolomites using Halomonas maura in low or high MnCl2 concentration. 
Their result showed that H. maura plays an essential role in biomineralization, in which the absence of bacteria has resulted in no 
precipitation that occurs with heat-killed cells. This observation could confirm that H. Maura acts as an inert nucleation site for 
precipitation and has an active role in other halophilic and non-halophilic microorganisms, as reported by Cailleau et al. [12] and 
Sanchez-Roman et al. [68]. Thus, the bacteria had a large effect in these studies, but geochemical conditions and manganese con-
centrations were also particularly influential. 

Numerous methods have been reported to remove heavy metals from the environment, including electrolytic deposition [61], 
electrochemical [85], ion exchange [64], chemical oxidation-reduction [90], electro-dialysis [39], reverse osmosis [39], membrane 
separation [70], and solar water evaporation [89]. These methods are highly effective but have high operation costs and energy 
consumption and are often linked to the production of toxic sludge [23,76]. The adsorption process is the most commonly used and 
preferred method for heavy metal removal. This process occurs when the adsorbate is bound to the surface or inside the adsorbent 
[27]. The adsorption process uses synthetic or natural adsorbents and is simple, cost-effective, and versatile [64,76]. However, recent 
studies have pointed out a concern in the development of adsorbent material synthesis, which needs to be high-efficiency, with high 
surface area and porosity, but also with reduced synthesis time and cost of adsorbents [34]. Some prominent adsorbents, such as 
carbon, exhibit great ability for adsorption capacity due to their large surface area and ease of modification with other chemicals. 
However, the manufacturing process is high-cost, activated carbon is challenging to dispose of, and the regeneration process is 
time-consuming [57,84]. 

The present study aims at the development of MnCO3 precipitate through biologically-induced mineralization mechanism 
employing Sporosarcina pasteurii as a catalyzing agent. Factor affecting precipitation, such as concentration of MnCl2 has been 
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evaluated and tried to identify the best adsorbent based upon characterization. Adsorption potential of heavy metal of the prepared 
adsorbent has been investigated. In addition, the mechanism, involved in the mineralization process has also been highlighted in this 
work. 

2. Experimental section 

2.1. Chemical and reagents 

A non-pathogenic bacteria S. pasteurii was inoculated in Tris-YE medium to grow the bacteria, was reported by Stocks-Fischer et al. 
[73] and Ghosh et al. [31]. The following chemical reagents was purchased from Sigma-Aldrich as (NH4)2SO4, Yeast extract, 
MnCl2⋅4H2O, Tris-Base, Urea and ethanol. 

2.2. Bacteria growth conditions 

Sporosarciana pasteurii DSM 33 was inoculated in Tris-YE medium [31,73], containing 0.13 M Tris-Base, (NH4)2SO4 10 g, and yeast 
extract 20 g, in 1 liter of distilled water at pH 8.5. The culture medium was shaken at 160 rpm under incubation at 30 ◦C for 48 h. The 
optical density (OD) of the S. pasteurii solution reached about 1.4, as recorded by evaluating the bacterial broth using UV–Visible 
spectrophotometry (Prema Pro-739) at a wavelength of 600 nm [6,7]. 

2.3. Synthesis of BISMCP 

The details of synthesis conditions are listed in Table 1 for samples 1 to 9 (MCP-1 to MCP-9) [6]. 
Based on Atla et al. [6]; this study synthesizes BISMCP through biologically induced mineralization. The MnCl2⋅4H2O at various 

concentrations (i.e., 0.01 M; 0.1 M; 1 M), together with urea 1.0 M (control), were mixed in different volumes of Milli-Q water and 
S. pasteurii (with an OD of about 1.4). The solutions were put into screw-capped tubes at a total volume of 30 ml. The tubes were kept in 
an incubated shaker at 160 rpm at 30 ◦C for 24 h. The BISMCP was washed several times with Milli-Q water and ethanol. The samples 
were separated by centrifugation at 10,000 rpm at 15 ◦C for 3.5 min and dried in an air precision oven for 48 h at 50 ◦C. The results 
were synthesized as a white-yellowish precipitate. 

2.4. Characterization of BISMCP 

The powder XRD patterns were collected on a Bruker AXS D8 diffractometer (Bruker, Germany) at 40 kV and 40 mA operating 
conditions using Cu-Kα radiation (λ = 0.154 nm). The scanning rate was 2◦/min with a diffraction angle (2θ) ranging between 10 and 
80◦. The functional groups of these materials were determined using FTIR spectra and acquired in the wavenumber range 4000–500 
cm− 1 on Jasco FT/IR-430 Plus spectrometer (Jasco, Japan) with the KBr pellet method. The morphology of the BISMCP was assessed 
by Field Emission Scanning Electron Microscopy (FESEM Hitachi S-4800) at various magnifications, operated at 15.0 kV. The energy 
dispersive X-ray spectroscopy (EDX) analysis was demonstrated on the sample using the silicon detector of the FESEM for elemental 
analysis and mapping. The pore size, pore volume, and specific surface area (SSA) analysis was performed using the Brunauer, Emmett, 
and Teller method with a surface area analyzer instrument (BET, Micromeritics, ASAP 2020 PLUS, USA) in the presence of liquid 
nitrogen at 77 K. 

2.5. The potential application of BISMCP in the adsorption study 

In the present study, 0.025 g of BISMCP was added to 20 ml of 5 ppm ICP multi-element standard solution XIII to determine the 
adsorption removal efficiency of heavy metals. The concentration of 5 ppm heavy metals were diluted from 100 ppm. of liquid solution 
of ICP multi-element standard solution XIII. The pH of the suspension was maintained at about six due to pHPZC = 5.5. All samples were 
shaken for 48 h at room temperature to reach adsorption equilibrium. Then, the samples were filtered using a 0.2 μm glass syringe filter 
to remove the BISMCP sorbents and obtain the filtrate solutions. The filtered samples were taken from the screw-capped glass tubes for 
subsequent analysis and measured using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) (Agilent 5100 series). 

The removal efficiency of heavy metals can be calculated according to Eq. (1) [25]: 

Table 1 
Details of synthesis composition to obtain BISMCP.  

Milli-Q (ml) 30 20 10 0 

S. pasteurii (ml) 0 10 20 30 
MnCl2 (0.01 M) – + (MCP-1)a + (MCP-2)a + (MCP-3)a 

MnCl2 (0.1 M) – + (MCP-4) + (MCP-5) + (MCP-6) 
MnCl2 (1 M) – + (MCP-7) + (MCP-8) + (MCP-9)  

a Tltc: too little to count. 
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Removal Efficiency (%)=
C0 − Ce

C0
× 100% (1)  

where Removal Efficiency (%) is the heavy metal removal efficiency, shown as a percentage (%); C0 is the initial heavy metal con-
centration and Ce is the equilibrium heavy metal concentration, both in mg/L [1,42]. 

3. Results and discussion 

Biologically induced mineralization can result from metabolite excretion, such as urea hydrolysis, with cell surfaces and outer 
layers often acting as nucleation sites, substrates, or matrices for subsequent mineral precipitation [52]. S. pasteurii is a rapid-growing 
ureolytic bacteria and was cultured on media modified with different concentrations of MnCl2 and bacterial volume to form a 
mineralization precipitate. As a result, the bacteria made the environment more alkaline (pH increased). The increased pH subse-
quently supported the equilibrium transition from bicarbonate to carbonate ions [73]. For media with a concentration of 0.1 M of 
MnCl2 and a volume of bacteria of 10, 20, and 30 ml, the pH was increased from 8.6 to 10.7. Meanwhile, with the higher concentration 
of MnCl2 (1 M), even with the volume of bacteria at 10, 20, and 30 ml, the pH was decreased, becoming 5.1, as predicted based on the 
high concentration of Mn2+ [52]. Table 1 shows that BISMCP was not produced without induction by bacteria (S. pasteurii) [6,7,33]. 
Most combinations of the MnCl2 concentration and the volume of S. pasteurii yielded mineralization of BISMCP. However, for the 
lowest concentration of MnCl2, 0.01 M (MCP-1, MCP-2, MCP-3), the precipitate was produced less than 0.1 g per sample and thus was 
not considered significantly. Therefore, characterization will only focus on MnCl2 at a concentration of 0.1 M (MCP-4, MCP-5, MCP-6) 
and MnCl2 at 1 M (MCP-7, MCP-8, MCP-9), as discussed in below. The characterizations included XRD, FTIR, FESEM-EDX, and BET 
analysis to know the physicochemical properties of BISMCP. 

3.1. Structural and phase analysis of BISMCP by XRD 

The phase crystalline and structural characteristics of BISMCP were obtained before the calcination process (Fig. 1), using a wide- 
angle XRD spectrum at a scan rate of 2◦/min in 0.02-degree increments. The XRD patterns of the samples MCP-4 to MCP-9 reveal strong 
peaks, indicating that the materials are highly crystalline [38,58,61,74]. All sample patterns (Fig. 1) fitted well with JCPDS No. 
44–1472, crystalline MnCO3; which is comparable with the previous results [58,74]. Based on JCPDS No. 44–1472, the BISMCP had a 
rhombohedral-centered phase with the space group R 3 c, commonly known as a property of the calcite group (ACO3). As Hussain [33] 
mentioned, MnCO3 (rhodochrosite) could be categorized as one of the calcite-structure metal carbonates. The ten diffraction peaks that 
appeared in BISMCP were indexed at 24.198◦; 31.271◦; 37.505◦; 41.287◦; 45.068◦; 49.586◦; 51.548◦; 59.969◦; 63.751◦; and 67.389◦, 
corresponding to the diffraction planes of (0 1 2); (1 0 4); (1 1 0); (1 1 3); (2 0 2); (0 2 4); (0 1 8); (1 2 2); (2 1 4); and (3 0 0) for 
crystalline MnCO3 (rhodochrosite), which were indexed to the hexagonal system of the crystal structure. These results indicated that 
the particles obtained were rhodochrosite or MnCO3 material, which was comparable with the results of MnCO3 material synthesized 
in previous works [3,14,32,60,60]. 

3.2. Functional groups of BISMCP 

The functional group of biologically-induced synthetic MnCO3 precipitate (BISMCP) was determined by FTIR spectroscopy in the 
range of 4000–500 cm− 1 (Fig. 2). 

Fig. 1. The diffraction patterns of synthesized BISMCP (MCP-4 to MCP-9) in different concentration of MnCl2 and volume of S. pasteurii.  
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The KnowItAll software can identify numerous functional groups in synthesized materials [56]. This software demonstrated a 
typical FT-IR spectrum of biologically-induced mineralization of MnCO3, as shown in Fig. 2 The spectral peaks in MCP-4 to MCP-9 
centered at 1420.90 cm− 1, 865.67 cm− 1, and 717.91 cm− 1 are related to C––O binding and are known to be the typical peaks of 
rhodochrosite material or MnCO3 [29,41,50,80,86]. The broader peak at 3452.24 cm− 1 correlated to O–H binding and N–H binding, 
which were related to the characteristics of the hydroxyl and amino groups and could be attributed to sugars, carboxylic acids, nucleic 
acids, or amino acids [26]. The adsorption band at 2974.75 cm− 1 with the intensity ratios of CH2 asymmetric and symmetric stretching 
of CH3 bands at 2494.58 cm− 1 could indicate the occurrence of long-chain hydrocarbon derivatives, such as lipids and acid esters/-
sugar alcohol [3]. 

The absorption bands at 1641.79 cm− 1 in all samples MCP-4 to MCP-9 indeed confirm the existence of C––O binding and strong 
stretching of CO3

2− in Amide I [3,80]. Moreover, the weak adsorption band at 1081.34 cm− 1 is related to symmetric C–O stretching in 
the urethane group [3,37,61,79,83]. In addition, the bands at 805.22 cm− 1 are occupied by the phosphate group of the P–CH3 binding 
and the strong stretching silicon group of the Si–O binding. The peak at 717.91 cm− 1 demonstrated the presence of phosphate group 
and its coordination in the P––S binding with stretching vibration. Therefore, these FT-IR results in MCP-4 to MCP-9 suggest that the 
functional groups of N–H in amine (protein), C––O in amide I, and C–O in urethane (carbamic acid) could be due to the formation of 
BISMCP; it is comparable with the previous results of Enyedi et al. [26]. Since all samples (MCP-4 to MCP-9) contained the CO3

2− band 
and FT-IR bands matched to the previous study [3,26,87,79]; the functional groups in this study can be likewise identified as 
rhodochrosite mineral or MnCO3 material [3,26,79,86]. 

3.3. Morphology and element signature of BISMCP 

The low-magnification FESEM images shown in Fig. 3 (a-c) clearly show that the BISMCP particles were a spherical-like-aggregate 
shape. The particle size of BISMCP was on the micro-scale, about 3–8 μm (diameter). Moreover, in Fig. 3 (d-f), the BISMCP particles 
resemble aggregated spheres. This morphological condition could be related to the effect of different concentrations of MnCl2 (0.1 M 
and 1 M) [46]. In contrast to the results of Hatayama [33]; the different types of manganese carbonate precipitation induced by diverse 
strains of calcite-forming bacteria in agar media were reported to have well-organized spherical shapes and a mean particle size of 
about 6–10 μm, which was bigger than this study. The precipitation material of BISMCP was analyzed by EDX for the specific analysis 
of elemental signature. The EDX results revealed the existence of manganese (Mn), carbon (C), and oxygen (O) elements (Fig. 3a–f), 
which confirmed the peak phase formation of MnCO3 in BISMCP [40]. EDX showed that the Mn content (Wt.%) in the residues of 
MCP-4, MCP-5, MCP-6, MCP-7, MCP-8, and MCP-9 were 14.58%, 26.66%, 39.17%, 0.22%, 0.75%, and 12.54%, respectively. These 
results showed that various concentrations of MnCl2 (0.1 M and 1 M) and different volumes of bacteria (10, 20, and 30 ml) affected the 
Mn content. Moreover, the Mn content in MCP-6 was higher than in the other samples, and this result is consistent with the specific 
surface area of BET characterizations. 

3.4. Specific surface area, pore size, and pore volume of BISMCP 

To determine the specific surface area and porosity structure, analysis by N2 adsorption/desorption isotherms and BJH pore size 
distribution plots of the samples MCP-4 to MCP-9 were obtained as shown in Fig. 4 (a, b, and c) and summarized in Table 2. Based on 
the International Union of Pure and Applied Chemistry (IUPAC) classification, all six kinds of materials were type IV isotherms, which 
indicated highly uniform cylindrical pores appeared (Fig. 4a and b) [46]. Fig. 4c shows that most of the pores are distributed between 1 

Fig. 2. The FTIR results of BISMCP in different concentrations of MnCl2 and volumes of S. pasteurii (MCP-4 to MCP-9).  
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and 10 nm, which are mesopores, comparable to the work of Jia et al. [36] and Kozawa [45]. From Table 2, the specific surface area 
and pore volume increased in the MCP-4, MCP-5, and MCP-6 (concentration of MnCl2 0.1 M), which confirmed the increase in the 
bacterial volume of 10, 20, and 30 ml could affect. However, the specific surface area and pore volume in the MCP-7, MCP-8, and 
MCP-9 (concentration of MnCl2 1 M) were not high, which could indicate that the concentration of MnCl2 also affected the surface 
area. The average pore size of MCP-6 (9.76 nm) is quite large, which is suitable for adsorption studies [47]. Xie et al. [82] also noted 
that the larger pore volume was linearly associated with a larger specific surface area. 

The specific surface area of the adsorbent is one of the critical parameters for enhancing removal efficiency [54]. A larger specific 
surface area was correlated with excellent performance of the adsorbent [51,66]. The BET results show that the unique characteristics 
of MCP-6, such as the higher specific surface area (BET = 109.01 m2/g, and Langmuir = 171.64 m2/g), smaller pore size (9.76 nm), and 
larger pore volume (0.178 cm3/g), should give it a higher removal efficiency for metal ions than the other samples. 

Fig. 3. FESEM and EDX of synthesized BISMCP in different concentrations of MnCl2 (0.1 and 1 M) and volumes of S. pasteurii (10, 20, and 30 ml) 
MCP-4 (a), MCP-5 (b), MCP-6 (c), MCP-7 (d), MCP-8 (e), and MCP-9 (f). 

A.K. Dewi et al.                                                                                                                                                                                                        



Heliyon 9 (2023) e15919

7

3.5. The preliminary result of the adsorption study on application of BISMCP 

To understand possible future applications of BISMCP, we applied these materials in a preliminary study on the adsorption of heavy 
metals. This preliminary study aims to know which kinds of heavy metals can be removed using BISMCP and, of the various con-
centrations of MCP-4 to MCP-9. In this study, we investigated the removal efficiency of BISMCP that analyzed from Eq. (1) in removing 
heavy metal ions from an aqueous solution using 0.025 g of BISMCP in a 20 ml solution of 5 ppm ICP-OES multi-element standard 
solution XIII. It was found that BISMCP was able to remove As, Cr, Cu, Cd, Ni, and Zn from the aqueous solution, as shown in Fig. 5 and 
summarized in Table 3. 

From Fig. 5 and Table 3 and it can be seen that BISMCP removed As, Cr, Cu, Cd, Ni, and Zn from the aqueous solution. The removal 

Fig. 4. The N2 adsorption/desorption isotherms of MCP-4, MCP-5, MCP-6 materials (a), MCP-7, MCP-8, MCP-9 materials (b), and the BJH pore size 
distribution of MCP-4 to MCP-9 (c). 

Table 2 
The specific surface area (SSA), pore size, and pore volume of BISMCP. (MCP-4 to MCP-9).  

Samples Specific Surface Area (m2/g) Pore Size (nm) Pore Volume (cm3/g) 

BET Langmuir 

MCP-4 65.49 96.76 8.13 0.116 
MCP-5 78.87 117.60 8.52 0.152 
MCP-6 109.01 171.64 9.76 0.178 
MCP-7 30.37 43.99 4.62 0.027 
MCP-8 40.67 58.42 5.14 0.041 
MCP-9 42.23 61.95 5.41 0.044  
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efficiency of total As on the surface of MCP-4 to MCP-9 sorbents was over 97.0%. Moreover, the removal percentages of total Cr for six 
kinds of sorbents exhibited a high efficiency, above 94.0%. The highest removal efficiencies for both total As and Cr were about 98.9% 
and 97.0%, respectively in MCP-6 sorbent. However, the results of removal efficiencies in total Cu and Cd fluctuated between the six 
kinds of MCP sorbents. It can be shown that there was a similar trend between the sequence of MCP-4, MCP-5, and MCP-6 (con-
centration of MnCl2 0.1 M) and MCP-7, MCP-8, and MCP-9 (concentration of MnCl2 1 M). The trend on both total Cu and Cd removal 
can be written as the efficiency of MCP-6 > MCP-5 > MCP-4 > MCP-7 > MCP-8 > MCP-9, as shown in Table 3. The BISMCP also 
showed some ability to remove Ni, but the efficiency was below 30%. Even for the removal of Zn, only MCP-6 and MCP-5 showed 
moderate ability, while the efficiency of MCP-4 dramatically decreased to 18.4% and MCP-7, MCP-8, and MCP-9 sorbents showed no 
ability to remove Zn. 

This condition of efficiency results from the surface of the six kinds of BISMCP sorbents being affected by the pH adjustment [28]. 
This can directly influence the surface charge of material (adsorbent), while also affecting on ionic state distribution of heavy metals 
(adsorbate) in the solution [16]. In this adsorption study, the pHPZC of BISMCP was observed 5.5 (Fig. 6), confirming the result of a 
previous study [13]. The pH of 6.0 was chosen for all adsorption experiments since the surface of BISMCP becomes negatively charged 
at a pH higher than the pHPZC of 5.5, and this enhances the adsorption of the positively charged metal ions through electrostatic forces 

Fig. 5. The removal efficiency of numerous heavy metals in potential application of MCP-4 to MCP-9 and control (only heavy metals).  

Table 3 
The removal efficiency of BISMCP (MCP-4 to MCP-9) on total As, Cr, Cd, Cu, Ni, and Zn.  

Samples As (%) Cr (%) Cd (%) Cu (%) Ni (%) Zn (%) 

Control 100 (5 ppm) 100 (5 ppm) 100 (5 ppm) 100 (5 ppm) 100 (5 ppm) 100 (5 ppm) 
MCP-4 98.7 96.3 65.9 89.0 15.2 18.4 
MCP-5 98.8 96.8 86.3 94.3 17.6 42.9 
MCP-6 98.9 97.0 88.3 94.7 29.5 48.6 
MCP-7 97.0 94.3 30.6 50.9 7.1 0.0a 

MCP-8 97.1 95.6 29.9 48.2 10.5 0.0a 

MCP-9 97.3 95.9 24.6 38.6 12.3 0.0a  

a No removal efficiency results. 

Fig. 6. The point of zero charges (pHPZC) of MCP-4 to MCP-9.  
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of attraction and ion exchange [2,22,24]. 
In summary, the removal efficiency of As and Cr was the highest, with Cu, Ni, and Zn lower, which could indicate that As and Cr are 

more favorable for adsorption on the surface of MCP-4 to MCP-9 sorbents. One parameter that determines the removal efficiency is 
interaction between different heavy metal ions [54]. It seems likely that the occupancy of adsorption sites by As, and Cr may have 
prevented the adsorption of Cd, Cu, Ni, and Zn. The stronger binding (greater affinity) of As and Cr adsorption with six kinds of BISMCP 
sorbents compared to Cd, Cu, Ni, and Zn could be attributed to higher electronegativity, lower hydration energy, and a smaller hy-
drated radius [15,88]. 

The electronegativities of As, Cr, Cd, Cu, Ni, and Zn are 2.6, 1.66, 1.7, 1.9, 1.91, and 1.6, respectively [5,30,48,75,88]). The in-
creases in electronegativity are linear with the increases of the electronic attraction to counter-ions [88]. Moreover, the hydration 
energies of Cr, Cd, Cu, Ni, and Zn are − 1904, − 1807, − 2100, − 2105, and − 2046 kJ/mol, respectively [72,88]. While, the hydration 
energy for As, estimated at around − 2608 kJ/mol and it is the lowest than others, which suggests that ions with lower hydration energy 
are more likely to be absorbed into the surface of the adsorbent [14,20,88]. The hydrated radius of Cr, Cd, Cu, Ni, and Zn is 0.413, 
0.426, 0.419, 0.404, and 0.430 nm, respectively [77,88]. The hydrated radius of various groups of As is about 0.200–0.300, and the 
smallest hydrated radius will have a more significant electrostatic attraction [4,20,62]. Thus, in this study, the efficiency of As removal 
is higher than others because As has higher electronegativity, lower hydration energy, and a smaller hydrated radius, all of which 
makes As more favorable for adsorption compared to other metal ions. 

As expected, the MCP-6 sorbent showed a higher removal efficiency for heavy metal than other sorbents. This result indicated that 
larger specific surface area and pore volume improve removal efficiency [63]. The BET analysis also determined that all BISMCP 
sorbents are mesopores materials, confirming the work of Liu et al. [53], in which the porous surface of the material (Mn composite 
oxide) enabled a large specific surface area and a large number of active sites. Thus, it could be suggested that the six MCP sorbents 
have good performance, especially for As and Cr removal, due to this porous condition. 

The composition modification in the synthesis of BISMCP sorbents (MCP-4 to MCP-9) with various concentrations of MnCl2 (0.1 M 
and 1 M) and different volumes of bacteria (10, 20, and 30 ml) indicated that the concentrations chosen affected not only the existence 
of Mn by EDX analysis, the specific surface area, and pore volume, but also the removal efficiency of total As, Cr, Cd, Cu, Ni, and Zn. 
This indicates that concentration modification enhanced the specific surface area and the efficiency of the adsorption of heavy metal 
ions [54]. 

3.6. The predicted mechanism of formation BISMCP 

Based on the characterization analysis presented above, the predicted mechanism of biologically-induced synthetic MnCO3 pre-
cipitate (BISMCP) is proposed in Fig. 7. The BISMCP material was produced by biologically induced mineralization through the urea 
hydrolysis process. Urea hydrolysis is an irreversible reaction in which urea reacts with water to generate ammonium and carbonate. 
However, chemical (un-catalyzed) hydrolysis of urea is a prolonged process and requires the urease enzyme to catalyze the reaction [8, 
44,78]. Therefore, S. pasteurii could produce urease enzymes to catalyze the hydrolysis of urea increase the rate of the reaction process. 
Thus, once water and urea react with the active site of the urease enzyme, this could produce carbonate and ammonium faster in the 
bacteria (the intracellular process). Furthermore, the appearance of MnCl2 could attract the positive-charged ions Mn2+ (cations) to the 
negatively charged S. pasteurii cell wall (anions). The dissolved carbonate from the urea hydrolysis process, together with MnCl2 
present in the high alkaline environment around the cells (the extracellular process), gets converted into BISMCP and precipitated 
material into a solid form [11,18,44,73]. Interestingly, S. pasteurii can thrive in manganese dichloride salt environments because of its 
alkaliphilic and halophilic characteristics [19,49,55]. 

4. Conclusions 

BISMCP material was successfully produced using a biologically induced mineralization method through the metabolic activity of 
S. pasteurii. The XRD results confirmed that MCP-4 to MCP-9 have the characteristics of rhodochrosite, with a rhombohedral-centered 
phase. Moreover, the FTIR software analysis indicated the appearance of the functional groups of N–H in amine, C––O in amide I, and 
C–O in urethane. The BISMCP showed a spherical-like-aggregate shape with a particle size of 3–8 μm. Meanwhile, EDX results 
confirmed the appearance of Mn, C, and O elements, with MCP-6 having the highest proportion of Mn content (Wt.%) at 39.17%. This 
result is consistent with the BET analysis, which puts MCP-6 as the highest at 109.01 m2/g. Both EDX and BET results indicate that the 
relative concentration of MnCl2 (0.1 and 1 M) and bacteria (10, 20, and 30 ml) affect BISMCP formation. The adsorption efficiency 
showed that compared to other sorbents, MCP-6 removed more As, Cr, Cd, Cu, Ni, and Zn, reaching 98.9%, 97.0%, and 94.6% for As, 
Cr, and Cu removal, respectively. This suggests that materials with a high specific surface area can perform well in removing heavy 
metals. Finally, it is concluded that MCP-6 is the best adsorbent compared to other BISMCP materials. Further adsorption studies 
specifically will focus on As removal due to its high efficiency of 98.9%. 
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