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Metabolome and proteome analyses reveal
transcriptional misregulation in glycolysis of
engineered E. coli
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Synthetic metabolic pathways are a burden for engineered bacteria, but the underlying

mechanisms often remain elusive. Here we show that the misregulated activity of the

transcription factor Cra is responsible for the growth burden of glycerol overproducing E. coli.

Glycerol production decreases the concentration of fructose-1,6-bisphoshate (FBP), which

then activates Cra resulting in the downregulation of glycolytic enzymes and upregulation of

gluconeogenesis enzymes. Because cells grow on glucose, the improper activation of glu-

coneogenesis and the concomitant inhibition of glycolysis likely impairs growth at higher

induction of the glycerol pathway. We solve this misregulation by engineering a Cra-binding

site in the promoter controlling the expression of the rate limiting enzyme of the glycerol

pathway to maintain FBP levels sufficiently high. We show the broad applicability of this

approach by engineering Cra-dependent regulation into a set of constitutive and inducible

promoters, and use one of them to overproduce carotenoids in E. coli.
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Engineering synthetic metabolic pathways by inserting new
enzymes into the metabolic network of microbes is a
common approach to expand the spectrum of chemicals

that they can overproduce1, or gain access to new feedstocks like
atmospheric CO2

2. However, synthetic metabolism interferes
with the endogenous one, often in a way that impairs the cellular
growth and fitness of the host. For example, overproduction
pathways consume metabolites that are no longer available for the
growth and metabolism of the host. This competition between
synthetic and endogenous metabolism leads to a metabolic bur-
den that causes stress responses and physiological changes of the
host3. Eventually, metabolic burden and the accompanying per-
turbations to metabolism reduce the overall fitness and pro-
ductivity of the engineered microbes. Therefore, the current
challenge in metabolic engineering is to minimize metabolic
burden, while maximizing flux through synthetic metabolic
pathways.

An approach to avoid metabolic burden is to express synthetic
pathways in non-growing microbes using two-stage
bioprocesses4,5. Non-growing microbes are less susceptible to
metabolic burden, because they have a lower requirement for
biomass building blocks and energy. However, unlike actively
growing cells, non-growing cells have a low overall metabolic
activity6, and this can limit the flux and productivity of synthetic
metabolic pathways. Thus, the higher metabolic activity of
growing cells is undoubtedly an advantage but requires the
optimization of the enzyme levels in the synthetic metabolic
pathway in such a way that sufficient resources remain for cell
growth7. Optimal control of enzyme expression has been
achieved at various levels of transcription and translation, for
example by engineering promoters8 or ribosome-binding sites9.
However, these methods are static because they do not allow
adjusting the enzyme levels to the changing internal and external
conditions10. To dynamically control the expression levels of
enzymes, feedback mechanisms have been introduced into syn-
thetic metabolic pathways. An approach to do so is to express
enzymes in the synthetic pathway under the control of promoters
that bind transcription factors (TFs). The activity of the TFs in
turn is controlled by intermediates or precursors of the synthetic
pathway. The resulting feedback between metabolism and gene
expression improved overproduction of lycopene11, fatty
acids12,13, and precursors of isoprenoids14. Another approach to
engineer metabolic feedback regulation of gene expression is to
combine CRISPR interference with transcriptional regulators that
sense stress of the host15.

Here, we used glycerol production in E. coli as an example to
systematically study the cause and consequences of metabolic
burden in engineered bacteria. We chose the glycerol pathway
because it is a simple two-step pathway that drains precursors
from one of the most central pathways, glycolysis. According to
the United States Department of Energy (DOE), glycerol belongs
to the top ten value-added chemicals from biomass16, and can be
a precursor for other bio-based products like acrylic acid17 and
1,3-propanediol18. First, we controlled the glycerol pathway with
an arabinose-inducible pBAD promoter and observed that
already low levels of inducer caused a growth burden. Metabo-
lomics and proteomics data indicated that the growth burden was
caused by a transcriptional response in glycolysis, notably the
activation of gluconeogenesis by the transcription factor Cra.
Next, we combined theoretical and experimental analysis to show
that insertion of a Cra-binding site into the pBAD promoter
enables higher growth rates at higher glycerol production rates.
Finally, we show that this approach is generally applicable to
synthetic pathways that utilize glycolytic metabolites such as
carotenoid production.

Results
Glycerol production causes a growth burden in E. coli. To
investigate how induction of a synthetic metabolic pathway
impacts the metabolism of the host, we expressed the glycerol
biosynthesis pathway from yeast in E. coli (Fig. 1a). The glycerol
pathway is a two-step pathway that starts from the glycolytic
metabolite dihydroxyacetone phosphate (DHAP). The first reac-
tion is catalyzed by the glycerol-3-phosphate dehydrogenase 1
(GPD1), which converts DHAP into glycerol-3-phosphate (gly-
cerol-P). The second reaction is catalyzed by the glycerol-3-
phosphate phosphohydrolase 2 (GPP2) and leads to depho-
sphorylation of glycerol-P into the product glycerol. Our E. coli
strain for glycerol production expressed the two genes encoding
gpd1 and gpp2 from a plasmid, and lacked the glycerol kinase
gene (glpK) to prevent that glycerol is re-utilized as a carbon
source (Supplementary Fig. 1). In the following, we will refer to
this strain as the base strain.

We sought to control glycerol production by expressing the
first enzyme in the glycerol pathway (GDP1) with an arabinose-
inducible pBAD promoter, and the second enzyme (GPP2) with a
strong constitutive promoter (Fig. 1a). Expressing GFP with the
pBAD promoter showed a linear relationship between the
concentration of arabinose (ara) and promoter activity (Fig. 1b).
Thus, we expected that the pBAD promoter would allow us to
linearly control the abundance of GPD1 and thereby gradually
increase glycerol production (Fig. 1c). However, already low ara
levels (0.3%) caused a strong growth defect and low biomass
concentrations and titers of glycerol (Fig. 1d). The maximal
glycerol titers were achieved with 0.1% ara (17.71 mM, Fig. 1d).

We then examined the mechanisms that caused the growth
burden at higher ara levels. We excluded that the protein cost of
GPD1 expression was burdensome, because expressing GFP from
the pBAD promoter did not affect growth (Supplementary Fig. 2).
Thus, the growth burden was likely caused by the competition
between the glycerol and glycolytic flux. Flux balance analysis
(FBA) with a genome-scale model of E. coli metabolism19

predicted that growth and glycerol production rates follow a
linear relationship (line in Fig. 1e), which reflects the trade-off
between utilizing glucose for production of either biomass or
glycerol. To test if the base strain followed this theoretical trade-
off, we measured glycerol production rates and growth rates at
three induction levels: 0, 0.1, and 0.5% (dots in Fig. 1e and
Supplementary Fig. 3). However, the experimentally determined
rates did not follow the theoretical trade-off that was predicted by
FBA (Fig. 1e). The measured glycerol production rates and
growth rates at 0.5% ara were markedly lower than the theoretical
ones, thus indicating that other factors than flux balances were
responsible for the growth burden.

In summary, the pBAD promoter enabled us to linearly
increase protein expression (Fig. 1b). However, we could not use
the pBAD promoter to modulate growth rates and glycerol
production rates according to a theoretical trade-off estimated by
flux balance analysis (line in Fig. 1e). Instead, at 0.5% induction of
the glycerol pathway, the measured growth rates decreased much
stronger than predicted by FBA (dots in Fig. 1e).

Glycerol production activates the transcription factor Cra by
decreasing fructose-1,6-bisphosphate levels. To understand the
molecular mechanisms that caused the growth burden in the base
strain, we measured the metabolome at three induction levels: 0,
0.1, and 0.5% ara. Therefore, we cultured the strain in shake flasks
and collected samples for metabolomics by fast filtration (Fig. 2a).
The metabolome data covered 96 metabolites (Supplementary
Fig. 4) that remained relatively constant at 0.1% ara but displayed
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strong changes at 0.5% ara (Fig. 2b). The most strongly decreased
metabolite at 0.5% ara was the direct precursor for the glycerol
pathway, DHAP (Fig. 2b and Supplementary Fig. 4). Also, fruc-
tose-1,6-bisphosphate (FBP), which is directly upstream of
DHAP, was one of the most strongly responding metabolites and
decreased more than 5-fold in the presence of 0.5% ara (Fig. 2b).
These data demonstrate that glycerol overproduction perturbs
metabolites near the entry point of the engineered pathway.

FBP is a regulatory metabolite that is responsible for a
glycolytic flux-dependent regulation of gene expression in E.
coli20. FBP inhibits the activity of the transcription factor Cra,
which inhibits the expression of genes encoding glycolytic
enzymes and activates gluconeogenesis-related genes (Fig. 2c).
Although it is currently unclear whether FBP is a direct or
indirect effector of Cra21, it is widely assumed that the
concentration of FBP affects Cra activity. Correspondingly, we
wondered whether the low concentration of FBP (at 0.5% ara)
activated Cra and thereby changed gene expression and enzyme
levels. To test this, we probed the proteome at the three induction
levels, and inspected the abundance of a total of 38 enzymes in
glycolysis and gluconeogenesis (Fig. 2d). Similar to metabolites,
enzyme levels changed stronger at 0.5% induction than at 0.1%
induction. To test if proteome changes were caused by Cra, we
measured the proteome of the Cra deletion strain (Δcra) as a
reference (Fig. 2d). One of the most strongly decreased enzymes
in the Δcra strain was the phosphoenolpyruvate synthetase
(PpsA). The strong effect of Cra on the expression of PpsA is
consistent with previous studies, which showed that the ppsA
promoter is under the direct control of Cra22. In our base strain,
PpsA was one of the most strongly increased enzymes at 0.5% ara

(Fig. 2d), thus indicating a high activity of Cra in this strain.
Moreover, the base strain had low levels of glycolytic enzymes
that are known to be repressed by Cra, such as glyceraldehyde-3-
phosphate dehydrogenase (GapA).

Taken together, proteome and metabolome data suggest that
induction of the glycerol pathway with 0.5% ara decreased the
concentration of FBP. This, in turn, activated the transcription
factor Cra which then downregulated enzymes in glycolysis (e.g.,
GapA) and upregulated enzymes in gluconeogenesis (e.g., PpsA).
Because cells grew on a glucose minimal medium we hypothe-
sized that activation of gluconeogenesis was responsible for the
growth burden. We confirmed this hypothesis by deleting cra in
the base strain (Fig. 2e). The resulting Δcra strain grew indeed
better than the base strain at high induction of the synthetic
glycerol pathway, and the maximum glycerol titers increased 1.6-
fold (compare Figs. 2e and 1d). Thus, Cra-regulation contributes
to the growth burden of glycerol overproduction in E. coli.

A metabolic model predicts optimization strategies for glycerol
production. To obtain additional evidence that transcriptional
regulation by Cra is a problem for glycerol production, we
developed a small kinetic model (Fig. 3a). The model included
one metabolite (FBP) and two enzymes e1 and e2. Enzyme e1
corresponds to glyceraldehyde-3-phosphate dehydrogenase
(GapA) in lower glycolysis and e2 is GPD1 in the glycerol
pathway. FBP influenced reaction rates in lower glycolysis
(rlower_glycolysis) and in the glycerol pathway (rglycerol) according to
Michaelis–Menten kinetics, which are a well-established kinetic
format for enzymatic reactions23. Similar to flux balance analysis
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Fig. 1 Overproduction of glycerol causes a growth burden in E. coli. aMetabolic map of E. coli glycolysis and the synthetic glycerol pathway (orange). The
synthetic pathway consists of two enzymes from S. cerevisiae: glycerol-3-phosphate dehydrogenase 1 (GPD1) and glycerol-3-phosphate phosphohydrolase
2 (GPP2). The genes encoding the two enzymes (gpd1 and gpp2) were expressed from a plasmid using the arabinose-inducible pBAD promoter for gpd1 and
the constitutive promoter pJ23101 for gpp2. b Activity of the pBAD promoter at different arabinose levels. GFP fluorescence and OD600 were measured in
n = 2 plate reader cultures, and promoter activity was calculated as dGFP/dt/OD by regression analysis between 7 and 9 h. c Schematic of the control
strategy for the synthetic glycerol pathway. GPP2 is expressed in excess to ensure that GPD1 is the rate-limiting step. GPD1 levels are varied by inducing
the pBAD promoter with different amounts of arabinose. Size of boxes indicates enzyme levels, size of arrows indicate flux through the pathway. d gpd1 and
gpp2 were expressed from a plasmid in an E. coli strain lacking glpK (base strain). The base strain was cultured in 96-well plates. Growth was measured in a
plate reader at different induction levels of GPD1 (0, 0.1, 0.3, 0.5, 1, and 2% ara). Glycerol in the medium was measured after 24 h. Growth rates were
determined by regression analysis between 5 and 10 h. Growth curves and dots show the means of n = 2 plate reader cultures. e Theoretical relationship
between glycerol flux and growth rate based on flux balance analysis with a genome-scale model of E. coli metabolism (iML1515). Dots are growth rates
and glycerol production rates measured in shake flask cultures of the base strain at 0, 0.1, and 0.5% ara. Source data are provided in the Source Data file.
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(Fig. 1e), we assumed a constant influx in the model and fixed the
reaction rate in upper glycolysis to 4.9 mmol g−1 h−1. This means
that FBP is produced at a constant rate and it is either used for
glycerol production or for growth according to the mass balances
in Eq. (1).

In total, we analyzed three different models, each with a
different regulatory structure (Fig. 3b). A model of the base strain
included an interaction, in which FBP activates the expression of
enzyme e1. This interaction resembled transcriptional regulation
of lower glycolysis by Cra. A second model of the Δcra strain had
no regulation. In a third model, FBP activates the expression of

both enzymes e1 and e2. In this doubly regulated model (2xcra
model) both lower glycolysis and the glycerol pathway were
subject to Cra-regulation. We simulated Cra-regulation with a
power-law term that affects the maximal enzyme expression rate.
Since the power-law term equals one in the un-induced state, all
models share the same parameter set.

The three models were analyzed with 5000 parameter sets that
were randomly sampled from physiologically meaningful ranges
based on literature values (Table 1). We sampled the power-law
exponent between 1 and 2, in order to ensure that Cra-regulation
depends at least linearly on the concentration of FBP and to avoid
instabilities that can occur at exponents <2. For each of the 5000
parameter sets, we calculated the maximal glycerol production
rate (rglycerol,MAX) that can possibly be achieved given the specific
set of parameters. To estimate rglycerol,MAX, we made use of a
numerical continuation method24, which iteratively increases the
expression rate of enzyme e2 (β2) and computes the new steady
state for FBP, e1, and e2. After each iteration, the continuation
method determines the stability of the model by inspecting the
eigenvalues of the Jacobian matrix24, and terminates if instabil-
ities occur in the model. If the model remains stable, the
continuation method terminates at the maximal expression rate
of e2 (β2,max), which we defined as the rate were 20% of the
ribosomes translate e2. Thus, rglycerol,MAX is the glycerol
production rate at the termination point of the continuation
method and we obtained 5000 values of rglycerol,MAX for each of
the three models (Fig. 3c).

The distribution of the 5000 rglycerol,MAX values showed that the
Δcra model performed better than the base strain model, because
more parameter sets achieved higher maximal glycerol
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Fig. 2 Induction of the glycerol pathway activates the transcription factor Cra. a Growth of the base strain (E. coli ΔglpK with the pBAD glycerol plasmid)
at different induction levels (0, 0.1, and 0.5% ara). The base strain was cultured in n = 3 shake flasks and samples for metabolomics and proteomics were
collected at the time points indicated by red arrows. Dots are means and lines are standard deviations of the OD600 in n = 3 shake flask cultures.
b Intracellular concentration of dihydroxyacetone phosphate (DHAP) and fructose-1,6-bisphosphate (FBP). Data are normalized to the 0% culture. Dots
are data of n = 3 independent shake flask cultures and bars are the mean. c Fructose-1-phosphate (F1P) and FBP inhibit the activity of the transcription
factor Cra. Cra activates the expression of genes encoding gluconeogenic enzymes (e.g., ppsA) and represses those of glycolytic enzymes. d Proteome data
showing the relative abundance of proteins in the base strain with 0.1% ara and 0.5% ara. Data are normalized to the base strain with 0% ara. Δcra is the
proteome of a cra deletion strain, normalized to the wild-type strain. Dots are means of samples from n = 3 independent shake flask cultures (a). Shown
are only protein levels with a relative standard deviation smaller than 20%. Blue dots are enzymes that belong to glycolysis or gluconeogenesis in the
iML1515 model. e The glycerol pathway was expressed in the Δcra strain. The Δcra strain was cultured in 96-well plates. Growth was measured in a plate
reader at different induction levels of GPD1 (0, 0.1, 0.3, 0.5, 1, and 2% ara). Glycerol in the medium was measured after 24 h. Growth rates were
determined by regression analysis between 5 and 10 h. Growth curves and dots show the means of n = 2 plate reader cultures. Source data are provided in
the Source Data file.

Table 1 Values and units of parameters and variables.

Parameter/species Lower bound Upper bound Unit

rupper_glycolysis 40.87 40.87 mM min−1

kcat,1 Calculated min−1

Km,1 0.01 10 mM
kcat,2 511.5 5115 min−1

Km,2 0.01 10 mM
β1,max Calculated mM min−1

β2,max 0.0017 0.0017 mM min−1

ind 0 1 –
α1 1 2 –
α2 1 2 –
µinitial 0.01 0.01 min−1

FBP 1 1 mM
e1(GapA) 0.0238 0.0238 mM
e2(GPD1) 0 0 mM
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production rates (rglycerol,MAX) with the Δcra model than with the
base strain model (Fig. 3c). This matched the experimental
observation that the Δcra strain performed better than the base
strain. The underlying assumption was: the more parameter sets
achieve high glycerol fluxes, the higher the likelihood that the real
system would achieve them too. The model of the base strain did
not achieve high glycerol production rates, because the model was
not stable at higher induction levels (Fig. 3c). To better
understand the origin of these instabilities, we performed time-
course simulations with the three models and an average
parameter set (Supplementary Fig. 5). The time-course simula-
tions matched the results obtained with the continuation method,
thus confirming that both numerical approaches yield the same
results. We simulated the models at different induction levels and

the base model was not stable at higher induction, because
enzyme e2 increased exponentially. Thus, there is a critical point
where the expression rate of e2 exceeds its dilution by growth.
These imbalances are probably amplified by Cra-regulation,
because Cra downregulates e1 and thus growth.

The Δcra model, in contrast, was stable at almost all
induction levels. The best model in our analysis was the 2xcra
model. With this model, the highest fraction of parameter sets
achieved high glycerol fluxes (Fig. 3c). Further, the stability of
the 2xcra model was similar to the Δcra model (Fig. 3c). Thus,
the model analysis predicted that engineering Cra-regulation
into the glycerol pathway should lead to higher glycerol
production rates and we next tested this prediction
experimentally.
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the base strain (black) and the Δcra strain (blue) are shown as a reference (same data as in Figs. 1d and 2e). f Growth rates and glycerol production rates
of the pBAD-Cra strain measured in shake flasks, at 0, 0.1, and 0.5% ara. The line is the theoretical relationship between glycerol flux and growth rate
shown in Fig. 1e. Source data are provided in the Source Data file.
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A Cra-regulated pBAD promoter improves growth and gly-
cerol production. To engineer a pBAD promoter that is repres-
sed by Cra, we inserted the consensus binding sequence of Cra
between the promoter region and the ribosome-binding site
(Fig. 3d). Then we expressed GPD1 under the control of this
pBAD-Cra promoter and introduced the plasmid in E.coli ΔglpK
to create the pBAD-Cra strain. This strain grew indeed much
better than the base strain and maintained growth even at full

induction with 2% arabinose (orange one in Fig. 3e). At 0.5% ara,
growth and glycerol production rates of the pBAD-Cra strain
were even higher than the rates at the theoretical trade-off
frontier (Fig. 3f and Supplementary Fig. 6). These data confirm
the model prediction that a doubly Cra-regulated strain performs
better than the base strain and the Δcra strain.

Next, we compared the activities of the pBAD promoter and
the pBAD-Cra promoter in the context of our production system.
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Fig. 4 Alternative strategies to engineer the pBAD promoter. a The pBAD promoter was mutated between the −35 and −10 boxes25. The pBAD
promoter in the base strain (Fig. 1a) was replaced with the mutated pBAD promoter and cultured in 96-well plates. Growth was measured in a plate reader
at different induction levels of GPD1 (0, 0.1, 0.3, 0.5, 1, and 2% ara). Glycerol in the medium was measured after 24 h. Growth rates were determined by
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ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25142-0

6 NATURE COMMUNICATIONS |         (2021) 12:4929 | https://doi.org/10.1038/s41467-021-25142-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Therefore, we replaced GPD1 with a GPD1-GFP fusion protein
(Supplementary Fig. 7). The pBAD-Cra promoter had a 3.7-fold
lower activity than the pBAD promoter at 0.5% ara, showing that
insertion of the Cra-binding site reduced GPD1 expression. Flow
cytometry data revealed that the cell-to-cell variation in GPD1-
GFP content was independent of the promoter (Supplementary
Fig. 8), indicating that all the cells of the pBAD-Cra population
had a lower promoter activity.

Thus, the pBAD-Cra promoter is a 3.7-fold weaker version of
the pBAD promoter, probably because Cra represses the
promoter. In principle, the same effect could be achieved by
other mutations that decrease the activity of the pBAD promoter,
for example, mutations between the −10 and −35 boxes25.
Therefore, we constructed a pBAD promoter with mutations
between the −10 and −35 boxes that decrease activity by a factor
of two25, and analyzed the resulting pBAD-weak strain. The
pBAD-weak strain grew indeed better than the base strain and
achieved higher glycerol titers (Fig. 4a). However, the pBAD-
weak strain performed worse than the pBAD-Cra strain, which
might be due to the different activities of the pBAD-Cra and the
pBAD-weak promoter (3.7-fold and 2-fold lower activity than the
original pBAD promoter, respectively). Another explanation for
the better growth of the pBAD-Cra strain is that the pBAD-Cra
promoter is dynamic and the pBAD-weak promoter is
static.

If Cra actively inhibits the pBAD-Cra promoter, we expected
that insertion of Cra-binding sites outside of the promoter region
would have no effect. Indeed, inserting 1 to 3 Cra-binding sites
improved growth only when a binding site was inserted directly
after the pBAD promoter (Fig. 4b). Even two Cra-binding sites
outside of the promoter region gave no improvement. This
demonstrates that Cra actively inhibits the pBAD-Cra promoter,
and that the improvements are not a consequence of titrating Cra
away from its genomic targets.

To obtain further evidence that the pBAD-Cra promoter is
functional, we measured the activity of the pBAD promoter and
the pBAD-Cra promoter with GFP, both in the wild-type and the
Δcra strain. In the wild-type, the pBAD-Cra promoter had lower
activity than the pBAD promoter (Fig. 4c), thus indicating that
Cra inhibits the promoter. In the Δcra strain, however, the
pBAD-Cra promoter had slightly higher activity than the pBAD
promoter (Fig. 4c). These results show that the pBAD-Cra
promoter is functional: Cra inhibits the pBAD-Cra promoter and
this regulation is missing in the absence of Cra (in the Δcra
strain). Thus the lower activity of the pBAD-Cra is not merely
due to sequence changes but due to active inhibition by Cra.

To further demonstrate the broad utility of this approach we
inserted Cra into a constitutive promoter and the pTet promoter
(Supplementary Fig. 9). In both cases, the strain with the Cra-
regulated promoter variant grew better than the strain with the
original version. This suggests that Cra inhibits these promoters
and automatically reduces their activity.

The Cra-regulated pBAD promoter maintains high FBP levels
at high glycerol fluxes. To better understand the dynamic nature
of Cra-regulation, we measured the dynamic changes in the
metabolome and proteome upon induction of the glycerol path-
way. Therefore, we induced the base strain and the pBAD-Cra
strain with 0.5% ara and collected metabolomics and proteomics
samples for the subsequent 4.5 h. Additionally, we measured
growth (Fig. 5a) and the concentration of glycerol in the medium
in order to calculate the flux through the glycerol pathway
(Fig. 5b). The pBAD-Cra strain grew again much better than the
base strain (Fig. 5a). The growth defect of the base strain
appeared 1 h after inducer addition, but at this time point, both
strains had similar glycerol production rates (~5 mmol g−1 h−1,
Fig. 5b). After 2 h, the glycerol production rate was even higher in
the pBAD-Cra strain (10 mmol g−1 h−1) than in the base strain
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large dots are the mean. b Specific glycerol production rates (mmol g−1 h−1) were calculated for two adjacent time points as Δcgly/cx/Δt, where Δt is the
time interval between the two time points; Δcgly is the difference of glycerol in the medium; cx is the biomass concentration. c Time-course of GPD1 levels
and phosphoenolpyruvate synthetase (PpsA) levels. Proteomics samples were collected from the base strain (black) and the pBAD-Cra strain (orange) (a).
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(6 mmol g−1 h−1). This suggested that it was not glycerol pro-
duction per se, which impaired growth of the base strain, but
rather other effects such as the higher expression levels of GPD1
(Fig. 5c).

We then hypothesized that after 1 h Cra was activated in the
base strain, while Cra should be less active in the pBAD-Cra
strain. To test this hypothesis, we used again the abundance of
PpsA as a proxy for Cra activity. In the base strain, PpsA levels
increased 1 h after inducer addition, which matches the time
when this strain shows a growth defect (Fig. 5c). In the pBAD-
Cra strain, however, PpsA levels remained constant after
induction, suggesting that in this strain the activity of Cra
remains below a threshold that activates gluconeogenesis.

If Cra is less active in the pBAD-Cra strain than in the base, we
expected that the latter has lower FBP levels. Indeed, FBP
decreased rapidly after inducing the base strain (Fig. 5d). The
pBAD-Cra strain, in contrast, had always higher FBP levels than
the base strain despite its higher flux in the glycerol pathway. The
concentration of other glycolytic metabolites (hexose-P, DHAP,
and PEP) was also higher in the pBAD-Cra strain than in the base
strain (Fig. 5d). Additionally, we confirmed that the pBAD-Cra
strain maintained higher concentrations of FBP under steady-
state conditions, by probing the metabolome at constant
induction with 0, 0.1, and 0.5% ara (Supplementary Fig. 4).

Thus, the pBAD-Cra strain can maintain higher FBP levels at
higher glycerol production rates than the base strain. This
suggested that the interaction between FBP and Cra, in
combination with the pBAD promoter, counteracts decreases of
FBP: (i) if FBP falls below a critical value, Cra activity increases,
(ii) higher Cra activity represses the pBAD-Cra promoter and
decreases GPD1 expression, and (iii) lower expression of GDP1
will restore the concentration of FBP. Thus our data indicate that
this feedback regulation is functional, because it enabled high FBP
levels and at the same time high glycerol production rates, which
presumably prevented that E. coli switches from glycolysis to

gluconeogenesis. However, further experiments are required to
experimentally investigate how this feedback loop shapes
metabolism in space and time26.

Cra-regulation improves the growth of carotenoid over-
producing E. coli. Because many bio-based chemicals use gly-
colytic metabolites as precursors, we wondered if the Cra-
regulated pBAD promoter could have broader applicability.
Therefore, we used the pBAD promoter (in its original version
and with Cra-regulation) to control a synthetic metabolic path-
way for the overproduction of carotenoids (Fig. 6a). Biosynthesis
of carotenoids starts from the glycolytic metabolites pyruvate and
glyceraldehyde-3-phosphate (GAP), which are converted by the
methylerythritol phosphate (MEP) pathway of E. coli into far-
nesyl diphosphate (FPP). FPP is then further converted into
carotenoids by heterologous enzymes from Pantoea ananatis
(Fig. 6a). The first two enzymes in the MEP pathway (Dxs and
Dxr) were overexpressed from a plasmid using the two versions of
the pBAD promoter, and we refer to the two plasmids as
pController and pController-Cra, respectively. The remaining
enzymes in the carotenoid pathway (CrtE/B/I/Y/Z) were expres-
sed from a second plasmid (pCarotenoid) using a native pro-
moter of P. ananatis.

Expressing only the pCarotenoid plasmid led to a basal
production of carotenoids and did not influence cell growth
(Supplementary Fig. 10). Carotenoid production increased almost
3-fold when E. coli carried the pCarotenoid plasmid together with
either the pController or pController-Cra plasmid (Fig. 6b).
However, with the pController plasmid, higher carotenoid levels
were only achieved within a small range of inducer, whereas the
pController-Cra plasmid performed well over a broader range of
ara levels. Thus, similar to the glycerol pathway, we observed that
the promoter with Cra regulation enables higher growth rates at
high induction levels of a synthetic carotenoid pathway, and that
the higher amount of inducer does not impact cell growth and
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Fig. 6 A Cra-regulated pBAD promoter improves overproduction of carotenoids. a Metabolic map of the E. coli methylerythritol phosphate (MEP)
pathway and the synthetic carotenoid pathway. Expression of the first enzymes in the MEP pathway (1-deoxy-D-xylulose-5-phosphate synthase, Dxs; and 1-
deoxy-D-xylulose 5-phosphate reductoisomerase, Dxr) was controlled with a pBAD promoter (plasmid pController) or with a pBAD-Cra promoter (plasmid
pController-Cra). The carotenoid pathway consists of five enzymes from P. ananatis: geranylgeranyl diphosphate synthase (CrtE), phytoene synthase
(CrtB), phytoene dehydrogenase (CrtI), lycopene beta-cyclase (CrtY), and beta-carotene hydroxylase (CrtZ). These five genes were expressed under the
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pController were co-expressed in E. coli (pBAD carotenoid strain). Both strains were grown in a plate reader at different induction levels for Dxs and Dxr (0,
0.1, 0.3, 0.5, 1, and 2% ara). The total carotenoid content was measured after 24 h. Growth curves and dots show means of n = 2 cultures, and gray shaded
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erythritol-4-phosphate, DMAPP dimethylallyl diphosphate, IPP isopentenyl diphosphate, GPP geranyl diphosphate, FPP farnesyl diphosphate, GGPP
geranylgeranyl diphosphate. Source data are provided in the Source Data file.
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productivity (Fig. 6b). Taken together, the results suggest that the
Cra-regulated pBAD promoter is generally applicable and may
enable bioengineers to regulate the expression of a wide range of
synthetic pathways that use glycolytic metabolites.

Discussion
In this study, we used the arabinose-inducible pBAD promoter to
control synthetic metabolic pathways in E. coli. While, in the case
of GFP expression, the pBAD promoter showed a linear rela-
tionship between the concentration of inducer (ara) and expres-
sion rates, this was not observed for glycerol overproduction. In
the latter case, the problem was that a small increase of inducer
was sufficient to cause a strong growth burden that constrained
productivity. A consequence of the growth burden was a low
biomass concentration and, consequently, low glycerol titers at
the end of the cultivations.

A classical view is that synthetic metabolic pathways are a
burden for industrial microbes because they consume cellular
resources27. Recent multi-omics data suggest that synthetic
metabolic pathways can place an additional burden on cellular
metabolism by perturbing the proteome and metabolome28.
Perturbations of the metabolome could be critical especially if
they alter the concentration of regulatory metabolites that control
the expression and function of proteins, for example via
metabolite-protein interactions29,30. Here, we observed that gly-
cerol overproduction decreased the concentration of glycolytic
metabolites, and that this caused misregulation at the level of
transcription. More specifically, low concentrations of the reg-
ulatory metabolite FBP activated the transcription factor Cra and
thereby upregulated the expression of gluconeogenesis enzymes
likes PpsA. These results demonstrate the importance of main-
taining regulatory metabolites above a critical threshold in engi-
neered microbes. However, synthetic pathways often lack the
regulatory mechanisms that maintain metabolite concentration
homeostasis in natural metabolic pathways, such as directed
overflow31, allosteric enzyme regulation32, or transcriptional
regulation33. Here we show that engineering transcriptional reg-
ulation (Cra-regulation) in a synthetic glycerol pathway can help
to maintain regulatory metabolites above a critical threshold: the
pBAD-Cra strain has higher FBP levels and at the same time a
higher glycerol flux than the base strain. This supports the
hypothesis that Cra-dependent regulation counteracts a decline in
the concentration of FBP by downregulating the expression of the
glycerol pathway in response to decreasing FBP levels. However,
as it remains an open question whether this regulation is truly
dynamic, we cannot rule out the possibility that, due to the
constant inhibitory activity of Cra, the pBAD-Cra promoter
simply functions as a weaker pBAD promoter. Future studies
should clarify whether the pBAD-Cra promoter automatically
adapts to new conditions, e.g., by shifting the glycerol producers
between different environments.

Previous studies mainly focused on the transcriptional con-
sequences of promoter engineering34,35, or demonstrated the
ability of engineered promoters to increase the productivity of
synthetic pathways11–15. Here, we combined metabolomics and
proteomics to study the consequences of engineered promoters at
the level of host metabolism. From a biotechnological perspective,
this approach will help to engineer improved production strains
that can autonomously buffer external perturbations in
industrial-scale bioreactors36,37, and internal perturbations like
gene expression noise38,39.

Methods
Construction of strains and plasmids. Strains and plasmids are listed in Sup-
plementary Table S1. Strains derived from Escherichia coli K-12 MG1655 (wild
type, DSMZ No. 18039) were used for glycerol and GFP production. Strains

derived from E. coli BW25113 (KEIO collection40) were used for carotenoid pro-
duction. Consensus sequences of Cra are AGCTGAAGCGTTTCAGTC (from epd
gene). All oligonucleotides used for cloning were synthesized by Eurofins Geno-
mics (Germany GmbH) and are listed in Supplementary Table S2. Target genes
were amplified to obtain linear fragments by PCR using Q5 High-Fidelity DNA
Polymerase (M0491L, BioLabs). Circular polymerase extension cloning (CPEC)41

and Gibson assembly (E2611S, Biolabs) were used for cloning. The No-SCAR
system42 for genome editing was obtained from Addgene (#62654, #62655, and
#62656, see Supplementary Table S1) and used for the construction of ΔglpK and
Δcra. The genes for glycerol-producing enzymes were cloned from yeast chro-
mosomal DNA (Saccharomyces cerevisiae SEY6210) into the pBAD promoter. The
Cra consensus binding sequence was inserted into the pBAD-Cra plasmid by PCR.
The pController plasmid carries dxs and dxr genes from E. coli MG1655. The
pController-Cra plasmid was derived from the pController plasmid by inserting
the Cra-binding site.

Cultivations. All cultivations were performed using an M9 minimal medium with
5 g l−1 glucose. M9 medium was composed of (per liter): 42.2 mM Na2HPO4, 22
mM KH2PO4, 11.3 mM (NH4)2SO4, 8.56 mM NaCl, 1 mM MgSO4·7H2O, 100 μM
CaCl2·2H2O, 60 μM FeCl3, 7.6 μM CoCl2·6H2O, 7.1 μM MnSO4·2H2O, 7 μM
CuCl2·2H2O, and 6.3 μM ZnSO4·7H2O. For pre-cultures, frozen bacterial stocks
were plated on LB agar plates with the respective antibiotics and single colonies were
used to inoculate 5 ml LB-pre-cultures in tubes. From this first pre-culture a second
M9 pre-culture was inoculated 1:1000 and incubated overnight at 37 °C under
shaking. For cultivations in microtiter plates, 96-well flat transparent plates (Greiner
Bio-One International) containing 150 µl M9 minimal medium were inoculated
1:150 from the overnight M9-culture. Online measurements of optical density at
600 nm (OD600) with the glycerol production strains were performed at 37 °C with
shaking in a plate reader (Epoch, BioTek Instruments Inc, USA). Online mea-
surements of OD600 and additional measurements of GFP fluorescence (excitation
490 nm, emission 530 nm) of the GFP production strain were performed at 37 °C
with shaking in a plate reader (Synergy, BioTek Instruments Inc, USA). Growth
rates were calculated as dln(OD600)/dt by linear regression over the indicated time
windows. For cultivations in shake flask, a 500ml shake flask containing 35 ml
M9 minimal medium (5 g l−1 glucose) was inoculated 1:150 from the overnight M9-
culture and incubated at 37 °C under shaking at 220 rpm. Antibiotics were added as
required: kanamycin (50 μg ml−1), ampicillin (100 μg ml−1), and spectinomycin
(100 μgml−1). For FACS (fluorescence-activated cell sorting) measurement, 10,000
cells were sorted per sample by BD LSRFortessa SORP flow-cytometer (BD Bios-
ciences, USA). A 488-nm laser (blue) at 100mW was used for green fluorescent
with a 510/20 band pass filters. BD FACS Diva software (BD Biosciences, USA) and
Flow Cytometry GUI for Matlab (version 1.3.0.0) by Nitai Steinberg (https://ww2.
mathworks.cn/matlabcentral/fileexchange/38080-flow-cytometry-gui-for-matlab)
were used for the analysis of acquired data.

Glycerol measurements. Glycerol was measured in the culture supernatant with a
glycerol enzyme assay kit (MAK117-1KT, Sigma). 10 μl supernatant were mixed
with 100 μl reaction buffer and incubated for 20 min. Absorbance was measured at
570 nm in a plate reader (Epoch, BioTek Instruments Inc, USA).

Quantification of carotenoids. Carotenoid production strains were cultivated in
96-well plates with M9 minimal medium containing 0.5% glucose and an addi-
tional 20% LB at 37 °C with continuous shaking. After 24 h cultivation, cells were
harvested by centrifugation at 3220 × g. Cell pellets were resuspended in 120 µl
DMSO43, and sonicated for 30 s. Samples were centrifuged again at 3220 × g and
50 µl of the supernatants were transferred to a 384-well plate, and carotenoids were
quantified by measuring the absorbance at 470 nm. For absolute quantification,
standards of β-carotene (C4582-25MG, Sigma) were prepared at final concentra-
tions of 5, 10, 25, and 50 mg l−1.

Metabolomics measurements. Shake flask cultivations on M9 glucose were per-
formed as described above. For steady-state metabolomics, cells were grown to an
OD600 of 0.5 and 2ml culture aliquots were vacuum-filtered. For time-course
metabolomics, volumes of samples were adjusted based on the OD600of the culture
to obtain 1ml with OD600 1. Culture aliquots were immediately filtered on a 0.45 µm
pore size filter (HVLP02500, Merck Millipore) and filters were transferred into an
extraction solution consisting of acetonitrile/methanol/water (40:40:20 (v/v)).
Extracts were centrifuged for 20min at−9 °C at 17,000 × g to remove the cell debris.
Centrifuged extracts were mixed with 13C-labeled internal standard and analyzed by
LC–MS/MS, with an Agilent 6495 triple quadrupole mass spectrometer (Agilent
Technologies)44. An Agilent 1290 Infinity II UHPLC system (Agilent Technologies)
was used for liquid chromatography and controlled by the Agilent MassHunter
Acquisition software (Version B.07.01). The temperature of the column oven was
30 °C, and the injection volume was 3 μl. LC solvents A were water with 10mM
ammonium formate and 0.1% formic acid (v/v) (for acidic conditions); and water
with 10mM ammonium carbonate and 0.2% ammonium hydroxide (for basic
conditions). LC solvents B were acetonitrile with 0.1% formic acid (v/v) for acidic
conditions and acetonitrile without additive for basic conditions. LC columns were
an Acquity BEH Amide (30 × 2.1mm, 1.7 µm) for acidic conditions, and an iHILIC-
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Fusion(P) (50 × 2.1mm, 5 µm) for basic conditions. The gradient for basic and
acidic conditions was: 0 min 90% B; 1.3min 40% B; 1.5min 40% B; 1.7min 90% B;
2 min 90% B. Quantification of intracellular metabolite concentrations was based on
the ratio of 12C and 13C peak heights.

Proteomics measurements. Cultivations were performed as described above. Cul-
ture aliquots were transferred into 2ml reaction tubes and washed two times with PBS
buffer (0.14mM NaCl, 2.7 mM KCl, 1.5mM KH2PO4, and 8mM Na2HPO4). After
washing, cell pellets were resuspended in 200 µl of lysis buffer containing 100mM
ammonium bicarbonate and 0.5 % sodium laroyl sarcosinate. Cells were again incu-
bated for 15min with 5mM Tris(2-carboxyethyl)phosphine (TCEP) at 95 °C followed
by alkylation with 10mM iodoacetamide for 30min at 25 °C. We used SP3 bead
method45,46 for a large number of samples. Fixed protein amount of 50 µg measured
by BCA assay (23225, Thermo Fischer) and mixed with 4 µl SP3 beads stock (mixed
20 μl of each Sera-Mag Beads A and B (GE Healthcare) with 100 µl ddH2O) in 96-well
high-volume v-bottom plate (710879, Biozym Scientific GmbH). To initiate protein
binding to the beads, 75 μl of 100% ethanol were added with the mixture of protein
and beads for 15min at room temperature. Tubes were placed in a magnetic rack for 5
min. The supernatant was discarded and the beads were rinsed two times with 200 µl
of 70% ethanol and then 180 µl of 100% ethanol on a magnetic rack. For proteolytic
digest, tubes were removed from the magnetic rack, and the beads were reconstituted
in 28 µl 10% acetonitrile/10mM NH4HCO3 with 1 µg trypsin (Promega) incubated
shaking overnight at 30 °C. After incubation, the tubes were sonicated for 30 s and
placed on a magnetic rack, and the supernatant containing tryptic peptides was
recovered and transferred to new tubes. Recovered peptides were acidified by adding
trifluoroacetic acid (TFA) to a 1.5% final concentration. Peptides were then purified
through C18 microspin columns (Harvard Apparatus) according to the manufacturer’s
instruction. The eluted peptides were dried and resuspended in 0.1% TFA for analysis
of peptides. Analysis of peptides was performed by a Q-Exactive Plus mass spectro-
meter connected to an Ultimate 3000 RSLC nano with a Prowflow upgrade and a
nanospray flex ion source (Thermo Scientific) as previously described32,47. Briefly,
peptides were separated by a reverse-phase HPLC column (75 μm × 42 cm) packed
with 2.4 μm C18 resin (Dr. Maisch GmbH, Germany) at a flow rate of 300 nl/min by
gradient model which is from 98% solvent A (0.15% formic acid) and 2% solvent B
(99.85% acetonitrile, 0.15% formic acid) to 35% solvent B over 84min. The data
acquisition was set to obtain one high-resolution MS scan at a resolution of 70,000 full
width at half maximum (at m/z 200) followed by MS/MS scans of the 10 most intense
ions. Label-free quantification (LFQ) of the data acquired from mass spectrometry was
processed with Progenesis QIP (Waters), and MS/MS search was performed in
MASCOT (v2.5, Matrix Science). The following search parameters were used: full
tryptic search with two missed cleavage sites, 10 ppm MS1 and 0.02 Da fragment ion
tolerance. Carbamidomethylation (C) as fixed, oxidation (M), and deamidation (N,Q)
as variable modification. Progenesis outputs were further processed with SafeQuant.

Constraint-based modeling. Flux balance analysis (FBA) was performed with a
genome-scale model of E. coli metabolism, iML151519, and COBRApy48. Two
additional reactions (G3PD_synth, G3PT_synth) were added to simulate the synthetic
glycerol pathway. Constraints of the GLYK reaction were set to zero, to simulate
deletion of the glyK gene. Additionally, constraints of glycerol-3-phosphate and gly-
cerol dehydrogenases G3PD5, G3PD6, G3PD7, and GLYCDx were set to zero. The
model was further constrained to stimulate growth on a minimal medium, with
glucose as the sole carbon source at an uptake rate of 8 mmol g−1 h−1. The oxygen
uptake rate was constrained at maximum of 20mmol g−1 h−1 and uptake of inor-
ganic ions was not constrained (nh4, pi, so4, k, fe2, mg2, ca2, cl, mn2, zn2, ni2,
cobalt2, mobd)19. FBA was performed with different glycerol production rates
between 0 and 14mmol g−1 h−1 and maximal growth was the objective function.

Kinetic modeling and steady-state analysis. The stoichiometry of the model is
shown in Fig. 3a. Mass balancing yields a system of ordinary differential equations
(ODEs), F, that is a temporal function of the state variables x and the kinetic
parameters p:

F x; p
� � ¼ dx

dt
¼

dFBP
dt ¼ rupper glycolysis � rlower glycoylsis � rglycerol � FBP � μ

de1
dt ¼ β1 � e1 � μ
de2
dt ¼ β2 � e2 � μ

8
>><

>>:
ð1Þ

The metabolite FBP is produced by rupper glycolysis and consumed by
rlower glycolysis and rglycerol. Additionally, FBP is diluted by growth. The enzyme e1 is
a lower glycolysis enzyme for which we used parameters of glyceraldehyde-3-
phosphate dehydrogenase (GapA) and e2 is GPD1. Both enzymes are produced by
a production term β and they are removed by dilution by growth. We assumed that
enzyme degradation contributes little to the overall enzyme turnover and therefore
can be neglected.

An upper glycolytic flux of 4.904 mmol g−1 h−1 was estimated with FBA using a
glucose uptake rate of 8 mmol g−1 h−1. With the specific cell volume for E. coli

(2 µl mg−1)49 the reaction rate rupper glycolysis is:

rupper glycolysis ¼
4:904mmol g�1 h�1

0:002 l g�1
*

h
60min

¼ 40:87mMmin�1 ð2Þ

The reactions rlower_glycolysis and rglycerol follow Michaelis–Menten kinetics:

rlower glycolysis ¼ kcat;1 � e1 �
FBP

FBPþ Km1
ð3Þ

rglycerol ¼ kcat;2 � e2 �
FBP

FBPþ Km2
ð4Þ

The expression rates of enzyme 1 (GapA) and enzyme 2 (GPD1) are:

β1 ¼ β1;max �
FBP
FBPSS

� �α1

ð5Þ

and

β2 ¼ β2;max � ind �
FBP
FBPSS

� �α2

ð6Þ

Cra-regulation was simulated with a power-law term FBP
FBPSS

� �α
that affects the

maximal enzyme expression rate. The power-law format has the advantage that the
power-law term equals one in the un-induced state and therefore allows the same
parameter values for the base model, the Δcra model, and the 2× cra model.
Further, setting α to zero removes the regulation and therefore α2 was zero in the
base model, while α1 and α2 were zero in the Δcra model.

We assumed that the growth rate µ is proportional to rlower_glycolysis, because flux
balance analysis showed a linear relationship between rlower_glycolysis and the growth rates
(Supplementary Fig. 11). Additionally, previous 13C labeling data showed a positive
correlation between lower glycolytic flux and growth in E. coli50. With a growth rate of
0.01min−1 in the un-induced state, the proportionality factor-alpha follows as:

rlower glycolysis ¼ rupper glycolysis � FBP � μ ¼ 40:86mMmin�1 ð7Þ

αlpha ¼ rlower glycolysis

μ
¼ 40:86mMmin�1

0:01min�1 ¼ 4086mM ð8Þ

μ ¼ rlower glycolysis

alpha
ð9Þ

In total, the model includes 8 kinetic parameters kcat,1, kcat,2, Km,1, Km,2, β1,max,
β2,max, α1, and α2. The parameters were either sampled 5000 times log-uniformly
from predefined intervals or calculated based on steady state constraints. Km,1 and
Km,2 were randomly sampled between 0.01 and 10 mM to account for high and low
saturation of enzymes.

The power-law exponents α1 and α2 were randomly sampled between 1 and 2.
The lower bound was 1 to ensure that the expression rate is at least linearly
dependent on the FBP concentration. The upper bound was 2 to avoid higher-
order dynamics that can cause instabilities51.

The kcat,2 value was based on the kinetic parameter of GPD1 (kcat,2= 1705min−1)52

and was sampled between 0.33-fold and 3-fold of this literature value. The parameter
kcat,1 followed from the steady-state constraint of the un-induced state where
rglycerol = 0.

β1,max was derived from the mass balances of e1, assuming steady state:

β1;max ¼ e1 � μ ð10Þ
The concentration of e1 was 0.0238 mM, based on quantitative proteome data

for GapA53 resulting in β1,max = 0.000238 mMmin−1.
The maximal enzyme expression rate in the glycerol pathway (β2,max) was

defined by the translation rate of ribosomes according to:

β2;max ¼
rt � R0:6 � f R
L � NA � Vc

� p ¼ 0:0017mMmin�1 ð11Þ

Equation (11) considers the following parameters that were derived from the
Bionumbers Database54: average translation rate (rt = 8.4 amino acids s−1), the
median and abundance weighted protein length (L = 209 amino acids), the
fraction of active ribosomes (fR = 0.8) and the cellular volume (Vc,0.6 = 3 × 10−15

L) and at a growth rate of µ = 0.6 h−1, the Avogadro number (NA = 6.02 × 1023

mol−1), the number of ribosomes per cell at that growth rate (R0.6 = 8000
ribosomes cell−1). The fraction of ribosomes (p) that synthesize GPD1 at full
induction was assumed to be 20%, because only 50% of the ribosomes can translate
a heterologous protein and this is associated with significant protein burden55.

Steady state and robustness analysis. To obtain steady states of the un-induced
system, β2,max and e2 were set to zero. Then 6 parameters were randomly sampled from
intervals defined above. The 2 parameters (kcat1 and b1,max) were calculated to ensure
steady-state conditions. To test the stability of the steady states, eigenvalues of the
Jacobian matrix were calculated, and tested if all eigenvalues are negative (λ < −10−5).
The procedure was repeated until 5000 stable steady states were achieved. Next,
induction (ind in Eq. (6)) was iteratively increased from 0 to 1 using a numerical
parameter continuation method. The method is based on finding a connected path of
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steady-state concentrations (xss: steady-state concentration vector containing e1ss, e2ss,
FBPss) as a parameter p is varied. As the system is in steady state it follows that:

dx
dt

¼ F xss; p
� � ¼ 0 ð12Þ

The derivative of F(xss,p) with respect to the parameters is also zero:

dF xss; p
� �

dp
¼ δF

δxss
� dxss
dp

þ δF
δp

¼ 0 ð13Þ

After rearranging Eq. (13), Eq. (14) is obtained:

dxss
dp

¼ � δF
δxss

� ��1

� δF
δp

ð14Þ

which describes the changes in the steady-state concentrations as a kinetic
parameter that is varied iteratively. The iteration stops when one of the following
two stability criteria is no longer fulfilled. 1st criterion: all real parts of the
eigenvalues of the system’s Jacobian need to be negative. In Eq. (14), the inverse of
the Jacobian Matrix (δF/δxSS) is required. The inversion is only possible as long as
the matrix is regular. Once an eigenvalue reaches zero, the Jacobian becomes
singular and matrix inversion is no longer possible. This bifurcation point defines
the boundary between the stable and unstable parameter space. In other words:
after this point is passed, the system cannot return to a stable steady state.
Calculating the eigenvalues of the Jacobian at each step ensures that the iteration is
terminated when one eigenvalue exceeds λ = −10−5. The 2nd criterion is that all
variables are positive.

Quantification and statistical analysis. Statistical analysis was performed with
Matlab (R2018b) and custom Matlab scripts. The number of replicates (n) of each
experiment can be found in the respective figure caption. For proteomics and
metabolomics n represents the number of independent shake flask cultures. In
growth assays, n represents the number of independent microtiter plate cultures.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Proteome raw data are deposited at the PRIDE database under the accession numbers:
PXD022965. Metabolome raw data and flow cytometry data are deposited at the Open
Research Data Repository of the Max Planck Society (Edmond) at https://edmond.mpdl.
mpg.de/imeji/collection/67E9ibZDJRkXQh1s. Source data are provided with this paper.

Code availability
The Matlab code for the model analysis is available at the GitHub repository (https://
github.com/nfarke/Wang_Lempp_et_al).
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