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Abstract

Chemical understanding is driven by the experimental discovery of new compounds and 

reactivity, and is supported by theory and computation that provides detailed physical insight. 

While theoretical and computational studies have generally focused on specific processes or 

mechanistic hypotheses, recent methodological and computational advances harken the advent of 

their principal role in discovery. Here we report the development and application of the ab initio 

nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical 

reactions that discovers new molecules and mechanisms without preordained reaction coordinates 

or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from 

primitive compounds proposed to exist on the early Earth, providing new insight into the classic 

Urey-Miller experiment. These results highlight the emergence of theoretical and computational 

chemistry as a tool for discovery in addition to its traditional role of interpreting experimental 

findings.

Experimental chemistry often plays the principal role in discovering new compounds and 

proposing new reaction mechanisms, while computational chemistry provides valuable 

support by arbitrating between competing proposed mechanisms. Recent algorithmic and 

computational advances, including those that leverage graphics processing unit (GPU) 

architectures1, 2, 3, 4 could open the door to using computation not only to arbitrate different 

hypotheses, but also as a discovery tool to reveal new fundamental chemical mechanisms. 

Our experimentally-inspired5 ab initio nanoreactor accomplishes this using an ab initio 

molecular dynamics (AIMD) simulation of freely reacting molecules, coupled with 

automatic analysis and refinement methods to build a quantitatively accurate reaction 

network. By seeding the nanoreactor with diverse reactants available in various 

environments, such as the early Earth or the upper atmosphere, we explore reactivity and 

discover new reaction schemes. This approach will help guide experiment by posing new 

hypotheses and suggesting novel experiments.
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The statistical rarity of activated chemical reactions restricts most AIMD studies to specific 

transformations along a chosen reaction coordinate or collective variable.6, 7, 8 A promising 

approach to overcome the rarity of reactive events has been the application of predefined 

heuristic rules9, 10, 11 or geometric searching12, 13 to generate new molecules and reaction 

networks. In contrast, the nanoreactor discovers molecules and reactions based only on the 

fundamental equations of quantum and classical mechanics. Reactions occur freely without 

preordained reaction coordinates or elementary steps.

Although recent advances in AIMD provide much computational relief, these simulations 

nevertheless remain costly for sampling large numbers of reactive events. We overcome this 

difficulty by incorporating new acceleration techniques in the nanoreactor. A virtual piston 

enhances reactivity by periodically pushing molecules toward the center of the nanoreactor, 

greatly increasing the frequency of collisions and barrier crossings (see Supplementary 

Figure 1). This evokes ideas from high-pressure and shock wave simulations,14, 15, 16 with 

the key difference that the periodic forcing increases the number of barrier crossings through 

ballistic collisions rather than inducing an equilibrium high-pressure regime. Furthermore, 

we use an approximate Hartree-Fock (HF) ansatz to access large simulation sizes (hundreds 

of atoms) and long time scales (hundreds of picoseconds). Sampling of chemical space at 

this approximate level is augmented by subsequent energy refinement of the discovered 

reaction pathways using more quantitative methods such as density functional theory (DFT). 

This strategy exploits the fact that the qualitative topography of the energy landscape is 

well-described with methods that may not provide quantitative estimates of reaction rates. 

For example, HF is well known to predict chemically reasonable molecular structures,17 

even though DFT18 and more sophisticated wavefunction methods19 are more accurate for 

thermochemistry and barrier heights.

The nanoreactor achieves its goal of broadly exploring reaction pathways by taking an 

intermediate stance between physically realistic simulation and rule-based enumeration 

approaches. The ab initio simulation ensures that reaction trajectories obey physical 

equations of motion and avoids a combinatorial explosion of possibilities, while the 

occurrence of reactions is accelerated by explicitly not aiming to replicate the 

physicochemical conditions of any one environment. The pathways resulting from energy 

refinement are applicable to any thermodynamic setting by providing reaction parameters 

(e.g. concentration, temperature) as input variables to a kinetic model. This approach is valid 

as long as the relevant reactions are sampled at least once and included in the knowledge 

base. Ensuring complete sampling can be difficult and it would be premature to claim that 

we have achieved this for the prototypical cases presented in this paper. Here we focus on 

introducing the nanoreactor, presenting some newly discovered pathways from nanoreactor 

simulations, and discussing the broader implications of discovery-based theoretical methods.

RESULTS AND DISCUSSION

Insight into the synthesis of a diverse set of products

We discuss two nanoreactor simulations on contrasting systems. The first starts with a 

homogeneous collection of acetylene molecules, which we chose due to the well-known 

tendency of acetylene to polymerize into larger molecules. The second one is an idealization 
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of the classic “Urey-Miller” experiment,20 including several compounds postulated to exist 

in the early Earth atmosphere (hydrogen, ammonia, methane, carbon monoxide and water). 

The “Urey-Miller” simulation differs from the experimental conditions in that the virtual 

piston is used in place of electric sparks, though both methods provide an energy input to 

accelerate barrier crossings. Both simulations consist of many initial reactant molecules (50 

– 100) in order to sample a large reaction space.

Figure 1 illustrates the acetylene nanoreactor simulation (movie clip in Supplementary 

Video 1). Molecules freely react with each other over the course of the simulation. The 

piston accelerates the reaction rate, oscillating with a period of 2 ps (4000 time steps). 

Nearly one hundred distinct products are formed after ~500 ps simulation time (1 million 

time steps) including methane, ethylene, cyclopropene, benzene, and larger polymeric 

species with both aliphatic and aromatic character (Supplementary Figure 3). We visualized 

the simulation trajectory using a machine-learning algorithm to identify new products and 

automatically highlight them in molecule-specific colors.

The diversity of discovered compounds is surprisingly rich. Previous experiments on 

acetylene reactivity at high pressure21, 22 indicate an increase in the number of single and 

double C–C bonds and a decrease in the number of triple bonds; a combination of linear and 

branched conjugated chains are formed rather than a covalently bonded single crystal. The 

nanoreactor produces some linear and branched conjugated chains similar to the experiment, 

but there are also many new motifs including aromatic rings, allenes and a smaller number 

of antiaromatic and highly strained rings. Since the goal of the nanoreactor is to discover 

new reactivity independently of specific experimental conditions, it is encouraging that we 

not only reproduced some of the observed chemistry from the high-pressure experiment but 

also found a greater diversity of chemical species which may be important in other settings. 

This is in part due to the high kinetic energy imparted by the piston, corresponding to 

instantaneous temperatures as high as ~10,000 K; at such temperatures, electronic 

excitations may be thermally accessible. Although the resulting multistate nonadiabatic 

dynamical effects could be included,23 the nanoreactor currently ignores them, consistent 

with its primary goal to sample reaction space rather than realistically modeling a particular 

physical process.

The “Urey-Miller”-inspired simulation generated a starkly different collection of molecules, 

with much smaller products. Among the discovered products were the natural amino acid 

glycine, the unnatural amino acids α-hydroxyglycine and α-aminoglycine, and a reduced 

analogue of alanine with a geminal diol replacing the carboxyl group (see Supplementary 

Fig. 4). Additional discovered products include urea, ethylene glycol, and isocyanic acid, all 

of which have also been detected in meteorites that may have delivered organic molecules to 

the early Earth.24 A few illustrative examples of discovered reactions are provided in 

Supplementary Figs. 5–9. These examples include reactions catalyzed by surrounding 

ammonia or water molecules that act as proton shuttles.

A complex web of reaction pathways

In addition to the high diversity of products, the nanoreactor simulation also offers insight 

into how the products were formed. The molecular dynamics pathway that connects stable 
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reactant and product species is used to locate a corresponding minimum energy path (MEP). 

Using these MEPs, we build a network of reaction mechanisms linking products with 

reactants. More than 700 distinct reactions are found in the Urey-Miller simulation, with a 

wide distribution of reaction energies and barrier heights (see Supplementary Fig. 2). A 

significant fraction of the reactions occur with barriers < 50 kcal/mol, indicating they may 

be kinetically viable under ambient conditions.

Deriving chemical insight from a complex web of reactions can be challenging. If we are 

mainly interested in a particular compound, we can map out the local network of closely 

related compounds – i.e. the molecules that appear on either side of chemical equations 

leading to the compound of interest. To do this, we focus on a particular molecule in the 

reaction network and investigate the energetics of the reactions it is involved in. Figure 2 

shows one such representation of a reaction network derived from the “Urey-Miller” 

nanoreactor (3D view in Supplementary Video 2), which includes hundreds of products. 

Here we focused on a particular molecule (urea, red sphere) and visualized the reactions that 

it was involved in, leading to a second tier of molecules (blue spheres). Colored arrows 

indicate chemical reactions; arrowheads indicate one side of the chemical equation, though 

reactions can occur in either direction. Since each molecule is involved in reactions with so 

many others, the third tier of molecules (gray spheres) numbers in the hundreds and cannot 

be clearly represented. In the foreground, carbamimidic acid, H2NC(NH)OH, tautomerizes 

to urea, CO(NH2)2, via proton transfer (blue arrows). Formaldimine, H2CNH, also reacts 

with urea to form an ester adduct (violet arrows, right). Many of these molecules are found 

in interstellar clouds, and the pathways outlined here may be instructive for reactions that 

happen in a variety of environments including interstellar space.25, 26

Following a specific reaction

Focusing on a specific molecule allows us to trace the synthetic pathways leading from the 

starting materials. Figure 3 shows such a collection of pathways leading to glycine. Here 

glycine was formed with several distinct pathways involving reaction barriers of less than 40 

kcal/mol. Formaldimine (Figure 3 center) is a key intermediate that participates in three of 

the four pathways. In one pathway, formaldimine combines with H2O and CO in a 

termolecular reaction, and in the other two pathways it combines with formic acid, HCOOH, 

and proceeds through a singlet carbene intermediate. Aminomethanol (H2NCOH, Figure 3 

right) is another key intermediate—it is a precursor to formaldimine, but it can also react 

with CO directly to yield glycine.

Formaldimine, formaldehyde and formic acid are among the most highly connected 

compounds in the reaction network, participating in more than 40 reactions with other 

species (the other two species with such high connectivity are methanol and hydrogen 

cyanide, plus the initial reactants). These highly connected compounds have in common the 

ability to react via several different types of pathways; for example, formic acid is found to 

participate in proton transfer, nucleophilic addition and dehydration reactions. Formic acid is 

easily formed from the starting materials by addition of water to carbon monoxide, whereas 

formaldimine requires several more elementary steps due to the need to form a C=N double 

bond. The C=N double bond of formaldimine participates in many addition reactions as 
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either the nucleophile or electrophile, and leads to a diverse collection of primary amines 

and secondary imines. We note that the glycine synthesis pathways involve H2 only once in 

the hydrogenation of formic acid to yield methanediol, and CH4 never appears (it is highly 

inert). This supports previous proposals that biomolecules may have formed with little 

participation from these highly reducing compounds.24

Emergence of higher-order chemical principles

Higher-order chemical principles emerge naturally from simulation and analysis in the 

nanoreactor. For example, the acetylene nanoreactor formed a large number of C-C bonds 

whereas the “Urey-Miller” nanoreactor did not. Many alternate pathways competing with C-

C bond formation are available in the “Urey-Miller” system, most notably carbon-

heteroatom bond formation via nucleophilic addition which involves a lower activation 

energy.

Another interesting observation is that the acetylene simulation forms very large molecules 

including a single large species comprised of more than 70 atoms, whereas the “Urey-

Miller” simulation forms much smaller molecules (up to 16 atoms). This is because the sum 

total of bond orders across the entire simulation is roughly conserved, a natural consequence 

of electron conservation. The acetylene nanoreactor starts with a large number of triple 

bonds that can be traded to make more single bonds between molecules, whereas most of the 

“Urey-Miller” reactants are fully saturated molecules. Without double and triple bonds, a 

bimolecular reaction of two molecules that yields a larger product must also eliminate a 

smaller product, leading to quasi-equilibrium in the molecular size distribution.

The essential catalytic role of water and ammonia illustrates the importance of solvent in 

reducing the barrier of important pathways where hydrogen atoms or protons are transferred. 

In Figure 3, more than half of the elementary steps involve one or two catalytic water/

ammonia molecules which participate by acting as a proton wire. For example, the barrier to 

the dehydration of methanediol (to yield formaldehyde) is lowered by more than 15 kcal/mol 

by the presence of a catalytic water molecule (from 43.5 to 28.3 kcal/mol). In the three 

elementary steps where carbon monoxide is hydrogenated to yield formaldehyde (Figure 3 

top) a water molecule is temporarily incorporated and the highest barrier is 36.8 kcal/mol; 

the direct hydrogenation is much less favorable, with a barrier of 69.5 kcal/mol. In an 

aqueous environment, the presence of many solvent molecules would further facilitate such 

chemistry by stabilizing highly polar or temporarily charged species (for example, H3O+ or 

NH4
+). Thus hydrogen-bonding solvents such as water play both an implicit and explicit 

role; we plan to include implicit solvent effects to improve the accuracy of the energy 

refinement for condensed phase conditions.

The future of the nanoreactor approach

The provided examples demonstrate that: (1) The ab initio nanoreactor not only finds many 

reactions that are well-known from experimental chemistry, but also discovers new 

pathways not previously characterized. (2) Many of these reactions proceed through low to 

moderate reaction barriers, in spite of simulation conditions. Finally, (3) some of the 

reactivity is complex and highly concerted, and is thus unlikely to be discovered through 
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heuristic rule-based approaches. The termolecular reaction to yield glycine in Figure 3 and 

the acid-catalyzed ring opening in Supplementary Fig. 9 are examples of complex 

mechanisms, since three bonds are broken and two bonds are formed in a single barrier 

crossing. The nanoreactor discovers many termolecular reactions due to how it accelerates 

molecular collisions; although these reactions are rare in the gas phase, they can become 

relevant when two or more reactants form a pre-associated complex.27

Here we showed two nanoreactor simulations with dramatically different results; the 

acetylene simulation underwent massive polymerization, whereas the “Urey-Miller” 

simulation generated a complex network of reactions including several pathways to glycine 

that pass through formaldimine, formic acid and aminomethanol as intermediates. Many of 

the discovered reactions are complex and concerted, highlighting the unique utility of the 

nanoreactor as a purely discovery-based means of generating chemically interesting 

elementary steps and supplementing existing methods reliant on hypotheses and prior 

expectations. More recent studies in prebiotic chemistry argue that the early Earth 

atmosphere was likely much less reducing, containing N2, CO2, possibly even some 

O2;28, 29 thus, the prebiotic significance of this study should be taken in the context of the 

original Urey-Miller experiment rather than more modern hypotheses of the ancient Earth’s 

atmospheric composition. We anticipate that the nanoreactor will contribute to our future 

understanding of complex reactivity in natural systems by providing novel hypotheses for 

reaction pathways and elementary steps in arenas as diverse as catalysis, prebiotic 

chemistry, and astrochemistry.

METHODS

The nanoreactor AIMD simulations were performed with the TeraChem quantum chemistry 

and ab initio molecular dynamics software package,1, 2, 3, 4, 30, 31, 32, 33, 34 using the Hartree-

Fock (HF) electronic wavefunction and a 3-21G Gaussian basis set to calculate the Born-

Oppenheimer potential energy surface. The acetylene simulations used unrestricted Hartree-

Fock and employed level-shifting35 to allow for open-shell states, whereas the Urey-Miller 

simulation used restricted Hartree-Fock. The acetylene simulation used a single initial 

configuration whereas the Urey-Miller simulation used four different initial configurations 

with the same molecules. The equations of motion were numerically integrated using 

Langevin dynamics with an equilibrium temperature of 2000 K (also the starting 

temperature) and a friction coefficient of 7 ps−1. The temperature corresponds to an average 

kinetic energy of 4.0 kcal/mol per degree of freedom; the thermal motion rapidly breaks 

apart noncovalent interactions without breaking the covalent bonds. The calculations were 

feasible due to the efficiency of TeraChem, which dramatically accelerates the calculation of 

the Fock operator – especially the Coulomb and exchange operators – by evaluating the two-

electron integrals on the graphics processing unit (GPU). The self-consistent field (SCF) 

calculation at each AIMD step was made more robust by using the augmented direct 

inversion in the iterative subspace (ADIIS) algorithm36 as a backup in cases where the 

default DIIS algorithm37 failed to converge. A total of 560/1296 ps of time evolution was 

followed for the acetylene (156 atoms) and Urey-Miller (228 atoms) simulations, 

respectively. The total computational cost of these calculations was 41,700 (acetylene) and 

132,400 (Urey-Miller) CPU/GPU hours; TeraChem uses one CPU core per GPU.
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The molecules were restrained to move inside a spherical volume by a boundary potential, 

with a time-dependent component to increase the occurrence of reaction events:

where k1 = 1.0 kcal mol−1 Å−2, r1 = 14.0 Å, k2 = 0.5 kcal mol−1 Å−2, r2 = 8.0 Å, τ = 1.5 ps, 

T = 2.0 ps, ⌊ ⌋ is the floor function and θ is the Heaviside step function. f(t) is a rectangular 

wave that oscillates between 1 (duration τ) and 0 (duration T−τ), and U(r,r0,k) is a radial 

potential that is zero inside the prescribed radius r0 and harmonic outside. The force constant 

is multiplied by the atomic mass (in a.m.u) such that all atoms at the same radial coordinate 

were subject to equal acceleration. The rectangular waveform switches the restraint potential 

between U(r,r1,k1) and U(r,r2,k2), forcing atoms with radial position 8.0 < r < 14.0 

Angstrom toward the center and causing them to collide. When the sphere is expanded 

again, the molecules in the simulation rapidly diffuse (due to the high temperature) to fill the 

larger volume. The rectangular waveform spans a broad frequency range, and thus the 

applied energy does not preferentially drive any specific mode in the system.

The simulation analysis was performed using graph-theoretical and machine-learning 

routines in the networkx38 and scikit-learn39 Python modules. The atomic connectivity for 

each frame in the nanoreactor AIMD trajectory is determined using covalent radii, and 

graphs representing individual molecules are constructed from the connectivity matrix. We 

identified chemical reactivity in the nanoreactor simulation by searching for changes in the 

connectivity graphs (i.e. molecules) as a function of time. A major challenge in this 

procedure is the transient appearance of spurious connectivity graphs due to high frequency 

bond vibrations and close contacts during molecular collisions. We addressed this problem 

by applying a two-state hidden Markov model (HMM) to each time series, in which the 

observed time series of a given connectivity graph is modeled using an underlying lower-

frequency signal:

where Y is the observed time series and X is the underlying lower-frequency signal described 

by a Markov process. The HMM is parameterized by: (1) the probability of correctly 

observing the hidden signal (60% of the time), and (2) the transition probability matrix for 

the Markov process (0.1% per time step). The HMMs allowed the algorithm to recognize 

molecules despite transient disruptions of their connectivity graphs. A reaction in the 

nanoreactor trajectory is recognized as a sequence of frames in which a set of complete 

connectivity graphs transforms into a different complete set. The atoms involved in the 

reaction are extracted from the trajectory, which includes the reactant and product, as well as 

certain catalytic species which chemically participate but do not change their compositions 

(e.g. a catalytic water molecule in proton transfer). The reactive trajectory segments are used 

to perform subsequent energy refinements via minimum energy path (MEP) search.
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In order to accurately determine the thermochemistry and barrier heights (which can be used 

to infer reaction rates), the MEP search is performed using more accurate (and more 

computationally expensive) electronic structure methods; the increased cost is largely 

mitigated by the much smaller size of these calculations, as they only include the atoms that 

participate in an individual reaction. We chose to use the B3LYP three-parameter density 

functional approximation and the larger 6-31+G(d,p) basis set for its ability to reproduce 

experimental heats of formation and activation energies in organic chemistry,40, 41 but even 

more accurate and computationally expensive methods such as coupled cluster42, 43, 44 could 

also be used. Importantly, the reactive AIMD trajectory segments used to initiate the MEP 

search contain numerous large amplitude and high frequency motions that are orthogonal to 

the reaction coordinate. Therefore, we carried out the path refinement in several stages, 

which we briefly summarize here and will cover in detail in an upcoming publication.

First, the AIMD path endpoints are energy-minimized in order to obtain optimized reactant 

and product structures; the sequences of optimization coordinates are joined with the AIMD 

segment to create a continuous path that connects minimized reactants and products. Next, 

the path is smoothed with an interpolation algorithm in internal coordinates, which ensures a 

smooth connecting path that avoids unphysical structures (e.g. atoms passing through each 

other). The interpolated path is used as an initial guess to the string method45 which 

provides an estimate of the transition state. From here, the transition state is located using a 

partitioned rational function optimization algorithm, followed by an intrinsic reaction 

coordinate (IRC) calculation to reconnect the transition state with the reactant and product. 

In cases where the IRC calculation results in different molecules from the initial reactant and 

product, the IRC-derived endpoints are used in the reaction network. The Q-Chem quantum 

chemistry software package46 was used in the refinement calculations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Timeline of a nanoreactor simulation trajectory (movie clip in Supplementary Video 1). Top: 

Molecular size distribution as a function of simulation time. Left: Simulation begins with a 

collection of acetylene molecules (C = teal, H = white). New molecules are automatically 

highlighted with molecule-specific colors to indicate observed reactivity. Middle: Simple 

products appear first, including short polymeric species (green, yellow) as well as ethylene 

(orange) and cyclopropene (violet). Right: At longer simulation times the molecular size 

distribution becomes considerably wider; more than half of the atoms form a large molecule 

containing multiple aromatic rings (red). A long-lived, inert benzene molecule is also 

formed (gold, top right).
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Figure 2. 
Pyramid representation of reaction network with focus on a product molecule of interest (3D 

view in Supplementary Video 2); the initial reactants were H2, H2O, NH3, CH4 and CO. 

Compounds (C = teal, H = white, N = blue, O = red) are shown in spheres, and reactions 

(i.e. chemical equations) are indicated using colored arrows. Arrowheads indicate one side 

of the chemical equation, though reactions can occur in either direction. The chosen 

molecule (urea) is highlighted in red, and molecules directly involved in reactions with urea 

are highlighted in blue. Reactions more than one step removed from urea are mostly blurred 

out to show the high connectivity and complexity in the overall graph, with a single reaction 

highlighted (gray spheres, bottom left).
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Figure 3. 
Sequence of elementary reaction steps derived from the nanoreactor simulation that begins 

with the fundamental reactants (CO, H2, H2O, and NH3) and ends with the amino acid 

glycine. Glycine (bottom center) is formed via four different pathways, three of which 

involve formaldimine (center) and two of which involve singlet carbene intermediates. 

Reaction energies (ΔE) and activation barriers (Ea) calculated using DFT are provided in 

kcal/mol.
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