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Abstract
Purpose Impaired glucose tolerance (IGT) is a pathophysiological condition characterized by insulin resistance with known 
metabolic consequences such as postprandial hyperglycemia and hypertriglyceridemia. We hypothesized that fortifying a 
meal with mushrooms rich in β-glucans may diminish glucose and triglyceride responses by improving postprandial gas-
trointestinal hormone release.
Methods In a randomized controlled crossover study, 22 subjects with IGT ingested a meal either enriched with 20 g powder 
(8.1 g β-glucans) of oven-dried Pleurotus ostreatus (enriched meal, EN) or without enrichment (control meal, CON). Blood 
was collected before and repeatedly within 4 h after the meal to determine AUC of glucose (primary outcome), insulin, 
triglycerides, non-esterified free fatty acids (NEFAs), glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP) 
and ghrelin. Appetite sensations (hunger, satiety, fullness, and desire to eat) were assessed before and after meal consump-
tion by visual analog scales.
Results Postprandial glucose, insulin, triglycerides, GIP and ghrelin concentrations as well as the corresponding AUCs did 
not differ between EN and CON. NEFAs-AUC was 14% lower (P = 0.026) and GLP-1-AUC 17% higher (P = 0.001) after 
EN compared to CON. Appetite ratings did not differ between treatments, except for hunger (AUC 22% lower after EN vs. 
CON; P = 0.031).
Conclusion The observed immediate postprandial metabolic changes indicate that an easily manageable fortification of a 
single meal with powder from dried oyster mushrooms as β-glucan source may improve postprandial metabolism. If the 
effect is preserved long term, this measure can diminish the risk for further development of overweight/obesity and type 2 
diabetes in subjects with IGT.
Clinical trial registration German Clinical Trial Register on 09/08/2018; trial-ID: DRKS00015244.

Keywords Oyster mushrooms · β-Glucans · Postprandial glucose and lipid metabolism · Gastrointestinal hormones · 
Appetite sensations · Impaired glucose tolerance

Introduction

Impaired glucose tolerance (IGT) is a pathophysiological 
condition characterized by insulin resistance leading to post-
prandial hyperglycemia and hypertriglyceridemia [1]. These 

metabolic consequences are often accompanied by an altered 
secretion of gastrointestinal (GI) hormones, especially of 
incretins such as glucagon-like peptide-1 (GLP-1) occurring 
in reduced plasma concentrations [2]. GLP-1 increases insu-
lin secretion, delays gastric emptying (GE) and acts as signal 
to induce satiety [3]. Adults with IGT are often overweight 
or obese and show, compared to glucose tolerant adults, a 
5% higher risk of progression to diabetes mellitus per year 
[4] as well as an approximately 30% higher risk to develop 
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composite cardiovascular diseases (CVD), thereby increas-
ing the 9 year all-cause mortality [5]. A key component in 
the treatment of IGT is practicing a balanced, energy-con-
trolled diet to normalize postprandial blood glucose (PBG) 
levels and to regulate body weight (BW) [6]. An essential 
part of dietary measures to reach these goals is an adequate 
intake of dietary fibers; cereal β-glucans [linear polysaccha-
rides built from D-glucopyranosyl units linked via β-(1,3) 
and β-(1,4) bonds [7]] have especially been shown to be 
effective [8]. In the GI tract, cereal β-glucans generate highly 
viscous solutions, thereby delaying GE, slowing down the 
digestion of dietary carbohydrates (CHO), like starch, 
and retarding subsequent absorption of monosaccharides 
released [8–10]. The latter, in turn, modulates the secretion 
of GI hormones, such as ghrelin, GLP-1 and gastric inhibi-
tory polypeptide (GIP) [11]. Consequently, the European 
Food Safety Authority (EFSA) has published health claims 
qualifying β-glucans from oats or barley consumed together 
with available carbohydrates (avCHO; 4 g β-glucans/30 g 
avCHO) as an evidence-based measure to reduce PBG and 
to increase/prolong post-meal satiety [8]. Regular intake of 
cereal fiber [12, 13] and oats [14] significantly reduced gly-
cosylated hemoglobin A1c, fasting blood glucose [14] and 
BW [13], thus leading to a 18% lower risk of CVD mortality 
[12].

Although commonly used in food design, fortification of 
dishes with β-glucan-rich cereal products such as oat flakes 
or oat bran (2.6–8.2 g β-glucans/100 g dry matter (DM) 
[15–18]) is restricted by their limited palatability and their 
avCHO content (42.7–48.5/100 g DM [15, 16] correspond-
ing to 5.2–18.6 g avCHO per gram β-glucan). Additional 
consumption of avCHO is unfavorable for subjects with IGT 
and may be contrary to the intended fortification goals. Edi-
ble mushrooms are also rich in β-glucans, especially Pleu-
rotus species (spp.) (24.2–35.0/100 g DM [19, 20]), but pro-
vide less avCHO (19.7–59.3 g avCHO/100 g DM [21, 22]) 
per gram β-glucan (0.5–2.4 g avCHO/g β-glucan). As shown 
in vitro [23], mushroom β-glucans have a similar capability 
to slow down starch digestibility and the subsequent release 
of glucose as cereal β-glucans despite their slightly different 
chemical structure (glucopyranosyl units are cross-linked 
via β-(1,6) bonds to the linear β-(1,3) main chain [7]). In 
a randomized controlled trial (RCT), the enrichment of a 
single meal with 5 g Pleurotus eryngii (P. eryngii) extract 
reduced lipemic response in hyperlipidemic, non-diabetic 
subjects compared to the non-enriched meal [24]. The par-
tial replacement of wheat flour with Pleurotus sajor-caju 
(P. sajor-caju) powder in biscuits reduced their glycemic 
index up to 17% [25]. Moreover, a single supplement of 
dried Pleurotus ostreatus (P. ostreatus, 50 mg/kg BW) 
30 min before intake of 75 g pure glucose lowered 2 h PBG 
in patients with type 2 diabetes mellitus (T2DM), prob-
ably due to increased insulin release [26]. However, human 

intervention studies evaluating the overall metabolic effects 
of mushroom-fortified meals are still lacking.

Therefore, the aim of this RCT in subjects with known 
IGT was to investigate whether fortifying a usual meal with 
powder from whole P. ostreatus fruiting bodies improves 
postprandial plasma appearance of glucose (primary out-
come), lipemic response, the release of GI hormones and 
appetite sensations.

Methods

This trial was performed between 12/2018 and 02/2019 at 
the Department of Nutrition and Food Sciences at Nieder-
rhein University of Applied Sciences, Mönchengladbach, 
Germany.

Participants

Participants with IGT [i.e., blood glucose ≥ 140 
and < 200 mg/dL 2 h after a 75 g oral glucose tolerance test 
(OGTT) (ADA/WHO)] were recruited between 09/2018 
and 01/2019 by in-house postings at Niederrhein Univer-
sity of Applied Sciences (poster, flyer, newsletter), public 
announcements (poster, flyer, newspaper) and postings in 
medical practices (poster, flyer) in the Mönchengladbach 
area. IGT have been medically diagnosed during the past 
12 months. In other subjects interested in participation, the 
risk for prediabetes/T2DM was assessed by questionnaire 
(Diabetes Risk Test [27]) and thereafter, those identified at 
risk were invited for an OGTT at the research department 
(Accu-Chek Dextrose O.G-T., Roche, Mannheim, Germany). 
Criteria for eligibility were checked by questionnaire; exclu-
sion criteria included smoking, any self-reported medication 
that might affect glucose metabolism (e.g., cortisone), anti-
biotic treatment in the past 6 weeks, diseases associated with 
diarrhea or malabsorption, allergies or intolerances towards 
ingredients of the test meal, planned changes in lifestyle, 
vegetarian diet, regular intake of psyllium, guar, oats, mush-
room extract or apple pectin, pregnancy, lactation, present/
former alcohol or drug abuse and participation in another 
trial. In premenopausal women, pregnancy was excluded 
using a urine-based pregnancy test (KTX7, Innovita Bio-
logical Technology, Tangshan, China).

Study design and intervention

This RCT was a double-blind, acute crossover study with 
two treatments in random order: a CHO-based meal either 
enriched with powder from P. ostreatus (enriched meal, 
EN) or without enrichment (control meal, CON). These 
meals were provided on two different study days that were 
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separated by at least a 1 week washout. The time course of 
the study is shown in Fig. 1.

After enrollment, the participants were consecutively 
allocated to groups 1 and 2 (determining the meal order, i.e., 
first CON, then EN, or vice versa) by permuted block rand-
omization (ratio 1:1, block size of 4) using sealed  envelope™ 
software (Sealed Envelope, London, UK). EN and CON 
were encoded as A and B; this assignment was carried out 
by an external person. The assignment list was stored in 
an opaque envelope until the statistical analysis had been 
concluded to ensure blinding of the researchers to treatment.

Premenopausal women were investigated in the same 
menstrual cycle phase and/or had to be under stable treat-
ment with hormonal contraceptives to rule out cycle-depend-
ent effects on target parameters [28]. Moreover, participants 
were instructed to maintain their BW and individual lifestyle 
(diet, physical activity) during the entire study period. Three 
days before each intervention, participants were asked to 
ingest ≥ 150 g CHO daily and to abstain from β-glucan-rich 
foods (e.g., mushrooms, oats) and alcoholic beverages fol-
lowing a detailed written guideline. Participants documented 
their food and beverage consumption throughout these peri-
ods using standardized 3-day food records. Subjects were 
instructed to avoid physical exertion (e.g., arduous garden-
ing, endurance sports) and to have dinner before 8.00 pm 
on both pre-study days. Each participant was asked to eat 
before the second study day a dinner comparable to the one 
consumed before the first study day. On both study days, 
the participants arrived in the study center between 7.30 
and 8.00 am after at least 12 h of overnight fast, using the 
same means of transport.

Before onset of interventions, anthropometric parameters 
were investigated and the compliance with pre-intervention 
lifestyle instructions was checked by means of a guided 
interview and 3 day food records; these were also checked 
for plausibility. For repeated blood sampling (before and 15, 
30, 45, 60, 90, 120, 180 and 240 min post-consumption), an 

intravenous catheter was fixed. After each blood sampling, 
appetite sensations and adverse effects were assessed. The 
participants consumed the smoothie within 5 min and sub-
sequently the soup within 10 min (see below). During the 
4 h supervision period, the participants rested in a sitting 
position and ingested 100 mL of water every 30 min.

Meal preparation and composition

The participants consumed a two-course meal composed of 
a smoothie “apple-mango-passion fruit” (250 mL; Rewe, 
Cologne, Germany; same lot per participant) and a creamy 
potato soup (390 mL; Erasco, Lübeck, Germany; lot no. 
735.1907). The test meal was enriched with 20 g (equal parts 
added to the smoothie and the soup) oven-dried mushroom 
powder (P. ostreatus; BIO Pleurotus, Wohlrab, Entrischenb-
runn, Germany; lot no. 4644) corresponding to a usual serv-
ing size of 200 g fresh P. ostreatus [29]. Addition of mush-
room powder increased the viscosity of the smoothie and 
the soup at 37 °C by 142% and 53%, respectively (Advanced 
Rheometer AR 550, TA Instruments, New Castle, Dela-
ware, USA). This measure did not change the volume of the 
smoothie and the soup as determined for a sample (1/5 of the 
serving size each) using a graduated cylinder  (Blaubrand©, 
 Duran©,  Brand©, Wertheim, Germany; 100 mL; graduation 
1 mL, reading accuracy 1  cm3 according to DIN EN ISO 
4787:2011-05; data not shown). Energy and nutrient supply 
from each meal are presented in Table 1.

For blinding reasons, the smoothie was generally served 
in a semi-transparent covered cup with a drinking straw. 
The color of the non-enriched soup was adapted by adding 
0.8 mL/portion of an aqueous solution of caramel color, pro-
viding 467 mg sulfite ammonia caramel E 150d (Felix Koch 
Couleur & Karamel, Offenbach, Germany). To imitate the 
fungal-like smell, 1-octen-3-ol (Silesia, Neuss, Germany) 
was added to the control meal (soup: 6 µL, smoothie: 10 µL). 
Both meals were prepared by students and were served on 

Fig. 1  Study design. Bars reflect 
measures to ensure compara-
ble conditions on both study 
days. Stripes: instruction not 
to change body weight and 
lifestyle; dashed: treatment of 
premenopausal women in the 
same menstrual cycle phase; 
white: dietary restrictions, car-
bohydrate intake > 150 g/day; 
grey: request to avoid physi-
cal exertion and to consume 
a comparable dinner on both 
pre-study days; black: arriving 
at study center without great 
physical effort and using the 
same means of transport

Run-In Treatment Wash-out
(duration: ≥ 7 d and ≤ 28 d)

Treatment

Enriched meal (EN)Enriched meal (EN)

Control meal (CON)Control meal (CON)
Group 1

Group 2

-3 0 ≥7 / ≤ 28 Time (d)

Study day 1 Study day 2
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trays sprinkled with 1 µL of 1-octen-3-ol (Merck, Darmstadt, 
Germany).

Mushroom powder

According to the manufacturer, the mushroom powder was 
prepared from pure, whole oven-dried fruiting bodies of 
P. ostreatus which had been cultivated on a substrate of 
cottonseed hull (88%, wt/wt), wheat bran (10%, wt/wt), 
sugar cane (1%, wt/wt) and  CaCO3 (1%, wt/wt). The pow-
der provided 8.1 g of β-glucans per 20 g, determined using 
the β-Glucan (Yeast & Mushroom) Assay Kit (Megazyme 
Int. Ireland, Bray, County Wicklow, Ireland) as described 

by Sari et al. [30] and 8.0 g avCHO, the major source being 
trehalose. Further details on the composition of the mush-
room powder are provided in Table 1 and in Supplemental 
Table 1 [31, 32].

Blood sampling and preparation

Venous blood was collected into tubes  (Monovette®, 
Sarstedt, Nümbrecht, Germany) coated with EDTA (anal-
ysis of ghrelin, GLP-1, GIP) or NaF and citrate (plasma 
glucose analysis) and in tubes without anticoagulant (anal-
ysis of insulin, triglycerides (TGs), and non-esterified free 
fatty acids (NEFAs)). Blood samples were placed on ice 

Table 1  Energy content and 
main ingredients of the meals, 
based on the analyses of their 
 componentsa

NA not analyzed
a Data are mean values calculated from analyses in duplicate except for β-glucans which were investigated 
in quadruplicate
b Calculated as sum of potato soup, smoothie and mushroom powder except for trehalose, β-glucans, and 
chitin
c Calculated as sum of potato soup and smoothie
d Determined according to regulation (EU) No 1169/2011 with the exception that the protein content was 
calculated as described in footnote e
e The true protein content was calculated by the sum of analyzed amino acids, taking into account the loss 
of water due to the formation of peptide bonds [31]
f Determined according to the procedure of Weibull-Stoldt [32]
g Estimated by the difference method: 100 − protein − fat − minerals − moisture
h Calculated by subtraction of dietary fiber from total carbohydrates
i Determined photometrically using Trehalose Assay Kit K-TREH 12/19 (Megazyme Int. Ireland, Bray, 
Country Wicklow, Ireland)
j Determined photometrically by β-Glucan (Yeast & Mushroom) Assay Kit K-YBGL (Megazyme Int. Ire-
land) according to Sari et al. [30]
k Determined using total dietary fiber kit 1129790001 (Merck, Darmstadt, Germany) by a combination of 
enzymatic and gravimetric methods
l Calculated as sum of β-glucans and chitin
m Determined colorimetrically as described previously [31]
n Determined according to §64 of the German Food and Feed Code by ashing the sample at 550 °C
o Determined by thermogravimetric analysis

Meal components Meal

Potato soup
(390 mL)

Smoothie
(250 mL)

Mushroom powder
(20 g)

Enrichedb Controlc

Energy,  kcald 287 116 53 456 403
Protein,  ge 4.1 0.9 2.1 7.1 5.0
Fat,  gf 21.3 0.2 0.3 21.8 21.5
Total carbohydrates,  gg 23.8 28.7 15.3 67.9 52.5
 Available carbohydrates,  gh 16.0 26.5 5.5 47.6 41.1
  Trehalose,  gi NA NA 4.2 4.2 NA
  Other α-glucans,  gj NA NA 0.9 0.9 NA

 Dietary fiber, g 7.9k 2.3k 9.9l 20.0 10.1
  β-Glucans,  gj NA NA 8.1 8.1 NA
  Chitin,  gm NA NA 1.7 1.7 NA

Minerals,  gn 5.2 0.7 0.8 6.7 5.9
Moisture, g (%)o 335.6 (86.0) 219.5 (87.8) 1.5 (7.3) 556.5 (84.3) 555.1 (86.7)
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immediately after sampling and centrifuged (2500 × g, 
10 min, 4 °C) to obtain plasma; serum was collected after 
20 min of clotting. All specimens were frozen at − 80 °C. 
After completion of the study, samples were transported 
on dry ice to laboratories in Bonn and Copenhagen for 
analysis.

Laboratory investigations

Glucose, insulin and TGs were analyzed at the Department 
of Clinical Chemistry and Clinical Pharmacology, Uni-
versity Hospital Bonn, Germany. Glucose and TGs were 
investigated photometrically with  cobas® c 702 and insulin 
by ECLIA with  cobas® e 801 (both from Roche/Hitachi, 
Mannheim, Germany) using test kits (GLUC3, CV 1.1%; 
TRIGL, CV 0.5%; Elecsys Insulin, CV 0.9%). Glucose and 
insulin values were used to calculate HOMA-IR. NEFAs 
were investigated in duplicate at the Department of Nutri-
tion and Food Sciences, Nutritional Physiology, Univer-
sity of Bonn, Germany, by means of a colorimetric test 
kit (HR Series NEFA-HR(2), Fujifilm Wako Chemicals 
Europe, Neuss, Germany) (CV 8.4%). GLP-1, GIP and 
ghrelin were determined at the Department of Biomedical 
Sciences, University of Copenhagen, Denmark. For anal-
yses of GLP-1 and GIP, an in-house radioimmunoassay 
(RIA) was used. For this, all samples were extracted in a 
final concentration of 70% ethanol before measurement. 
Total GLP-1 was measured as described by Ørskov et al. 
[33] using a RIA (antibody code no. 89390) specific for 
the C-terminal domain of the GLP-1 molecule and which 
reacts equally with intact GLP-1 and the primary (N-termi-
nally truncated) metabolite. Total GIP concentration was 
analyzed with a RIA using an antibody directed towards 
the C-terminal domain (code no. 80867), which reacts 
fully with intact GIP and N-terminally truncated forms 
as described previously [34]. Sensitivity for these RIAs 
was < 1 pmol/L, and CV < 10%. Ghrelin was determined 
using the Human Ghrelin (total) ELISA kit (EZGRT-89K; 
Millipore, Billerica, MA, USA) according to the manufac-
turer’s instructions. All samples from the same individual 
were measured in the same assay run and quality controls 
provided by the manufacturer were within allowed limits.

Appetite sensations

Hunger, satiety, fullness and desire to eat were measured 
before and repeatedly after finishing the meal by means of 
separate visual analog scales according to Flint et al. [35] 
using an electronic digital caliper (kwb Germany, Stuhr, 
Germany; accuracy of 0.02 mm).

Adverse effects

Adverse effects, such as nausea, headache and flatulence, 
were also assessed (questionnaire) during the supervision 
period.

Anthropometric investigations

BW, height, waist and hip circumference and fat mass (FM) 
were investigated under standardized conditions: BW and 
height were used to calculate BMI; waist-to-hip ratio (WHR) 
was determined to classify fat distribution according to 
WHO. Bioelectric impedance analysis (50 kHz, 800 µA) 
was performed to determine FM using the equation of Kyle 
et al. [36].

Dietary intake assessment

The intake of energy and selected nutrients was calculated 
using the software  Prodi® 6.7.0.0 (Nutri-Science, Freiburg, 
Germany).

Sample size calculation

At the time of study planning, no trials evaluating the post-
prandial effect of fortifying a meal with oyster mushrooms 
on glucose incremental area under the curve (iAUC, pri-
mary outcome) were available. Due to the comparable effect 
of cereal and mushroom β-glucans on starch digestibility 
in vitro [23], we assumed similar effects on PBG. Thus, our 
sample size calculation was based on data obtained within 
a RCT with crossover design monitoring the glycemic 
response of overweight/obese adults to a meal (50 g avCHO) 
with or without a preload of oat bran (water-based drink 
containing 0.9, 2.6, and 5.3 g β-glucans and 0.6 g, 2.3 g and 
4.6 g avCHO, respectively; control:water) [37]. The intake 
of oat bran β-glucans was linearly related to a decrease in 
glucose iAUC. Using the regression formula of Steinert 
et al. [37], potential effects of pre-defined β-glucan quanti-
ties on iAUC can be predicted: a fortification of our meal 
with mushroom powder providing at least 5.3 g β-glucans 
was expected to decrease iAUC by 23.1% compared to CON. 
To detect a mean decrease in glucose iAUC of 23.1% with 
a SD of 20.1% (corresponding to an effect size of 1.1), ten 
participants per group were needed presuming a power of 
80% and an alpha of 0.05 (own calculation based on [38]). 
Assuming a dropout rate of 15%, 11 subjects were included 
in each group.

Statistical analysis

Metric data were checked for normal distribution using the 
Shapiro–Wilk test and were logarithmized if necessary. 
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If normal distribution could be assumed, parametric tests 
were used. Values obtained before both meals (e.g., nutrition 
status) were compared with each other by paired t test or 
Wilcoxon test. Repeated-measures ANOVA was performed 
with time and treatment as “within” factors to evaluate the 
effects of P. ostreatus enrichment on postprandial response. 
Otherwise, the Friedman test was used. In case of signifi-
cant changes, equal time points between both treatments 
were compared by Wilcoxon test considering Bonferroni 
correction for multiple comparisons. In addition, postpran-
dial response was quantified as total area under the curve 
(tAUC), except for glucose and insulin for which iAUC is 
recommended as this is more sensitive when distinguishing 
between foods with different glycemic effects [39]. If single 
values were missing for a participant after one treatment, the 
AUC was still calculated without this value. In this case, the 
AUC for the other treatment was calculated for this partici-
pant analogously. AUCs were compared for both treatments 
using paired t test, applying the bootstrapping option with 
1000 replications if normality failed. Differences indicated 
by P values < 0.05 were considered statistically significant. 
For Bonferroni adjustment, original P values were multi-
plied with the number of time points (n = 9) to reduce the 
false-discovery rate. Nominal variables were compared 
between the treatments by Fisher’s Exact test.

Metric data are presented as means ± SEMs, unless oth-
erwise indicated. Differences between AUCs obtained after 
EN and CON are provided as means and 95% CIs. Nominal 
and ordinal data are given as frequencies. Statistical analy-
sis was done using IBM-SPSS Statistics 25.0 (IBM Corp., 
Armonk, NY, USA).

Results

In total, 108 individuals were screened for eligibility, of 
whom 23 were excluded (n = 17 based on exclusion crite-
ria, n = 4 declined to participate, and n = 2 due to other rea-
sons; Fig. 2). Of the remaining 85 subjects, 6 presented a 
medical diagnosis of IGT and were included. Fifty subjects 
showed an increased risk for IGT and were asked to perform 
an OGTT. Of these, 16 subjects had a 2 h glucose concentra-
tion ≥ 140 and < 200 mg/dL and were, therefore, included. 
All 22 participants finished the study per protocol. In four 
subjects, blood sampling was incomplete; they were partly 
excluded from statistical evaluation (repeated-measures 
ANOVA or Friedman test).

The baseline characteristics of the participants are shown 
in Table 2. Nutrition status (BW, BMI, waist circumference, 
WHR, and FM) was not significantly different before both 
treatments. Moreover, the mean daily intake of energy and 
selected nutrients (macronutrients, fatty acid pattern, choles-
terol, fiber) was comparable 3 days prior to each intervention 

(Supplemental Table 2). In fasting state, laboratory param-
eters (Figs. 3, 4, 5), HOMA-IR (EN: 4.3 ± 0.5 vs. CON: 
4.3 ± 0.4, P > 0.05 according to t test) and appetite sensations 
(Fig. 6) did not differ before both treatments.

Glucose and insulin

Plasma glucose and serum insulin concentration changed 
postprandially (P ≤ 0.001 each) without significant dif-
ferences between both treatments at any time (Fig. 3a, c). 
Postprandial iAUCs for glucose and insulin were not differ-
ent between EN and CON (Fig. 3b, d). Hence, no treatment 
effect was detectable (Supplemental Table 3).

Triglycerides and non‑esterified free fatty acids

Postprandially, serum TGs increased and NEFAs decreased 
by time (P < 0.001 each) without any differences between 
EN and CON (Fig. 4a, c). Moreover, tAUC for TGs was 
similar for the two meals (Fig. 4b), whereas for NEFAs, 
tAUC was on average 14% lower after EN compared to CON 
(P = 0.026) (Fig. 4d). Consequently, a treatment effect was 
found for NEFAs tAUC, but not for TGs tAUC (Supplemen-
tal Table 3).

Gastrointestinal hormones

GLP-1 concentration in plasma increased postprandially 
(P ≤ 0.001) and reached higher values 180 min after EN 
vs. CON (P = 0.009 after Bonferroni adjustment) (Fig. 5a). 
Moreover, tAUC for GLP-1 was also 17% higher after EN 
compared to CON (P = 0.001; Fig.  5b) and a treatment 
effect was found (Supplemental Table 3). During interven-
tion, changes in the plasma level of GIP and ghrelin were 
observed (P < 0.001 each) without any significant differ-
ences between EN and CON (Fig. 5c, e). No differences in 
tAUCs for GIP and ghrelin were detectable (Fig. 5d, f) and 
no treatment effects were found (Supplemental Table 3).

Appetite sensations

While hunger, satiety, fullness and desire to eat changed after 
both meals (P < 0.001 for all sensations except of fullness 
with P = 0.005), no significant differences between EN and 
CON were detectable for any of these sensations (Fig. 6a, 
c, e, g). After EN, tAUC for hunger was about 22% lower 
than after CON (P = 0.031; Fig. 6b) indicating an effect by 
treatment (Supplemental Table 3). With regard to satiety, 
the significance for a higher tAUC after EN compared to 
CON was borderline (P = 0.07; Fig. 6d) and no treatment 
effect was detectable (Supplemental Table 3). Concerning 
fullness and desire to eat, tAUCs did not differ between both 
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treatments (Fig. 6f, h) and did not indicate any treatment 
effect (Supplemental Table 3).

Adverse effects

Few participants reported adverse effects at individual 
times points (nausea: 1 × EN; headache: 1 × EN, 1 × CON; 

flatulence: 4 × EN, 2 × CON; heartburn: 2 × EN) without 
any differences between both treatments (for each adverse 
effect P ≥ 0.05).

Excluded (n = 29)
• No risk for IGT (n = 29)

Statistical Analysis
• Per-Protocol (n = 11)
• Excluded for single statistical analyzes 

(RM-ANOVA, Friedman test) because of 
incomplete data sets due to complications 
during blood collections (n = 2)

Completed study (n = 11)

Allocated to group 1 (n = 11)

Completed study (n = 11)

Allocated to group 2 (n = 11)

Statistical Analysis
• Per-Protocol (n = 11)
• Excluded for single statistical analyzes 

(RM-ANOVA, Friedman test) because of 
incomplete data sets due to complications  
during blood collections (n = 2)

Allocation

Analysis

Follow-Up

Randomized (n = 22)

Enrollment

Excluded (n = 34)
• 2-h-glucose < 140 mg/dL (n = 29)
• 2-h-glucose ≥ 200 mg/dL (n = 2)
• Other reasons (n = 3)

Screening for IGT with 75-g-oGTT (n = 50)

Assessed for eligibility by questionnaire (n = 108)

Medically diagnosed IGT (n = 6)

Excluded (n = 23)
•Fulfilled exclusion criteria (n = 17)
•Declined to participate (n = 4)
•Other reasons (n = 2)

Checked for the existence of medically diagnosed IGT (n = 85)

No medically diagnosed IGT, risk for IGT 
assessed by ADA Diabetes Risk Test (n = 79)

Fig. 2  Flow of participants. ADA, American Diabetes Association; IGT, impaired glucose tolerance; OGTT, oral glucose tolerance test; RM-
ANOVA, repeated-measures ANOVA
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Discussion

To the best of our knowledge, this was the first RCT investi-
gating the overall metabolic and hormonal effects of a usual 
meal fortified with powder from whole fruiting bodies of 
dried P. ostreatus in adults with IGT. Contrary to our expec-
tations, postprandial glycemic response was not modulated 
by EN compared to CON. However, EN exerted positive 
effects on NEFAs in serum, GLP-1 in plasma and on hunger 
sensation, thereby partly confirming our working hypothesis. 
EN was well tolerated and may, thus, be qualified to be part 
of daily diets.

The lack of effects on PBG (Fig. 3a, b) was surprising, but 
this is consistent with the unchanged insulinemic response 
(Fig. 3c, d). With 8.1 g of β-glucans per 47.6 g avCHO 
(Table 1), the ratio of β-glucan to avCHO was 23% higher 
than considered for a meal to effectively reduce postpran-
dial glycemic response according to the EFSA Health Claim 
[8]. This health claim is based on intervention studies with 
cereal β-glucans with a slightly different chemical structure 
compared to mushroom β-glucans [7]. Although earlier 
in vitro studies with both isolated cereal and mushroom 
β-glucans demonstrate a comparable, structure-independ-
ent retardation of starch digestion [23], it cannot be ruled 
out that these structural differences may explain the lack 
of PBG effects. The effects of cereal β-glucans on PBG are 
ascribed to the high viscosity of β-glucan-containing food 

slowing down CHO digestion [9] and GE [10]. In a recently 
published in vitro and in vivo trial [40], an instant oatmeal 
(1.2 g β-glucan) enriched with 10.1 g oat bran  (OatWell®; 
2.8 g β-glucans, MW: 2060 kDa) exhibited a 140-fold higher 
viscosity in vitro than a β-glucan-free instant cream of rice 
used as control (P < 0.005); in vivo, the consumption of 
the enriched meal in healthy adults was associated with a 
delayed GE and, consequently, a reduction in glucose iAUC 
compared to the non-enriched cream of rice. Lowering the 
average MW of β-glucans from 2060 kDa to < 10 kDa led 
only to a fourfold higher viscosity of the instant oatmeal 
compared to β-glucan-free control. As a consequence, no 
effects on GE and glucose iAUC were observed. The rela-
tively small increase in viscosity of our fortified meal com-
ponents (soup 0.5-fold and smoothie 1.4-fold higher than 
non-enriched components) may, thus, explain the lack of 
changes in PBG. If the increase in the chyme’s viscosity 
induced by P. ostreatus was insufficient to slow down GE, 
inhibit digestion and thereby decrease the absorption of glu-
cose and fatty acids as expected, it might also explain the 
lack of changes in TGs (Fig. 4a, b), GIP (Fig. 5c, d), and 
ghrelin (Fig. 5e, f).

It is conceivable that the mushroom β-glucans’ ability 
to form viscous solutions might be limited if these are pro-
vided from oven-dried fruiting bodies. First, in mushroom 
fruiting bodies, β-glucans are in part covalently bound to 
chitin in the fungal cell wall [41]. Consequently, the luminal 
solubility of β-glucans provided using untreated mushroom 
powder might have been too low to increase the chyme’s 
viscosity. Mizutani et al. [24] fortified a fat-based soup 
with a mushroom extract (obtained by water extraction of 
oven-dried P. eryngii fruiting bodies); after consumption 
they found lower TG concentrations 3 h and 4 h postprandi-
ally (both − 21%, P < 0.05) and a lower TGs tAUC (− 18%, 
P < 0.05) compared to the non-enriched soup. The extraction 
process probably released water-soluble β-glucans, which 
may have increased the viscosity of chyme. Second, the mar-
ginal increase in meal viscosity could be explained by the 
technology to produce mushroom powder. Our mushroom 
powder was produced by oven-drying; alternatively, mush-
room powder can be obtained by lyophilization. Recently, a 
lower rehydration capacity of oven-dried P. ostreatus fruit-
ing bodies compared to a corresponding lyophilized prod-
uct was observed which was explained by changes of the 
microstructural properties (e.g., formation of hardened lay-
ers) during the different drying processes [42]. Jayasuriya 
et al. [26] provided 75 g pure glucose to patients with T2DM 
after a preload of lyophilized P. ostreatus fruiting bodies 
and observed, in contrast to the present study, a lowered 
2 h PBG.

At first glance, it seems contradictory that the NEFAs 
tAUC was reduced (Fig. 4d) after EN compared to CON 
despite the lack of changes in TGs and insulin. Postprandial 

Table 2  Baseline characteristics of the  participantsa

BW, body weight
a Data are means ± SDs unless indicated otherwise. Determined in 
fasting state at the first visit
b According to WHO

Females
(n = 14)

Males
(n = 8)

Age, y 42.7 ± 17.4 47.6 ± 18.2
Height, m 1.68 ± 0.05 1.75 ± 0.08
BW, kg 99.5 ± 18.6 98.0 ± 20.1
BMI, kg/m2 35.4 ± 6.3 31.8 ± 5.9
BMI  classificationb

 Normal weight, n (%) 1 (7.1) 0 (0.0)
 Overweight, n (%) 0 (0.0) 3 (37.5)
 Obesity, class I, n (%) 8 (57.1) 3 (37.5)
 Obesity, class II, n (%) 2 (14.3) 1 (12.5)
 Obesity, class III, n (%) 3 (21.4) 1 (12.5)

Fat mass, % BW 46.0 ± 5.2 33.1 ± 5.5
Fat distribution
 Waist circumference, cm 106.4 ± 13.3 109.2 ± 12.7
 Waist-to-hip ratio 0.85 ± 0.07 0.99 ± 0.06
 Android fat distribution, n (%)b 7 (50.0) 8 (100.0)
 Gynoid fat distribution, n (%)b 7 (50.0) 0 (0.0)
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NEFAs particularly originate from hydrolysis of circulat-
ing TGs by lipoprotein lipase or from hydrolysis of adi-
pose tissue TGs by hormone-sensitive lipase; both enzyme 
activities are modulated by insulin [43]. Thus, the reduction 
in NEFAs tAUC after EN vs. CON may be explained by 
another mechanism possibly lowering lipolysis in adipose 
tissue and subsequently the efflux of NEFAs: G protein-
coupled receptors 43 (GPR43) found in adipocytes are 
known to bind short-chain fatty acids (SCFAs; acetate, pro-
pionate, butyrate) produced by microbial fermentation of 
dietary fiber. As reviewed recently, the activation of GPR43 
in adipocytes may inhibit lipolysis in adipose tissue in both 
in vitro and animal studies [44]. In mice, the expression of 
GPR43 in adipocyte tissue increased after feeding a high-fat 
diet enriched with 5% polysaccharides from P. eryngii for 
16 weeks compared to a non-enriched diet [45]. Moreover, 
GPR43 are also expressed on the basolateral side of enter-
oendocrine L cells and binding SCFAs may stimulate the 
synthesis of GLP-1 [44]. Therefore, the decrease in NEFAs 
(Fig. 4d) and the increase in GLP-1 (Fig. 5a, b) might have 

been induced by SCFAs originating from microbial fer-
mentation of β-glucans. Whether microbial metabolites 
from fungal β-glucans may affect postprandial metabolism 
in humans is unclear; this may be rather expected to occur 
by regular intake of fermentable fiber. However, the co-
ingestion of inulin with pure glucose [46] or high-fructose 
corn syrup [47] has shown to increase acetate [46, 47] and 
butyrate [46] in plasma already within 4 h (tAUC 0-4 h) com-
pared to inulin-free control. These changes were accompa-
nied by lower serum concentration of NEFAs 4 h postprandi-
ally [47]. Our assumption that SCFAs might have modulated 
the GLP-1 and NEFAs response in plasma/serum is sup-
ported by the fact that the drifting of both curves (Figs. 4c, 
5a) after EN and CON becomes obvious 3 h postprandially.

An obvious explanation for the decrease in hunger by EN 
vs. CON with respect to tAUC (Fig. 6b) may be the GLP-
1-mediated actions of the paracrine and endocrine system, 
namely that stimulation of GLP-1 receptors located in sub-
mucosal vagal afferent nerves and in the brain can modulate 
appetite sensations [48]. The lack of differences in fullness 

a

c

b

d

Fig. 3  Glucose concentrations (a), glucose iAUC (b), insulin concen-
trations (c) and insulin iAUC (d) after consumption of the enriched 
meal compared to the control meal. Data: means ± SEMs. Glucose 
concentrations were analyzed with Friedman test (P < 0.001; n = 18), 
followed by Wilcoxon test with Bonferroni correction (P ≥ 0.05). 

Insulin concentrations were analyzed by repeated-measures ANOVA 
(logarithmized values; effects by time P < 0.001, effects by treatment 
and meal × time interactions P ≥ 0.05 each; n = 18). iAUCs were com-
pared by paired t test (P ≥ 0.05 each; n = 22). iAUC: incremental area 
under the curve
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(Fig. 6e, f) and desire to eat (Fig. 6g, h) appears plausible as 
the volume of the enriched and non-enriched meal compo-
nents was similar and the glycemic response did not differ 
between the meals.

If AUCs between both treatments were compared for 
women (n = 14) and men (n = 8) separately, significant dif-
ferences were additionally found for ghrelin and satiety in 
women. Ghrelin tAUC (pg/mL ∙ min) was lower [mean dif-
ference (95% CI) − 5461(− 9239; − 1683); P = 0.008] and 
tAUC for satiety (mm ∙ min) was higher [mean difference 
(95% CI) 3175 (1584; 4766); P = 0.001] after EN vs. CON. 
It remains open if such differences did not occur in men or 
if they were not detectable due to the relatively low sample 
size.

The strengths of our human intervention study are its 
double-blinded design, the strong control of confounding 
factors, such as lifestyle, nutrition status and hormonal varia-
tions across menstrual cycle, the detailed characterization of 
the nutrient composition of the meal components including 

the mushroom powder, and the determination of physico-
chemical properties of the meals. An obvious limitation is 
the fact that our sample size calculation was based on the 
results of an intervention study with cereal β-glucans (oat 
bran) [37]. Since mushroom β-glucans are partly cross-
linked with chitin [41], their water-solubility and, thus, their 
efficacy might be lower compared to cereal-β-glucans. Con-
sequently, the expected decrease in glucose iAUC by fortify-
ing a meal with mushroom powder might have been overes-
timated which means that an effect on glucose iAUC cannot 
be ruled out. Our working hypothesis included the idea to 
qualify dried mushrooms as “meal fortifier” and not to fully 
replace other meal constituents (e.g., wheat flour). Conse-
quently, the macronutrient composition of the test meals 
varied slightly: EN provided 5.5 g more avCHO than CON 
(20 g P. ostreatus powder: 4.2 g trehalose, 0.9 g α-glucans, 
0.4 g other mono-/disaccharides and polyols). However, 
avCHO such as trehalose, and polyols, like mannitol, exhibit 

a b

c d

Fig. 4  TG concentrations (a), TGs tAUC (b), NEFA concentrations 
(c) and NEFAs tAUC (d) after consumption of the enriched meal 
compared to the control meal. Data: means ± SEMs. TG concentra-
tions were analyzed with Friedman test (P < 0.001; n = 18), followed 
by Wilcoxon test with Bonferroni correction (P ≥ 0.05). NEFA con-
centrations were analyzed with the use of repeated-measures ANOVA 

(logarithmized values; effects by time P < 0.001, effects by treatment 
and meal × time interactions P ≥ 0.05 each; n = 18). tAUCs were 
compared by paired t test (P ≥ 0.05 for TGs, *P ≤ 0.05 for NEFAs; 
n = 22). NEFAs: non-esterified free fatty acids, tAUC: total area 
under the curve, TGs: triglycerides
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no or low glycemic and/or insulinemic effects [49, 50] and 
probably did not bias our results.

In conclusion, the short-term postprandial metabolic 
changes observed in this RCT indicate that an easily man-
ageable fortification of a single meal with powder from 

a b

c d

e f

Fig. 5  GLP-1 concentrations (a), GLP-1 tAUC (b), GIP concentra-
tions (c), GIP tAUC (d), ghrelin concentrations (e) and ghrelin tAUC 
(f) after consumption of the enriched meal compared to the control 
meal. Data: means ± SEMs. During intervention, changes in plasma 
concentrations of GLP-1 (n = 18), GIP (n = 18) and ghrelin (n = 19) 
were investigated using Friedman test (P < 0.001 for each parameter), 

followed by Wilcoxon test with Bonferroni correction. P values were 
always ≥ 0.05 if not indicated otherwise. **P ≤ 0.01. tAUCs were 
compared by paired t test (GLP-1: ***P ≤ 0.001; GIP and ghrelin: 
P ≥ 0.05 each; n = 22). GIP: gastric inhibitory polypeptide, GLP-1: 
glucagon-like peptide-1, tAUC: total area under the curve
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dried mushroom as a β-glucan source may help to attenuate 
repeated postprandial metabolic deterioration and, in the 
long run, reduce the known risk for development of over-
weight/obesity and T2DM in subjects with IGT. Thus, the 
fortification of meals with mushroom powder might be an 
alternative to enrichment with oats or barley. Several fac-
tors influencing the efficacy of mushroom powder (e.g., 
β-glucan/avCHO ratio, dosage, preparation) should be the 
focus of future human intervention studies.
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