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Abstract: Nowadays obesity becomes a significant global problem. Hence, recently more and
more attention has been paid to substances present in the body that have a significant impact on
metabolic processes and thermogenesis, in the context of their potential use in the prevention and
treatment of obesity. It is well known that the relationship between thyroid hormones and obesity
is multilayered, however recently, more and more information about the possible relation between
thyroid hormones and muscle metabolism has been published. The aim of this review is to present
the most updated information on the physiological impact of thyroid hormones on muscle tissue, as
well as pathological changes related to the occurrence of various types of thyroid disorders, including
hypothyroidism, hyperthyroidism and sick euthyroid syndrome. However, the data in humans still
remains insufficient, and further studies are needed to fully explore the thyroid-muscle cross-talk.

Keywords: thyroid hormones; skeletal muscle; thermogenesis; hypothyroidism; hyperthyroidism;
sick euthyroid syndrome

1. Introduction

Obesity is an epidemic that has become a significant problem globally. Obese individu-
als are at an increased risk of various health issues such as diabetes, cardiovascular diseases,
fatty liver disease, cancers as well as social challenges [1,2]. The lack of balance between
energy input and energy expenditure (EE) is a major contributor to obesity [3]. Modern-day
sedentary lifestyle has tipped the scale increasing the rate of obesity worldwide. Weight
gain prevention and treatments are being studied extensively with a number of studies
emerging to increase EE. Among them, the usage of the body’s regulation of thermogenesis
to manipulate EE looks promising [4].

Thermogenesis is the release of heat as a result of metabolic processes of the body.
The main source of thermogenesis comes from basal metabolic rate (BMR) which accounts
for 60–75% of EE of an adult human [4]. Movement-related thermogenesis and adaptive
thermogenesis account for the rest [4]. Few pathways known to be responsible for thermo-
genesis are B3 adrenergic signalling and its effects on lipogenesis, insulin/IGF1 signalling,
and thyroid hormone regulation [5,6]. Brown adipose tissue (BAT) is one of the organs
responsible for thermogenesis in humans and is exhibited to create heat through uncou-
pling of respiration through uncoupling protein 1 (UCP-1) in response to cold, exercise

Metabolites 2022, 12, 336. https://doi.org/10.3390/metabo12040336 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo12040336
https://doi.org/10.3390/metabo12040336
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0003-1510-4702
https://orcid.org/0000-0003-2282-0192
https://orcid.org/0000-0002-6296-7220
https://doi.org/10.3390/metabo12040336
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo12040336?type=check_update&version=3


Metabolites 2022, 12, 336 2 of 11

and diet [7,8]. Although BAT thermogenesis is under great research, skeletal muscle ther-
mogenesis has become particularly of interest for the prevention of obesity as it composes
~40% of human body mass thus contributing to a major portion of BMR and thermogenesis
in humans [9]. Skeletal muscle can dissipate heat through shivering and non-shivering
mechanisms. Heat is produced through shivering by ATP hydrolysis of involuntary repet-
itive contraction of muscle, but over time causes muscle fatigue [9]. On the other hand,
non-shivering thermogenesis (NST) in skeletal muscle could be utilized to prevent and
treat obesity.

Thyroid hormones (triiodothyronine (T3) and thyroxine (T4)) regulate the BMR of the
human body [10], playing a key role in EE. Weight changes have been attributed to altered
levels of thyroid hormones with their use for the treatment of obesity currently being
explored [11–13]. The relationship between thyroid hormones and obesity is multilayered,
with influences on each other and other processes of the body [14]. The link between
obesity and the hypothalamic-pituitary-thyroid axis, and the thyroid hormones’ influence
on weight through its effects on appetite, lipogenesis, and thermogenesis has also been
investigated [15]. Thyroid hormones regulate thermogenesis through various mechanisms
such as interactions with adrenergic systems and regulation of uncoupling proteins with
studies ranging from animals to humans [16,17]. Recently, Maushart et al. demonstrated
that in euthyroid individuals, the level of free T4 affects cold-induced thermogenesis (CIT)
as volunteers with higher free T4 levels exhibited a 4 fold increase in CIT than those with
lower levels of T4 [18]. Furthermore, thyroid hormones’ influence on thermogenesis spans
different systems of the body with their effects on the liver, peripheral blood vessels, sympa-
thetic nervous system, central nervous system, adipose tissue and skeletal muscle [19–21].
Thyroid hormones’ significant role in adipose tissue mediated thermogenesis and mech-
anisms behind this is being researched extensively revealing the involvement of BAT,
interactions with the sympathetic nervous system, browning of white adipose tissue, beige
adipocytes, mitophagy, selenoprotein biosynthesis, UCP-1 involvement, and mitochondrial
biogenesis [21–26].

2. Thyroid Physiology

2.1. Regulation of Sarcoplasmic Reticulum Ca2+ ATPase (SERCA)

The activity of sarcoplasmic reticulum (SR) Ca2+—ATPase (SERCA) in skeletal muscle
is shown to play a pivotal role in heat generation and thermogenesis [27]. SERCA pumps 2
calcium ions into the lumen of SR using ATP hydrolysis and thus also heat production as
a result. It has been demonstrated that SERCA along with its inducer sarcolipin (SLN) in
skeletal muscle contributes to NST through SR-Ca2+ cycling [28,29]. This increase in energy
expenditure through SERCA/SLN regulated NST has been proposed to treat obesity [30].
There is a dependency of T3 in the expression of SERCA 1 in fast-twitch fibres during the
postnatal period and an increase in T3 levels is shown to be important for the differentiation
of myotubes and SERCA (Figure 1) [31]. Thyroid hormones were shown to significantly
regulate SERCA expression in skeletal muscle of animal models [32]. There is an increase
in SERCA activity with induction of fast muscle isoform (SERCA1) in slow muscle fibers
during high-level T3 states. In addition, T3 downregulates SERCA2a isoforms which are
usually expressed far more in slow fibers. The authors suggested that T3 regulates NST
through the expression of SERCA1 [32]. Furthermore, the regulation of rabbit skeletal
muscle SERCA isoforms by the actions of thyroid hormones has been demonstrated [33].
This study showed an increased expression of SERCA1 while SERCA 2 expression in
hyperthyroid red muscle was reduced. In the hypothyroid state, however, there was a
decreased expression in SERCA1 of red muscles but no change in SERCA2 expression [33].
This again suggests the contribution of thyroid hormones on skeletal muscle thermogenesis.
In a more recent study, thyroid hormone receptor alpha 1 (TRa1) loss-of-function mouse
showed an increase in SLN by >5 fold [34]. The authors suggest that the increase in SLN
might be a way for skeletal muscle to compensate for the loss of TH function to maintain
thermogenesis [34].
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2.2. Regulation of Mitochondrial Uncoupling Protein 3 (UCP-3)

Another mechanism that has been explored is the role of thyroid hormones in the
expression of skeletal muscle uncoupling proteins and the impact of this on thermogenesis.
Uncoupling proteins are an important aspect of energy metabolism and are studied for
their potential for obesity treatment [35]. Uncoupling protein 1 (UCP-1) plays a major role
in BAT-mediated thermogenesis by uncoupling oxidative phosphorylation in mitochondria
and dissipating the energy as heat. This mechanism has been demonstrated to be mediated
by thyroid hormones [8,36]. In skeletal muscle, UCP-3 which is a homolog of UCP-1 is
expressed primarily and is observed to play a role in metabolism and is mediated by
thyroid hormones [16,35]. However, the mechanisms of UCP-3 have been shown to be
not analogous to UCP-1 in BAT. The main roles of UCP-3 in skeletal muscle are to prevent
mitochondrial reactive oxygen species-mediated damage and fatty acid oxidation [35].
Sprague et al. observed the involvement of thyroid hormones and UCP3 on metham-
phetamine (METH)-induced hyperthermia [37]. This study exhibited thyroid hormones’
role in METH-induced hyperthermia as thyroparathyroidectomized animals elicited a hy-
pothermic response, whereas levothyroxine-supplemented rats restored their hyperthermic
functions. This study also demonstrated that UCP3 played a vital role in METH-induced
hyperthermia. A follow-up study demonstrated that there is a linear relationship between
levels of circulating plasma TH and levels of skeletal muscle UCP3 protein and hyper-
thermic effects [38]. However, UCP-3′s effects on skeletal muscle thermogenesis are still
under debate and its mechanisms are unclear with studies demonstrating contradicting
evidence [16,39]. One proposed mechanism of its association to thermogenesis is through
its relationship with SERCA/SLN (Figure 1) [9]. Marchi et al. observed that silencing
of UCP-3 increased SERCA pumping activity and ATP production in mitochondria but
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decreased cytosolic Ca2+ levels [9,40]. They proposed that UCP-3 negatively affects SERCA
activity by limiting ATP synthesis. However, further investigation is required on this topic.

2.3. Regulation of Thyroid Hormone Receptor Alpha 1 (TRa1)

Thyroid hormone receptor alpha 1 (TRa1) in skeletal muscle is shown to be vital for
the actions of these hormones on skeletal muscle. A recent study used skeletal muscle-
specific TRa1 loss-of-function mouse to demonstrate the crucial role of TRa1 receptors in
skeletal muscle for the energy expenditure increase by thyroid hormones [34]. The skeletal
muscle composition was observed to be changed to oxidative phenotype. In addition,
sarcoplin was increased as a possible mechanism to preserve metabolism in these TRa1
loss-of-function mice. It was also shown that there was a small role of these TRa1 receptors
on diet-induced obesity. However, the thermogenesis function of these mice remained
preserved. These findings illustrate that the TRa1 receptor is not an important factor for
thyroid hormone-induced thermogenesis in skeletal muscle and there seems to be a slight
dissociation between influences of thyroid hormones on metabolism and thermogenesis.
These results were compared with a previous study which demonstrated that global TRa
knockout (KO) mice exhibited cold intolerance [41]. The discrepancy between both studies
was explained by Nicolaisen et al. by stating that global Tra KO mice are deprived of TRa
receptors not only in skeletal muscle but also all over the body, which might be the cause
of loss of thermogenesis observed in these TRa KO mice. In fact, TRa1 was shown to be
important in the regulation of BAT-mediated thermogenesis [6,36].

2.4. 3,5-diiodo-L-Thyronine (T2) Effects

3,5-diiodo-L-thyronine (T2) is an endogenous derivative of thyroid hormones with in-
fluences on metabolism and thermogenesis mainly working at the mitochondrial level [42].
In skeletal muscle, T2 was found to cause a change in muscle type from slow to fast-twitch
muscle fibers and increase AMPK phosphorylation associated with fatty acid oxidation; an
increase in sarcolemma membrane-associated GLUT4 protein was observed as well [43],
which mediates the insulin-induced glucose uptake in muscle cells. Furthermore, in skeletal
muscle of high fat diet-fed rats, T2 is found to affect aspects of mitochondrial functions and
cause a switch of muscle fibers to glycolytic type [44]. In terms of thermogenesis, T2 has
been exhibited to improve cold tolerance in hypothyroid rats and shown to influence BAT
mediated thermogenesis through its effects on UCP-1, cytochrome c oxidase (COX) activity,
and mitochondrial biogenesis [45,46]. Furthermore, in a study by Lombardi et al., the effect
of T2 on skeletal muscle thermogenesis was explored, demonstrating a rise in skeletal
muscle thermogenesis in T2-injected hypothyroid rats. It was shown that the mechanism
responsible for this is mitochondrial uncoupling as proton leak occurs across the inner
membrane to the matrix, releasing heat in the process. In addition, free fatty acids (FFA)
were shown to be critical in T2-induced mitochondrial uncoupling and thermogenesis in
skeletal muscle [47,48]. Furthermore, in diet-induced obese mice models, T2 is demon-
strated to enhance mRNA expression of mitochondrial uncoupling protein UCP3 in skeletal
muscle (Figure 1) [49].

2.5. Role of Deiodinase Enzymes

Type 2 deiodinase (D2) is an enzyme responsible for the activation of pro-hormone T4
into active T3 for further action in tissues whereas type 3 deiodinase (D3) converts T3 and
T4 into inactive metabolites [50]. In Thra knockout mice, which is said to act as a model for
BAT deficiency, D2 activity was shown to be increased in soleus muscle after 4 h of cold
exposure, double the rise of Wild type mice. Furthermore, after 16 h of cold exposure, the
D2 activity in Wild type mice returned to normal levels while it increased even more in
Thra knockout mice [51]. Another study conducted in rat models demonstrated that D2
is induced in skeletal muscle fibers of these cold-induced rats [52]. There was a 2.3-fold
increase in D2 activity in the red soleus muscle, though the increase was higher in BAT (10-
fold). However, after 10 days of cold exposure, D2 activity returned to baseline in both BAT



Metabolites 2022, 12, 336 5 of 11

and red soleus muscle but saw an increase by 2.8-fold in white glycolytic gastrocnemius
muscle. Even though BAT D2 returned to normal, serum and total T3 were shown to
be increased, which indicates the importance of D2 and thyroid hormones on fast-twitch
skeletal muscle fibers in long-term adaptive thermogenesis [52].

Calonne et al. showed that a decrease in rat model skeletal muscle protein turnover
after a considerable amount of weight loss could be responsible for the suppression of ther-
mogenesis which causes catch-up fat deposition [53]. It was also found that T3 was lowered
in skeletal muscle during caloric restriction and refeeding period. D2 was also much lower
in gastrocnemius muscle during refeeding, however, showed no change in soleus or tibialis
anterior. One of their main findings was the markedly increased D3 in skeletal muscle
during and after the caloric restriction period [53]. A follow-up study conducted in rat
models further exhibited D3′s role in skeletal muscle during catch-up fat gain after caloric
restriction, suggesting the possible influence of D3 on suppression of adaptive thermoge-
nesis by the inactivation of thyroid hormones, leading to fat deposition [54]. D3 activity
was shown to be lowered during the caloric restriction period and remained at a lower
level during catch-up fat deposition. Although blood levels of thyroid hormones were at
normal levels, there was local hypothyroidism in skeletal muscle, leading to a decrease in
adaptive thermogenesis [54]. This could potentially be a clinical issue and new biomarkers
might be required as plasma thyroid hormones are not indicative of tissue-specific thyroid
hormone levels.

3. Hypothyroidism

Hypothyroidism is a condition of thyroid hormone deficiency and can manifest with
various symptoms including lethargy, dry skin, constipation, fatigue as well as cold in-
tolerance and weight gain. Among many organs affected, skeletal muscle is one of them
resulting in muscle weakness and cramps [55]. Recently, Zhou et al. demonstrated the
cellular mechanisms of hypothyroidism induced skeletal muscle weakness [56]. The study
induced hypothyroidism in mouse models through TRa1 mutation and assessed the gastroc-
nemius muscle. The results of the study showed reduced autophagy in skeletal muscle as
well as decreased proteins of mitophagy and factors involved in mitochondrial biogenesis.
In addition, there was downregulation of genes related to lipid metabolism and changes in
slow and fast-twitch skeletal muscle fibers. In our study conducted in human participants,
irisin which is an adipo-myokin is seemed to be affected in thyroid dysfunctions with
lower irisin serum levels discovered in hypothyroid participants, most likely due to muscle
destruction [57]. We have also demonstrated that irisin levels are low in patients with overt
hypothyroidism with the levels being significantly decreased in a long-lasting hypothyroid
state [58].

Cold-induced thermogenesis (CIT) is illustrated to be decreased in patients with overt
or subclinical hypothyroidism [59]. The influence of the hypothyroid state on skeletal
muscle thermogenesis has not been explored in humans. Rats are illustrated to be cold
intolerant in the hypothyroid state. However, rats like humans use brown adipose tissue
(BAT) and skeletal muscle for thermogenesis which are both affected by thyroid hormones.
The effect of hypothyroidism and skeletal muscle thermogenesis specifically was studied
using rabbits since rabbits use skeletal muscle as a primary source of thermogenesis [60].
The experiment ensured that there was no BAT recruitment in these rabbit models and
focused on skeletal muscle thermogenesis alone. This study demonstrated that hypothyroid
rabbits were able to maintain body temperature after 10 days of cold exposure. There was
also an observation of increased skeletal muscle mitochondrial oxygen consumption in both
normal and hypothyroid rabbits as well as an increased expression of SERCA1 which are
suggested to be possible reasons for the cold tolerance of these rabbits. Thus, the authors
concluded that skeletal muscle thermogenesis in a cold environment does not solely rely
on normal thyroid function. Conversely, mRNA levels of myosin heavy chain fast isoforms
and SERCA 1 isoforms were decreased in cold-acclimated hypothyroid zebrafish [61].
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One of the major outcomes of hypothyroidism is low metabolic rate and energy ex-
penditure which results in weight gain [10,12,55]. It has been demonstrated that treatment
of hypothyroid individuals decreases total body weight and body fat mass with a great
relationship between changes in thyroid hormones and body weight [12]. However, an-
imal models have illustrated slightly different outcomes. In a study conducted in 2020,
hypothyroid mice with knockout of gene encoding sodium-iodine symporter were studied.
They observed that these hypothyroid mice were leaner with reduced body weight than
their euthyroid counterparts [62]. This was partly due to less food intake by these mice
which is consistent with a previous study that demonstrated that hypothyroid mice’s
calorie intake and body fat were decreased [63]. Most importantly, Kaspari et al. ob-
served a significant increase in skeletal muscle thermogenesis in hypothyroid mice with
only a moderate increase in BAT regulated thermogenesis although mice were still cold
intolerant. They demonstrated that although hypothyroidism did prevent their animal
models from maintaining body temperature, adaptive skeletal muscle thermogenesis could
be a compensatory mechanism to hypothyroidism-induced cold intolerance in animals
to try and regulate their body’s temperature. Furthermore, this study found that there
was a significant increase in SLN mRNA and protein levels in the soleus muscle of these
hypothyroid mice which also remained high after a cold challenge compared to euthyroid
mice. This again clearly indicates the importance of the thyroid hormone’s role in the
regulation of SERCA/SLN mediated skeletal muscle thermogenesis. The authors of the
study, therefore, suggest that skeletal muscle thermogenesis is a significant factor in terms
of TH-induced thermogenesis, particularly through SERCA/SLN regulation.

4. Sick Euthyroid Syndrome

Sick euthyroid syndrome which is also known as the non-thyroidal illness, or low
T3 syndrome (NTIS), is a transient alteration in thyroid hormone levels despite normal
thyroid function among critically ill patients. Generally, low levels of total and free T3
with normal T4 and TSH levels are observed in this condition [64]. A decrease in TH
levels during illness is suggested to be the body’s attempt at conserving energy [31]. By
decreasing thyroid hormones’ influences on anabolic processes of skeletal muscle, the
energy required is thus also lowered during critical illness [31]. In addition to low TH
levels, a study on patients with NTIS with septic shock demonstrated that the expression
of genes responsible for skeletal muscle function through THs is altered [65]. Furthermore,
considering mediators that have been explored to affect skeletal muscle thermogenesis,
skeletal muscle TH receptors (TRa1) were shown to be down-regulated in non-septic shock
NTIS patients [66]. However, the mRNA levels of SERCA1, SERCA remained unchanged
while UCP3 expression was higher. The authors predicted that the increase in UCP3 was
likely due to an increase in fatty acids during starvation seen in these patients, which is
another condition where UCP3 is typically increased.

In a study by Boelen et al. observing NTIS in mice models, TH metabolism in skeletal
muscle had different effects depending on the type of illness [67]. In acute inflammation
and bacterial sepsis, TH transport into the cell decreased, while no change was seen in
chronic inflammation. In addition, D2 and D3 concentrations differed depending on the
state of illness as well. However, in all states, T3 and T4 concentrations were lower in NTIS
than in control mice models.

5. Exogenous Levothyroxine

Levothyroxine (LT4) is an exogenous thyroid hormone (T4) indicated for the treat-
ment of hypothyroidism [55]. A study conducted in 2019 demonstrated the increase in
cold-induced thermogenesis in hypothyroid patients treated with levothyroxine and whose
TH levels were restored to euthyroid state [59]. The authors specified that the increase in
CIT in these patients could be due to both BAT-induced and skeletal muscle thermogenesis.
Levothyroxine’s effect specifically on skeletal muscle thermogenesis has not been studied.
However, weight changes with levothyroxine treatment which induced iatrogenic sub-
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clinical hyperthyroidism did not elicit long-term weight changes compared to euthyroid
patients [68]. In addition, the use of levothyroxine in euthyroid obese patients has been
explored by De Geronimo et al. [13]. They concluded that levothyroxine treatment should
only be used for hypothyroidism since there is no current evidence to use this hormone for
the treatment of obesity in euthyroid individuals. Furthermore, to potentially cause weight
loss, supraphysiological doses of levothyroxine are likely needed which will cause other
side effects. According to Kyriacou et al., an approach of targeting selective tissues in the
body with thyroid hormones can help avoid potential side effects from other organs whilst
regulating lipogenesis and weight [69].

6. Hyperthyroidism

Hyperthyroidism is a state of higher than normal levels of thyroid hormones with
symptoms such as palpitations, restlessness, anxiety, hyperreflexia and most importantly
weight loss (in about 90% of patients) and heat intolerance [12,70]. Animal models have
been experimented with to show a link between hyperthyroidism and increased skeletal
muscle thermogenesis. In a study by Arruda et al., T4-induced hyperthyroid rabbits illus-
trated an increase in SERCA activity and heat release [71]. There was an 0.8-fold increase in
SERCA activity in white muscle while red muscle had a 4-fold increase, suggesting that
SERCA activity could be a major contributor to heat generation in hyperthyroidism. Fur-
thermore, Meis et al. pointed out that there is an increase in sarcoplasmic reticulum protein
in hyperthyroid rabbits, with a great rise in SERCA 1 subtype in red muscles [72]. They
also specified that the changes in red muscle were more significant than white muscle, with
red muscles demonstrating more Ca2+ in their vesicles and producing more heat. There
was a 40-fold increase in heat production by SERCA in red muscle in the hyperthyroid state
of rabbits, mainly due to the expression of SERCA1.

Furthermore, skeletal muscle weakness is observed in patients with hyperthyroidism.
Hyperthyroidism with these associated muscle symptoms such as skeletal muscle weak-
ness, paralysis, and pain is mainly referred to as thyrotoxic myopathy [73]. Muscle strength
and cross-sectional area were reduced in patients with both overt and subclinical hy-
perthyroidism which improved after treatment [74], while muscle protein breakdown
with the increased amino acid release was seen in hyperthyroid women with Graves’
disease [75]. We have observed that normalization of thyroid function in hyperthyroid
women leads to weight gain resulting from an increase of fat tissue, while muscle mass
remains unaltered [76]. Also, titin and dystrophin- potential biochemical markers of muscle
dysfunction were lower in hyperthyroid patients and did not normalize after the therapy,
which suggests that some changes of muscle protein are irreversible [77]. In another study,
Riis et al. studied the contents of Ca2+ ATPase and Na+/K+ ATPase in skeletal muscle of
hyperthyroid patients [78]. In this study, Graves’ disease patient’s muscle biopsies were
taken which showed an increase in the regulator of skeletal muscle thermogenesis, Ca2+

ATPase. They also observed that the contents of these pumps correlate to plasma thyroid
hormone levels and resting EE. In the Maushert et al. study, CIT was shown to not increase
in overt hyperthyroid patients as the skin temperatures of both hyperthyroid and euthyroid
individuals were not different after mild cold exposure [79]. The authors suggest that
according to the data collected, the lack of CIT in these patients is due to high resting EE in
a hyperthyroid state, making further thermogenesis during cold exposure needless.

7. Summary

Thyroid hormones are strongly associated with skeletal muscle thermogenesis in both
the euthyroid and dysthyroid states. The mechanisms underlying thyroid hormones’ effect
on skeletal muscle thermogenesis specifically are explored with studies involving SERCA,
UCP-3, TRa1, and deiodinase enzymes. Among them, SERCA, UCP-3 and deiodinase
enzymes are illustrated to play a role, whereas TRa1 seems to not have an effect. Other
than T3 and T4, thyroid hormone metabolite, T2 has also been demonstrated to be playing
a part in the process. There is, however, insufficient data in humans and as such further
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studies are needed. Exogenous thyroid hormones for the treatment of obesity can be further
investigated, targeting skeletal muscle thermogenesis, but ideally, they need to be modified
to target specific organs, such as the brown adipose tissue and the skeletal muscle.
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