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Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response.
Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many
physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory
mediators, including tumor necrosis factor-𝛼 (TNF-𝛼) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential
role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling
in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in
macrophages to treat inflammatory diseases.

1. Introduction

Inflammatory response is a basic protective immune process
of the organism and is accompanied by symptoms such as
redness, heat, swelling, and pain associated with damage
to tissues or organs [1]. This is one of the mechanisms
by which our body defends us from pathogens such as
parasites, bacteria, viruses, and other harmful microorgan-
isms. Diseases induced by chronic inflammation, including
gastritis, colitis, dermatitis, rheumatoid arthritis, pulmonary
diseases, and type II diabetes, damage millions of people’s
health every year. Of concern is the increase in prevalence
of these chronic inflammatory diseases. Furthermore, there
is growing evidence that inflammation is a critical initiation
factor inducing a variety of other major diseases such as

cancer, atherosclerosis, Alzheimer’s disease, cardiovascular
disease, neurological disorders, and pulmonary diseases [2–
7]. Therefore, a better understanding of inflammation is
clinically significant and could improve treatment strategies.

Macrophages within tissues play an essential role in the
initiation, development, and resolution of inflammation [8–
11]. Macrophages are white blood cells that are differentiated
from monocytes. Their roles are to clean up damaged cells
and pathogens by phagocytosis and to activate immune
cells, such as neutrophils, dendritic cells, macrophages, and
monocytes, in response to pathogens and diseases. They can
be activated or deactivated during inflammatory processes
depending on the signaling molecules produced. Stimu-
lation signals include lipopolysaccharide (LPS), cytokines
(interleukin-1 (IL-1) and tumor necrosis factor-𝛼 (TNF-𝛼)),
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Table 1: p38 family members and their functions in inflammatory responses.

p38 isoform
(molecular weight,
kDa)

Distribution in tissue Expressing cells Inflammatory responses Reference

p38𝛼 (38) Ubiquitous Macrophages,
neutrophils

Cytokine production (IL-1𝛽, TNF-𝛼, and
IL-6); regulation of enzymes (iNOS,

COX2); involvement of cell proliferation
and differentiation; induction of

cardiomyocyte apoptosis.

[21, 27, 73]

p38𝛽 (39) Ubiquitous Endothelial
cells, T cells

Regulation of cell differentiation;
induction of cardiomyocyte hypertrophy. [21, 27, 73]

p38𝛾 (43) Skeletal muscle Not detected Muscle differentiation. [25, 27, 73]

p38𝛿 (40)
Lung, kidney, testis,
pancreas, and small

intestine

T cells,
endothelial cells,

and
macrophages

Developmentally regulated; involvement
of cell differentiation. [26, 27, 73]

other chemical mediators, and extracellular matrix proteins.
A variety of membrane receptors are expressed on the sur-
faces of macrophages, including pattern recognition recep-
tors (PRRs) such as dectin-1 and Toll-like receptors (TLRs)
[12, 13]. These receptors recognize activation signals and
subsequently activate downstreamprotein kinases, eventually
resulting in the stimulation of transcription factors including
activator protein-1 (AP-1), nuclear factor-kappa B (NF-𝜅B),
and cAMP response element-binding protein (CREB).

Various intracellular proteins can initiate inflamma-
tion. p38 proteins are a class of mitogen-activated protein
kinases (MAPKs) that aremajor players during inflammatory
responses, especially in macrophages. p38, also called RK or
cytokinin-specific binding protein (CSBP), was identified in
1994 and is themammalian ortholog of the yeast Hog1pMAP
kinase [14]. p38was isolated as a 38 kDa protein that is rapidly
phosphorylated at a tyrosine residue in response to LPS
stimulation, and the p38 gene was cloned through binding
of the p38 protein with pyridinyl imidazole derivatives [15].
p38 expression is upregulated in response to inflammatory
and stress stimuli, such as cytokines, ultraviolet irradiation,
osmotic shock, and heat shock, and is involved in autophagy,
apoptosis, and cell differentiation [16–20]. Accumulating
evidence suggests that p38 plays an important role in arthritis
and inflammation of the liver, kidney, brain, and lung and that
it acts as a critical player in inflammatory diseases mediated
by macrophages [21–23].

In this paper, we summarize the characteristics of p38
and highlight the physiological significance of p38 activation
inmacrophage-mediated inflammatory responses.Moreover,
we discuss the possibility of using plant extracts, natural
products, and chemicals that target p38 as therapeutic drug
candidates for the treatment of inflammatory diseases.

2. Structure and Function of p38 Kinases

2.1. The p38 Family. p38 family members are classified into
four subtypes: 𝛼 (MAPK14), 𝛽 (MAPK11), 𝛾 (MAPK12/ER-
K6), and 𝛿 (MAPK13/SAPK4) (Table 1). Genes encoding
p38𝛼 and p38𝛽 show 74% sequence homology, whereas 𝛾

and 𝛿 are more distant relatives, with approximately 62%
sequence identity [24–26]. Genes encoding p38𝛼 and p38𝛽
are ubiquitously expressed within tissues, and especially
highly expressed in heart and brain. However, p38𝛾 and
p38𝛿 show tissue-specific expression patterns; p38𝛾 is highly
expressed in skeletal muscle, whereas p38𝛿 expression is
concentrated in the kidneys, lungs, pancreas, testis, and small
intestine [27]. In addition, p38𝛾 expression can be induced
during muscle differentiation, and its expression can also be
developmentally regulated. Moreover, we demonstrated very
high expression of the active formof p38 in inflammatory dis-
eases, such as gastritis, colitis, arthritis, and hepatitis [28, 29]
(unpublished data). p38𝛼 and p38𝛿 are abundantly expressed
in macrophages, whereas p38𝛽 is undetectable. p38𝛼 and
p38𝛿 are also expressed in endothelial cells, neutrophils, and
CD4+ T cells, whereas p38𝛽 is abundant in endothelial cells.
These findings indicate that, even though the four p38 family
members share sequence homology, their expression is cell-
and tissue dependent and their functions may therefore be
different.

2.2. p38 Structure and Domains. p38 kinases have two do-
mains: a 135 amino acid N-terminal domain and a 225 amino
acid C-terminal domain. The main secondary structure of
the N-terminal domain is 𝛽-sheets, while the C-terminal
domain has a 𝛼-helical structure. The catalytic site is located
in the region linking the two domains. The phosphorylation
lip of p38 consists of 13 residues, Leu-171–Val-183, and the
protein is activated by phosphorylation of a single threonine
(Thr-180) and a single tyrosine residue (Tyr-182) in the lip
[30]. Moreover, in Drosophila p38 MAPK, phosphorylation
of tyrosine-186 was detected exclusively in the nucleus fol-
lowing osmotic stress [31]. p38 isoforms show various three-
dimensional structures with differences in the orientation of
the N- and C-terminal domains, resulting in different sized
ATP-binding pockets [32].

2.3. Activation of the p38 Response. p38 kinases are activated
by environmental and cellular stresses including pathogens,
heat shock, growth factors, osmotic shock, ultraviolet irradi-
ation, and cytokines. Moreover, various signaling events are
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Figure 1: p38-regulated signaling pathways in inflammatory responses. Inflammation-derived cytokines such as TNF-𝛼 and IL-1, TLR ligands
such as LPS, poly(I:C), and peptidoglycan, as a environmental stresses, stimulate the phosphorylation of p38, leading to the activation
of transcription factors such as AP-1 family. Subsequent expression of inflammatory genes by these transcription factors mediates various
inflammatory responses including cytokine production, migration, and apoptosis of macrophages, monocytes, and neutrophils.

able to stimulate p38 kinases, for example, insulin signaling.
Interestingly, with respect to inflammatory responses, a num-
ber of studies have reported p38 regulation in macrophages
treated with LPS, endothelial cells stimulated with TNF-𝛼, U1
monocytic cells treated with IL-18, and human neutrophils
activated with phorbol 12-myristate 13-acetate (PMA), LPS,
TNF-𝛼, and fMLP [33, 34]. It should also be noted that p38
activation in different cell types is dependent on the type of
stimulus.

In addition, a number of studies have reported that
distinct upstream kinases selectively activate p38 isoforms.
p38 family kinases are all activated by MAP kinase kinases
(MKKs). MKK6 activates all four p38 isoforms, while MKK3
can activate p38𝛼, 𝛽, and 𝛿, but not p38𝛾 [35], and MKK4
activates p38𝛼 and 𝛿 [36]. This implies that p38 isoforms can
be coactivated by the same upstream regulators and regulated
specifically through different regulators.

2.4. p38 Deficiency. p38𝛼 deficiency affects placental devel-
opment and erythropoietin expression and can result in
embryonic lethality [37–40]. Tetraploid rescue of placental
defects in p38𝛼−/− embryos indicated that p38𝛼was required
for extraembryonic development, while it was not neces-
sary for embryo development or adult mice survival. In
accordance with the phenotype of p38𝛼 knockouts, knock-
out of two p38 activators, namely, MKK3 and MKK6, led

to placental and vascular defects and induced embryonic
lethality [41]. In contrast, p38𝛽−/− mice were viable and
exhibited no obvious health defects. Neither transcription of
p38-dependent immediate-early genes, such as TNF-𝛼 and
IL-1𝛽, nor T cell development was influenced by the loss
of p38𝛽 [42, 43]. Furthermore, mice harboring a T106M
mutation in p38𝛼 resisted the drug inhibitory effect of
collagen antibody-induced arthritis and LPS-induced TNF
production, whereas the same mutation in p38𝛽 had the
opposite effect [44], and p38𝛽 knockout mice responded
normally to inflammatory stimuli. Single knockouts of either
p38𝛾 or p38𝛿, and even a double knockout, were viable [45].
However, reduced production of TNF-𝛼, IL-1𝛽, and IL-10 in
stimulated macrophages isolated from p38 𝛾/𝛿 null mice has
been observed, which indicates that p38 𝛾/𝛿 are important
regulatory components of the innate immune response [46].
Taken together, these findings suggest that p38𝛼 is the critical
isoform in inflammatory responses but that other subtypes
also play important roles.

2.5. Regulation of p38-Activated Signaling. Because p38 sig-
naling can be activated by a variety of stimuli, the receptors
and downstream pathways are diverse (Figure 1). MTK1,
mixed lineage kinase (MLK) 2/3, apoptosis signal-regulating
kinase (ASK) 1, and transforming growth factor 𝛽-activated
kinase (TAK) 1 are all MKK kinases (MAP3Ks) that have
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been demonstrated to activate p38 signaling [47–54]. Fur-
thermore, different kinases can mediate different signals.
Among upstream proteins, Cdc42 and Rac are recognized as
critical intermediates of p38 activity [55–57]. Many studies
have also reported that p21-activated kinases (PAKs) can
be stimulated by binding to Cdc42 and Rac in vitro and
subsequently activate a p38 response [58–61]. In addition,
Mst1, a mammalian homologue of Ste20, was reported to
stimulate MKK6, p38, MKK7, and JNK [62]. However, there
are no reports of the involvement of MTK1 and Mst1 in p38
responses in macrophages.

There are numbers of substrates downstream of p38
signaling pathways. MAP kinase-activated protein kinase 2
(M2) and M3 were the first p38 substrates identified [63, 64].
PhosphorylatedM2 orM3 can activate a variety of substrates,
such as small heat shock protein 27 (HSP27), CREB, and
activating transcription factor (ATF) 1 [65, 66]. To date, sev-
eral other proteins have also been identified as downstream
substrates of p38, such as mitogen- and stress-activated
kinase (MSK), p38-regulated/activated kinase (PRAK), and
MAP kinase interaction protein kinase (MNK1) [67–70].
Various novel proteins have also been shown to be direct
substrates of p38𝛼, including Ahnak, Iws1, Grp78, Pgrmc,
Prdx6, and Ranbp2 [71]. Additionally, TPL2/ERK1/2 has been
shown to be downstream kinases controlled by p38 𝛾 and 𝛿
isoforms [46].

Phosphatases that downregulate p38 activity have also
been identified. Mitogen-activated protein kinase phos-
phatases (MKPs) can recognize MAPKs by recognizing the
TXY amino acid motif and consequently dephosphorylate
and deactivate them. MKP-1, MKP-4, MKP-5, and MKP7
can effectively dephosphorylate p38𝛼 and p38𝛽 [72–75].
However, right now, MKPs cannot dephosphorylate p38𝛾 or
p38𝛿 as shown by other researchers [73, 76].

Several transcription factors in the nucleus can be phos-
phorylated and activated by p38 MAPKs, such as activat-
ing transcription factor 1 and 2 (ATF-1, ATF-2), myocyte
enhancer factor 2 (MEF2), CCAAT/enhancer-binding pro-
teins (C/EBPs), SRF accessory protein-1 (Sap1), p53, and
E26 transformation-specific sequence-1 (ETS-1) [77–82]
(Figure 1).

3. p38 Functions in Macrophage-Mediated
Inflammatory Responses and Diseases

Macrophages are the first line of defense of organisms against
pathogens.They represent amajor cell population distributed
in most tissues, and their numbers increase massively in
inflammatory diseases. In particular, macrophages are crit-
ically involved in the pathogenesis of rheumatoid arthritis
(RA) and produce a variety of proinflammatory cytokines
and chemokines that contribute to cartilage and bone degra-
dation. They are also the predominant cells in the synovial
lining and sublining of patients with RA [83]. Macrophages
also play a central role in the development of type 2 diabetic
nephropathy. Macrophage accumulation in kidney, coronary
arteries, nerves, and epiretinal membrane is regarded as one
of major causing factors in terms of type 2 diabetic compli-
cations, including nephropathy, atherosclerosis, neuropathy,

and retinopathy [84–88]. Components of the diabetic milieu,
including high glucose, advanced glycation end products,
and oxidized low-density lipoprotein, promote macrophage
accumulation and activation within diabetic tissues [89].
Macrophage depletion studies have also demonstrated the
crucial role of macrophages in the development of diabetic
complications [89]. Moreover, macrophages play a pivotal
role in the clearance of pulmonary pathogens. Alveolar
macrophages (AM) constitute more than 90% of the cells
present in bronchoalveolar lavage of näıve tissues [90]. AM
can rapidly clear bacteria from airways and cellular debris,
help to depress the immune characteristics of the airways,
and aid in lung parenchyma modeling [90]. Furthermore,
macrophages have significant roles in metabolic diseases,
atherosclerosis, bowel disease, and liver fibrosis [91–94]. The
fundamental roles of macrophages in inflammation highlight
the need for macrophage-targeted studies and therapeutics.

Accumulating evidence suggests that p38 plays an essen-
tial role in macrophage-mediated inflammation. p38𝛼 is
involved in the expression of proinflammatory mediators in
macrophages such as IL-1𝛽, TNF-𝛼, PGE

2

, and IL-12 [95–
97] as well as COX-2, IL-8, IL-6, IL-3, IL-2, and IL-1, all of
which contain AU-rich elements (AREs) in their 3 untrans-
lated regions to which p38 binds [98]. Moreover, p38 can
regulate the production of endothelial vascular cell adhesion
molecule-1 (VCAM-1), which participates in cell proliferation
and differentiation of the immune response [99]. Further-
more, p38 is associated with various inflammatory dis-
eases, including endotoxin-induced shock, collagen-induced
arthritis, granuloma, diabetes, and acute lung inflammation
[100–103], as well as joint diseases, including synovial inflam-
mation, cartilage damage, and bone loss [104]. In contrast,
p38𝛽 and 𝛿 also play important roles in regulation of TPA-
induced skin inflammation and tumor development [105,
106]. In addition, a large number of reports have suggested
a close correlation between p38 and cell apoptosis, cell cycle
progression, and differentiation [107–110].

4. Development of p38-Targeted Drugs as
New Anti-Inflammatory Therapeutics

p38 MAPK signaling plays a significant role in the inflam-
matory response and other physiological processes. A better
understanding of the functional and biological significance
of p38 in inflammation has led to the development of p38
inhibitors. Currently, a number of p38 inhibitors have been
developed such as AMG-548, SC-80036, SC-79659, and VXs
(Figure 2) [111]; however, few studies have reported their
effects on macrophages.

4.1. Discovery. p38 signaling and specific p38 inhibitors were
identified simultaneously. A series of pyridinyl imidazole
anti-inflammatory agents, such as bicyclic pyridinyl imida-
zoles SKF-86002, SB203580, and SB202190 [15, 112–116], were
first found to inhibit p38 activity [104, 117]. SB inhibitors can
antagonize p38 by competing for the ATP-binding pocket,
and it has been suggested that Thr-106 could be important
for this interaction [115].
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Figure 2: Chemical structures of representative novel p38 inhibitors. Promising therapeutic activities of these inhibitors against inflammatory
diseases such as RA encourage the continuous progression for clinical trials.

4.2. Crude Plant Extracts. Natural plant extracts that target
p38 are promising therapeutics for the treatment of inflam-
matory diseases (Table 2). For example, Scutellaria baicalensis
extract attenuates MAPK phosphorylation, especially p38
activity, resulting in inhibition of inflammatory mediators
such as COX-2, iNOS, L-1𝛽, IL-12, IL-6, IL-2, PGE

2

, and
TNF-𝛼 in RAW 264.7 cells treated with LPS [118]. Phaseolus
angularis ethanol extract suppressed the release of PGE

2

and NO in macrophages activated by LPS-, Poly(I:C)-, or
pam3CSK through regulation of TAK1/p38 pathways and,
moreover, it ameliorated gastritis induced by EtOH/HCl in
mice, which implies a close relationship between p38 and
gastritis [119]. Archidendron clypearia extract suppressed the
production of PGE

2

in activated RAW264.7 and peritoneal
macrophages, as well as gastritis lesions in mouse stomachs
exposed to EtOH/HCl [28]. Unfortunately, p38 is not the
only target of these extracts; they contain several other active
ingredients and therefore are not good candidates for the
development of p38-specific inhibitors. However, they are
effective at treating inflammatory diseases because of their
multiple targets and their ability to improve body’s homeo-
static defense responses [120–123]. Meanwhile, as reported
previously [124], during covering years 1981–2006, of the 974
small molecule new chemical entities, 63% were naturally
derived or semisynthetic derivatives of naturally occurring
products, which indicate the importance of plant extract
in the drug development [124]. In addition, we and other
groups have found that various traditional plant extracts that
target p38 kinase can reduce the symptoms of inflammatory
diseases (unpublished data), such as gastritis, colitis, arthritis,
and hepatitis [28, 29]. Plant extract data are summarized in
Table 2.

4.3. Plant-Derived Compounds. Several compounds from
natural products inhibit p38 activity and inflammatory
responses (Table 3). Sugiol, an aditerpene that was isolated
and purified from alcohol extracts of the bark of Calocedrus
formosana, effectively decreased the production of intracellu-
lar reactive oxygen species (ROS), IL-1𝛽, and TNF-𝛼 in LPS-
stimulatedmacrophages through regulation ofMAPKs [125].

Quercetin, a plant-derived flavonoid that iswidely distributed
in fruits and vegetables, strongly decreased the expression of
the inflammatory cytokines iNOS and TNF-𝛼 by targeting
both MAPK (ERK and p38) and I𝜅B𝛼 signaling pathways
[126, 127]. Sulfur-containing compounds from garlic inhib-
ited the production of NO, PGE

2

, and proinflammatory
cytokines such as TNF-𝛼, IL-1𝛽, and IL-6 in macrophages
by suppressing p38 transduction pathways [128]. A summary
of natural products targeting p38 is provided in Table 3.
These studies indicate that natural products inhibiting p38
activity exhibit strong anti-inflammatory properties, and are
therefore potential therapeutic drug candidates for inflam-
matory diseases. Moreover, studies of natural compounds, in
addition to elucidating why these extracts have strong anti-
inflammatory effects, can also aid the design of novel p38
inhibitors to treat inflammatory diseases.

4.4. Novel Inhibitors. Pharmaceutical companies and re-
searchers have worked hard to develop novel, safe, and
specific p38 inhibitors. Based on the importance of p38𝛼
in inflammation, people have focused on inhibitors for this
isoform rather than the other isoforms. ML3403, a SB203580
analogue, represses the expression of TNF-𝛼, IL-6, and IL-8.
It can bind to both active and inactive forms of p38𝛼 kinase,
which may reduce asthma-induced airway inflammation and
remodeling [129]. AS1940477 has been shown to inhibit the
production of proinflammatory cytokines such as TNF-𝛼,
IL-1𝛽, IL-6, PEG

2

, and MMP3 at very low concentrations.
Moreover, it can reduce the enzyme activity of both p38 𝛼
and 𝛽 but has no effect on 100 other kinases, including p38𝛾
and 𝛿. It has been shown in rats experiment that low doses
of this compound can also reduce the expression of LPS-
and Con A-stimulated proinflammatory cytokines, including
TNF-𝛼 and IL-6 [130]. Pamapimod strongly suppresses p38
𝛼 and 𝛽 activity and therefore the expression of TNF-𝛼,
IL-1𝛽, and IL-6. It also shows high specific activity; when
tested for binding to 350 kinases, it only bound to four
other kinases in addition to p38. Furthermore, it can reduce
clinical signs of inflammatory diseases, such as arthritis, bone
loss, and renal diseases. Consistent with this, it inhibited
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Table 2: Plant extracts that inhibit the p38 signaling in macrophages.

Plant Action target of p38 Reference

Archidendron clypearia Suppression of PGE2 production; amelioration of EtOH/HCl-induced
gastritis [28]

Scutellaria baicalensis Inhibition of iNOS, COX-2, PGE2, IL-1𝛽, IL-2, IL-6, IL-12, and TNF-𝛼
expression [118]

Phaseolus angularis Suppression of the release of PGE2 and NO; amelioration of
EtOH/HCl-induced gastritis [119]

Artemisia vestita Inhibition of TNF-𝛼 release; beneficial for the treatment of endotoxin
shock or sepsis [141]

Boswellia serrata Inhibition of TNF-𝛼, IL-1𝛽, and IL-6 [142]
Hibiscus sabdariffa Suppression of nitrite, PGE2 release, and hepatic inflammation [143]
Clinopodium vulgare Suppression of NO production; MMP-9 activation [144]
Eriobotryae folium Suppression of LPS-induced NO and PGE2 production [145]
Elaeocarpus petiolatus Inhibition of the production of PGE2, TNF-𝛼, and IL-1𝛽 [146]
Polygonum cuspidatum Inhibition of IL-6, TNF-𝛼, NO, and PGE2 [147]
Ginkgo biloba Inhibition of LPS-induced iNOS and COX-2 expression [148]
Lycium chinense Inhibition of LPS-induced NO, PGE2, TNF-𝛼, and IL-6 production [149]

Hopea odorata Inhibition of NO, PGE2, and TNF-𝛼 release; amelioration of gastritis
and ear edema [150]

Table 3: Naturally occurring compounds that inhibit p38 signaling in macrophages.

Compound Action target of p38 Reference
Sugiol Inhibition of IL-1𝛽, TNF-𝛼, and ROS production [151]
Quercetin Inhibition of NO and TNF-𝛼 [114]
Ajoenes Inhibition of NO, PGE2, TNF-𝛼, IL-1𝛽, and IL-6 production [116]

Ginsan Enhanced phagocytic activity; downregulation of TNF-𝛼, IL-1𝛽, IL-6,
IFN-𝛾, and IL-18 [152]

4-Methoxyhonokiol Inhibition of iNOS and COX-2 expression; inhibition of dye leakage
and paw swelling [153]

Schisandrin Suppression of NO production and PGE2 release [154]
Rengyolone Inhibition of iNOS and COX-2 expression [155]

Pseudocoptisine Inhibition of proinflammatory mediators such as iNOS, COX-2,
TNF-𝛼, and IL-6 [156]

Mycoepoxydiene Inhibition of LPS-induced proinflammatory mediators including
TNF-𝛼, IL-1𝛽, IL-6, and NO [157]

Britanin Suppression of NO, PGE2, TNF-𝛼, IL-1𝛽, and IL-6 [158]
Hyperin Inhibition of NO production through suppression of iNOS expression [159]
Carnosol Inhibition of LPS-stimulated NO production; antioxidative activity [160]

Table 4: p38 inhibitors under human clinical trials.

Compound Clinical trials Reference
PH797804 Chronic obstructive pulmonary disease (COPD) [132]
Losmapimod (GW856553) COPD; atherosclerosis [133, 134]
Adalimumab Antipsoriatic [135]
Pamapimod Rheumatoid arthritis [136]
VX-745 Werner syndrome [137]
BMS-582949 Rheumatoid arthritis [138]
SB-681323 Percutaneous coronary intervention (PCI); neuropathic pain [139, 140]
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TNF-𝛼 production in RA synovial explants and reduced
bone loss in murine collagen-induced arthritis. Meanwhile,
it increased pain tolerance in a rat model of hyperalgesia
[131]. Examples of other newly synthesized compounds are
GSK-681323 to treat rheumatoid arthritis, SCIO-469 to treat
multiple myeloma and dental pain, and RWJ67657 that was
developed as an anti-inflammatory drug, all of which inhibit
p38 activity [98]. In summary, most of these inhibitors were
designed based on the structure of SB203580 but show more
specific and stronger activity. They are therefore promising
therapeutic agents for inflammatory diseases.

4.5. Inhibitors in Human Clinical Trials. Based on the impor-
tance of p38MAPK in disease development, inhibition of p38
was regarded as a promising therapeutic strategy to control
inflammatory diseases. Right now, effectiveness of some p38
inhibitors is currently under evaluation in clinical trials to
treat human diseases. For example, it has been reported
that PH797804 and losmapimod were able to improve lung
function parameters and to attenuate dyspnoea in patients
with chronic obstructive pulmonary disease symptoms [132,
133]. Also, losmapimod was reported to reduce vascular
inflammation in the most inflamed regions in patients with
atherosclerosis [134]. Clinical and histological improvements
linked to the inhibition of TNF-𝛼 level were clearly seen
by p38 MAPK inhibitor adalimumab in lesional psoriatic
skin [135]. Moreover, it was found that pamapimod can
clearly alleviate various rheumatoid arthritis symptomswhen
coadministered with methotrexate [136]. Besides, there are
still many other inhibitors which are ongoing clinical trials
as summarized in Table 4 [137–140].

5. Summary and Perspectives

Inflammation has attracted great interest because of its
significant role in several major diseases and the need to
develop better ways to treat these diseases. Importantly,
because inflammatory responses are largely mediated by
macrophages, functional studies of macrophages in inflam-
mation are crucial. Investigation of the roles of p38 MAPKs
is particularly relevant as these are essential protein kinases
inmacrophage-mediated inflammatory responses. A number
of studies have indicated that p38 plays a significant role
in inflammatory diseases mediated by macrophages, and, as
a consequence, several p38 inhibitors have been developed
to treat inflammatory diseases. However, most of these
inhibitors have shortcomings, such as low specificity, low
efficacy, and high toxicity. As a result, new p38 inhibitors are
urgently required. We are optimistic that novel and safe p38
inhibitors that possess strong anti-inflammatory properties
will be developed in the near future to treat inflammatory
diseases.
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