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Objective: To evaluate the evidence for altered cortical and spinal cord functions in

individuals with patellofemoral pain (PFP).

Methods: We conducted a comprehensive search of databases to appraise and

analyze the studies published prior to December 10, 2021 that examined spinal

reflex excitability measured using Hoffmann reflex (H-reflex) amplitudes, corticospinal

excitability measured using transcranial magnetic stimulation (TMS)-elicited motor

evoked potential (MEP) amplitudes, motor threshold (MT), or stimulus-response (SR)

curves, cortical reorganization assessed using TMS cortical mapping or structural

magnetic resonance imaging (MRI), or functional changes of the brain assessed using

functional MRI (fMRI) in individuals with PFP.

Results: Eight studies were eligible for analyses. While an earlier study showed that pain

had no effect on the H-reflex amplitude of the quadriceps muscle, more recent evidence

reported a decrease in vastus medialis (VM) H-reflex amplitude in participants with

PFP. VM H-reflex amplitude was correlated with pain, chronicity, physical function, and

isometric knee extensor torque production in participants with PFP. Altered corticospinal

excitability was reported in participants with PFP, observed as increased MT in the VM

and vastus lateralis (VL) muscles. In addition, cortical reorganization has been observed,

where decreased number of cortical peaks, shifts and reduced volumes, and increased

overlap of motor cortex representations for the VM, VL, and rectus femoris (RF) muscles

were reported in participants with PFP.

Conclusion: There is emerging evidence on altered cortical and spinal cord functions in

individuals with PFP, however, solid conclusions cannot be drawn due to limited literature

available. Further research is needed to better understand the adaptations of the brain

and spinal cord in this population.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier:

CRD42020212128.
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INTRODUCTION

Patellofemoral pain (PFP) is prevalent throughout the lifespan,
affecting not only the general population but also specific
populations such as adolescents, highly active individuals, and
the military, with an incidence rate of 9–15% (Smith et al., 2018).
Furthermore, females are 2.23 times more likely to experience
PFP than males, with a prevalence of 12–13% in those ages 18–
35 years (Roush and Curtis Bay, 2012). One hallmark symptom
of PFP is pain around or behind the patella, which is often
exacerbated by loading of the patellofemoral joint in a flexed knee
position (Crossley et al., 2016; Collins et al., 2018).

Individuals with PFP often exhibit difficulty performing
weight-bearing tasks such as negotiating stairs, squatting, and
running (Crossley et al., 2016). For example, an increase in
dynamic knee valgus is a common movement deficit observed
during those functional movements in this population (Powers
et al., 2017; Scholtes and Salsich, 2017). This atypical pattern is
the result of excessive hip adduction and internal rotation, which
causes excessive loading to the lateral aspect of the patella and
PFP (Powers et al., 2017; Scholtes and Salsich, 2017). As weakness
of hip musculature (i.e., hip abductors and hip external rotators)
is believed to attribute to excessive knee valgus during weight-
bearing activities (Powers et al., 2017), addressing hip strength
deficits is a commonly theorized treatment for such faulty
movements (Willy et al., 2012). However, while hip strengthening
programs have been shown to reduce pain and hip weakness
deficits, the evidence supporting hip strengthening on improving
dynamic knee valgus during functional activities is limited (Willy
et al., 2019; Davis et al., 2020).

In fact, as neuromuscular control is essential while performing
functional movements, it has been found that a gait retraining
protocol effectively corrects the frontal plane movement deficits
during running in participants with PFP while a hip muscle
strengthening program alone does not (Davis et al., 2020).
These gait retraining protocols often incorporate motor learning
principles, such as faded feedback and external-focus feedback
designs (Willy et al., 2012; Davis et al., 2020). In addition, the skill
of maintaining proper movements was found to be transferable
to unlearned tasks, such as squatting and stair descent (Willy
et al., 2012). Recent literature supports the significant role
of corticomotor excitability in hip kinematics during weight-
bearing activities in asymptomatic participants (Shih et al., 2021).
These findings highlight the needs for examining the role of
the brain and spinal cord in individuals with PFP, as the neural
mechanisms underlying altered motor control in this population
remain poorly understood.

Supraspinally, the motor cortex plays a critical role in motor
output, and altered motor cortex structure and function underlie
movement dysfunction in individuals with PFP. Motor evoked
potential (MEP) amplitudes of the quadriceps muscle elicited
using transcranial magnetic stimulation (TMS) revealed altered
corticomotor control in participants with chronic PFP compared
to asymptomatic participants (On et al., 2004). Furthermore,
chronic PFP has been reported to induce reorganization of
the primary motor cortex, with shifts and reduced volumes
in motor representations of three quadriceps muscles, and

increased overlap of the motor cortex representations, compared
to asymptomatic participants (Te et al., 2017). At the level of
the spinal cord, the Hoffmann reflex (H-reflex) is a commonly
used electrophysiological measure to quantify the excitatory
behavior of the monosynaptic Ia afferent volleys in the spinal
cord circuitry. This assessment of the Ia afferent-motoneuronal
pathway has been used to investigate the role and transmission of
the spinal circuitry underlying motor control, and its adaptations
in movement disorders, lesions or training (Schieppati, 1987;
Pierrot-Deseilligny and Burke, 2012; Liang and Brown, 2015;
Liang et al., 2019). Female participants with chronic PFP had
significantly lower H-reflex amplitudes in the vastus medialis
(VM) muscle as well as lower patellar tendon reflexes compared
to asymptomatic participants. Furthermore, the altered H-reflex
amplitudes were strongly associated with pain levels, where
females with PFP who had larger H-reflexes amplitudes in the
VM muscle had lower pain (de Oliveira Silva et al., 2016, de
Oliveira Silva et al., 2017; Pazzinatto et al., 2019). Understanding
the pathological mechanisms underlying PFP is thus important
for future design of rehabilitation protocols targeting neural
control underlying movement dysfunction in this population.
Taken together, the objective of this systematic review was
to evaluate the evidence for altered cortical and spinal cord
functions in individuals with PFP.

METHODS

Protocol
The protocol for conducting the review was prepared using
the Preferred Reporting Items for Systematic Review and
Meta-Analysis Protocols guidelines (PRISMA-P) (Shamseer
et al., 2015), and has previously been peer-reviewed and
published (Liang et al., 2021). Additionally, this systematic
review protocol was registered with the International Prospective
Register of Systematic Reviews (PROSPERO) (Registration
number: CRD42020212128).

Inclusion and Exclusion Criteria
This systematic review included relevant articles that fulfilled
the following criteria: (1) original research, (2) available in full-
text, (3) written in English, (4) had clear diagnostic criteria for
PFP, and (5) measured at least one of the following variables
in participants with PFP: (1) spinal reflex excitability measured
usingH-reflex amplitudes, (2) corticospinal excitabilitymeasured
using TMS-elicited MEP amplitudes, motor threshold (MT),
or stimulus-response (SR) curves, (3) cortical reorganization
assessed using TMS cortical mapping or structural magnetic
resonance imaging (MRI), and (4) functional changes of the
brain using functional MRI (fMRI). Case studies, case series, and
articles focused on lower extremity injuries unrelated to PFP,
were excluded.

Search Strategy
A literature search for records published prior to December 10,
2021 was conducted using the following databases: PubMed,
Medline via OVID, Embase, and Web of Science. Search strings
and medical subject headings (MeSH) keywords related to
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the themes of PFP, and non-invasive assessments of brain
and spinal cord functions were used. Search strings included
(“patellofemoral pain” OR patellofemoral pain syndrome”
OR “anterior knee pain” OR “PFP”) AND (“reciprocal
inhibition” OR “corticospinal” OR “corticospinal excitability”
OR “spinal reflex” OR “spinal excitability” OR “stretch reflex”
OR “Hoffmann∗ reflex” OR “H-reflex” OR “H:M ratio” OR
“primary motor cortex” OR “motor evoked potential∗” OR
“MEP∗” OR “motor threshold” OR “cortex reorganization” OR
“transcranial magnetic stimulation” OR “TMS” OR “neural
excitability” OR “mapping” OR “magnetic resonance imaging”
OR “functional magnetic resonance imaging”). The asterisks
indicated any potential suffix for each respective term and were
input into each database.

Four investigators (SB, AM, KM, and DN) manually searched
and inspected the literature published before December 10, 2021.
The detailed flow chart for study selection is shown in Figure 1.
Specifically, the titles of the articles from database searches were
initially identified for relevance and reviewers manually screened
the reference list of each title for additional articles. This was
followed by screening of the abstracts of all titles yielded. If
abstracts were not published in English, indicated the record
was not an original research article, did not have full-text, or
did not include H-reflex, MEP amplitudes, MT, SR curves, MRI,
fMRI, cortical reorganization or mapping as a primary outcome
variable, these records were removed from the study. The full-
texts of records passing the abstract screening were then read in
their entirety to determine their eligibility using the inclusion
and exclusion criteria. Records that lacked an abstract or had
an abstract with insufficient information were also read in their
entirety and assessed using the inclusion and exclusion criteria.
Methods for conducting this systematic review were developed
using the Guidelines for Meta-Analysis and Systematic Reviews
of Observational Studies (Stroup et al., 2000).

Assessment of Methodological Quality
Across Eligible Studies
Quality of eligible studies were analyzed utilizing the Quality
Assessment Tool for Observational Cohort and Cross Sectional
Studies from the National Institutes of Health (NIH1) by four
investigators (SB, AM, KM, and DN). The assessment tool
included 14 questions, and responses were either yes, no, not
applicable (NA), or not reported (NR). A score of 0 was given
for “no” and 1 for “yes.” The methodological quality for each
study was then categorized subjectively by the assessors as good,
fair, or poor, in reference to previous literature (Alfuraydan et al.,
2020), as the NIH Quality Assessment Tool for Observational
Cohort and Cross-sectional Studies does not have cut-off ranges
for scoring. The investigators independently scored each study
and reconvened at a later date and compared results. Any
discrepancies in the quality rating between investigators were
discussed and adjusted accordingly.

1NIH Study Quality Assessment Tools [Online]. Available online at: https://www.

nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed August 23,

2021).

Assessment of Risks of Bias Across
Eligible Studies
Risks of bias were conducted using the Cochrane risk-of-bias
tool (Higgins et al., 2011) by two investigators (K-YH and JL).
We assessed 8 items, including (1) Random sequence generation
(selection bias), (2) Allocation concealment (selection bias), (3)
Blinding of participants and personnel (performance bias), (4)
Blinding of outcome assessment (detection bias): self-reported
outcomes, (5) Blinding of outcome assessment (detection bias):
objective measures, (6) Incomplete outcome data (attrition bias),
(7) Selective reporting (reporting bias), and (8) No asymptomatic
control group (other bias). The response options are low risk of
bias, unclear risk of bias, high risk of bias, and NA. If the item
was NR it was graded as unclear risk, and if the item was NA it
was answered with NA. The investigators independently scored
each study and reconvened at a later date to compare results.
Any discrepancies in the risk-of-bias rating between investigators
were discussed and adjusted accordingly.

Assessment of Quality of Evidence
Quality of evidence was assessed by two investigators (K-YH
and JL) using the Grading of Recommendations Assessment,
Development and Evaluation (GRADE) approach (Higgins and
Green, 2011). We evaluated three clusters of literature, including
spinal reflex excitability, corticospinal excitability, and cortical
reorganization. The investigators independently scored each
category and reconvened at a later date to compare results.
Any discrepancies in the evaluations between investigators were
discussed and adjusted accordingly. If a category contained only
one study that did not allow between-study comparisons, the
analysis of evidence quality was not performed (de Oliveira Silva
et al., 2020).

Meta-Analysis
Available data were synthesized via meta-analysis using Review
Manager (RevMan5, The Cochrane Collaboration). As the effect
sizes of the eligible studies were assumed to represent a random
sample from a particular distribution of effect sizes, a random-
effects model was used (Borenstein et al., 2010; Pigott and
Polanin, 2019). P < 0.05 was considered statistically significant.

RESULTS

Literature Search, Study Selection, and
Study Characteristics
A total of 119 records were identified through database search.
After duplicates were removed, the abstracts of 30 studies were
screened to determine further evaluation. Of the 30 abstracts
screened, 17 new records were identified from the reference
lists and the abstracts of these records were screened with the
same criteria. All of the 47 records had abstracts available for
the abstract screening process. Out of the total 47 records in
the abstract screen process, 39 were disqualified as the articles
were not published in English (n = 1), were not an original
research article (n=8), did not have full-text (n = 1), or did
not use H-reflex, MEP amplitudes, MT, SR curves, MRI, fMRI,
cortical reorganization ormapping as a primary outcome variable
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FIGURE 1 | Flow diagram of PRISMA depicting each step of study selection.

(n = 32). Three articles were disqualified for more than one
reason. Eight studies met the eligibility criteria and of those, 5
reported H-reflex, 2 reported MEP amplitude and MT, and 1
reported cortical reorganization. None of the qualified records
reported MRI or fMRI. Figure 1 shows the PRISMA flowchart
for literature search and selection. The participant information
for each study is summarized in Table 1.

Methodological Quality and Risks of Bias
The total quality assessment scores of the articles ranged from
6 to 8 (Table 2). The maximum possible quality assessment
score was 14. Based on the details reported by the articles
and the total scores calculated, it was determined that the
study quality was similar (fair) across the studies (Alfuraydan
et al., 2020). The analysis of risks of bias of the articles
revealed two primary sources of bias, including blinding of
participants and personnel and blinding of outcome assessment:
objective measures (25% high risk and 62.5% unclear risk).
Among the 8 included studies, only one study clearly stated
that blinding procedure was used in their work. Given

that the studies included in this review were all cross-
sectional, observational studies, the first 2 items regarding
participant randomization and allocation were rated as NA
(Figure 2).

Neurophysiological Changes in PFP
Spinal Reflex Excitability
In total, 5 articles were analyzed with a cumulative sample size
of 141 participants. The results of these articles are summarized
in Table 3. Three out of the 5 studies compared participants
with PFP to asymptomatic participants (Leroux et al., 1995;
de Oliveira Silva et al., 2016; Pazzinatto et al., 2019), and the
remaining two studies included participants with PFP only
(de Oliveira Silva et al., 2017; Waiteman et al., 2022). The
quality of evidence of this category was rated as low credibility
(Table 4).

Pazzinatto et al. (2019) reported lower VM H-reflex
and patellar tendon reflex amplitudes in females with PFP
compared to asymptomatic participants. The VM H-reflex
and patellar tendon reflex amplitudes were strongly correlated
in both the PFP (r = 0.66; P < 0.001) and the asymptomatic
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TABLE 1 | Study characteristics and participant demographics for included studies.

References Age in year; mean (standard

deviation)

Sample size Sex Symptom duration in

month; mean (standard

deviation)

Pazzinatto et al., 2019 Control: 22.47 (3.19)

PFP: 21.83 (3.35)

60 (30 controls; 30 PFP) Female 52.7 (56.4)

de Oliveira Silva et al.,

2016

Control: 23.67 (3.75)

PFP: 22.07 (3.17)

30 (15 controls; 15 PFP) Female 66.2 (12.5)

de Oliveira Silva et al.,

2017

PFP: 22.07 (3.17) 15 PFP Female 66.2 (12.5)

Waiteman et al., 2022 PFP: 21.71 (3.30) 24 PFP Female 50.04 (51.75)

Leroux et al., 1995 Not reported.

Age range for control and

PFD: 21–40

12

(6 controls; 6 PFP)

Not Reported Not Reported

On et al., 2004 Control: 25.1 (7.4) PFP:

25 (8.1)

26

(13 controls; 13 PFP)

Female 37.9 (22.8)

Rio et al., 2016 Control: 26 [median]

PFP: 26.5 [median]

18

(8 control; 10 AKP)

Both; Male >Female 90 [median]

Te et al., 2017 Control: 21 (7)

PFP: 24 (6)

22

(11 controls; 11 PFP)

Both; Female > Male 31.5 (29.2)

PFP, patellofemoral pain; PFD, patellofemoral dysfunction; AKP, anterior knee pain.

TABLE 2 | Quality assessment of the articles using the National Institutes of Health Quality Assessment Tool for Observational Cohort and Cross Sectional Studies.

Study Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Total score* Quality score

Pazzinatto et al.,

2019

1 1 NR 1 1 0 0 NA 1 NA 1 1 NA 1 8 Fair

de Oliveira Silva

et al., 2016

1 1 NR 1 1 0 0 NA 1 NA 1 NR NA 1 7 Fair

de Oliveira Silva

et al., 2017

1 1 NR 1 1 0 0 NA 0 NA 1 NA NA 1 6 Fair

Waiteman et al.,

2022

1 1 NR 1 1 0 0 NA 0 NA 1 NA NA 1 6 Fair

Leroux et al., 1995 1 1 NR 0 1 0 0 NA 1 1 1 NR NA NR 6 Fair

On et al., 2004 1 1 NR 1 0 0 0 NA 1 NA 1 NR NA 1 6 Fair

Rio et al., 2016 1 1 NR 1 1 0 0 NA 1 NA 1 1 NA NR 7 Fair

Te et al., 2017 1 1 NR 1 1 0 0 NA 1 NA 1 NR NA 1 7 Fair

NR, not reported; NA, not applicable; 1, yes; 0, no.

*Score out of a total possible of 14.

groups (r = 0.72; P < 0.001). Similarly, de Oliveira Silva
et al. (2016) observed decreased VM H-reflex amplitudes
(expressed as Hmax/Mmax ratio) in females with PFP compared
to asymptomatic participants. The VM Hmax/Mmax ratio
was observed to have high sensitivity (73%) and specificity
(67%) for distinguishing between participants with PFP and
asymptomatic participants (de Oliveira Silva et al., 2016).
In one study that had no asymptomatic group to serve
as controls, conducted by de Oliveira Silva et al. (2017),
VM H-reflex amplitude was positively correlated with self-
reported function, and was negatively correlated with pain
and chronicity in females with PFP. In the other study
without asymptomatic participants as controls, conducted by
Waiteman et al. (2022), VM H-reflex amplitude negatively

correlated with variability of submaximal knee extensor
torque production, and positively correlated with maximal
isometric knee extensor strength in female participants
with PFP.

Leroux et al. (1995) examined the effects of cold application
for knee pain relief on quadriceps muscle H-reflex amplitudes
in participants with patellofemoral dysfunction (PFD) and
asymptomatic participants. Ten minutes of ice for pain relief
did not affect VM, vastus lateralis (VL), and rectus femoris (RF)
H-reflex amplitudes in both groups (Leroux et al., 1995).

Two studies that compared VM H-reflex amplitudes between
participants with PFP and asymptomatic group were included
for meta-analysis (de Oliveira Silva et al., 2016; Pazzinatto et al.,
2019). The analysis included 90 participants. The pooled result
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FIGURE 2 | Risk-of-bias assessment for evaluating following items: (1)

Random sequence generation (selection bias), (2) Allocation concealment

(selection bias), (3) Blinding of participants and personnel (performance bias),

(4) Blinding of outcome assessment (detection bias): self-reported outcomes,

(5) Blinding of outcome assessment (detection bias): objective measures, (6)

Incomplete outcome data (attrition bias), (7) Selective reporting (reporting bias),

and (8) No asymptomatic control group (other bias).

showed significant lower VM H-reflex amplitudes associated
with PFP (z = 4.87, 95% CI = −1.56 to −0.67, p < 0.001)
(Figure 3).

Corticospinal Excitability
We included one article that examined changes in MEP
amplitudes (On et al., 2004), and one article that examined active
MT and SR curves, both elicited using TMS (Rio et al., 2016) in
participants with PFP and anterior knee pain (AKP), respectively,
compared with asymptomatic participants (Table 3). The quality
of evidence of this category was considered low credibility
(Table 4).

On et al. (2004) examined 26 total participants (13 females
with PFP and 13 asymptomatic females). This study examined
the vastus medialis oblique (VMO), VL and extensor digitorium
brevis (EDB) muscles, using the amplitude of MEP as an
indicator of corticospinal excitability. Greater MEP amplitudes
of the VMO and VL muscles, accompanied by smaller patellar
tendon responses were observed in the PFP group than in the
asymptomatic group. MEP amplitude of EDB muscle did not
differ between groups (On et al., 2004).

Rio et al. (2016) examined 10 participants with AKP (6 males
and 4 females) and 8 asymptomatic participants (7 males and 1
female). This study examined the RF muscle and used SR curve
variables (slope and maximal MEP amplitude) and active MT
to represent corticospinal excitability. No differences in maximal
MEP amplitudes, SR curve slopes and active MT were observed

in the RF muscle between AKP and asymptomatic groups (Rio
et al., 2016).

Cortical Reorganization
Only one study examined the changes in cortical reorganization
using TMS to map the motor cortex (Te et al., 2017). Thus, the
quality of evidence of this category was not assessed (Table 4).
This study examined the RF, VL, and VM muscles in a total of
22 participants (11 participants with PFP and 11 asymptomatic
participants). For all 3 muscles, smaller map volume, lower
number of discrete map peaks, anteriorly shifted center of gravity
and greater overlap of motor cortex representations of these
muscles were observed in the PFP group compared to the
asymptomatic group (Table 3).

DISCUSSION

To the best of our knowledge, this systematic review was
the first conducted to identify the evidence and to provide a
comprehensive review of studies examining changes in brain
and spinal cord structure and neurophysiology in individuals
with PFP. Overall, a solid conclusion regarding the changes
in brain and spinal cord in individuals with PFP cannot be
made due to limited evidence and/or conflicting evidence in the
current available literature. Of the 8 eligible studies, 2 reported
corticospinal excitability, 1 reported cortical reorganization and
5 reported spinal reflex excitability. Conflicting evidence was
reported with respect to the changes in spinal reflex excitability
in participants with PFP. Based on our search, there is no
research that examines the associations between the corticospinal
integrity or motor cortex representation of the gluteal muscles
and PFP.While there was emerging evidence suggesting potential
changes in brain function detected by fMRI (Diekfuss et al.,
2020), this study was excluded as full-text was not available
and the diagnostic criteria for PFP were not clear. Taken
together, future studies are required to examine the changes in
neurophysiological functions of the spinal cord and brain in
individuals with PFP.

Spinal Reflex Excitability
Five articles with an emphasis in neurophysiological changes
at the level of the spinal cord were examined with a collective
sample size of 141 participants (90 PFP and 51 asymptomatic).
Studies examined the H-reflex amplitudes of the VM, VL, and
RF muscles, in participants with chronic PFP. An earlier study
conducted in 1995 examined knee pain in participants with PFD,
and reported no change in VM, VL, and RF H-reflex amplitudes
before and after cold application to the knee for pain relief,
suggesting that pain did not have an effect on quadriceps H-reflex
amplitudes in participants with knee pain from PFD (Leroux
et al., 1995).

Our meta-analysis of the data extracted from 2 more
recent studies (de Oliveira Silva et al., 2016; Pazzinatto et al.,
2019) revealed reduced VM H-reflex amplitudes in participants
with PFP compared to asymptomatic participants. It was
suggested that reduced spinal reflex excitability may be a
reason underlying increased pain and decreased function and
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muscle strength among participants with PFP. Specifically, a
correlation was reported between the VM H-reflex amplitude
and pain, chronicity, and function in participants with PFP,
where participants with greater VM H-reflex amplitude have
less pain, more recent symptoms and better physical function
(de Oliveira Silva et al., 2017). The recent study conducted
by Waiteman et al. (2022) further demonstrated that VM H-
reflex amplitude is negatively associated with higher variability
of submaximal torque production and positively associated with
maximal isometric torque production of the quadriceps muscles
in participants with PFP. Their findings highlight the relationship
between altered H-reflex excitability and impaired modulation of
motor unit firing rates andmotor unit recruitment in participants
with PFP.

In addition, VM Hmax/Mmax ratio was found to have high
sensitivity and specificity for discriminating between females
with and without PFP (de Oliveira Silva et al., 2016). It was
also reported that patellar tendon reflex correlated strongly with
VM H-reflex in participants with and without PFP (Pazzinatto
et al., 2019), suggesting that testing the patellar tendon reflex
in a clinical setting may be beneficial for identifying a potential
contributing factor to PFP (Pazzinatto et al., 2019).

Brain Structure and Neurophysiology
Three articles with an emphasis in brain neurophysiological and
structural changes were examined with a collective sample size
of 66 participants (24 participants with PFP, 10 with AKP, 32
asymptomatic; On et al., 2004; Rio et al., 2016; Te et al., 2017).

Corticospinal Excitability
Two studies examined alterations in corticospinal excitability
associated with PFP and AKP, however the two studies employed
different methodology and analysis, each presenting different
variables to represent corticospinal excitability. One study
reported greater MEP amplitudes of VM and VL muscles in
individuals with PFP elicited using TMS compared to controls
(On et al., 2004). This increase in MEP suggests that there may
be alterations in corticospinal excitability in this population. The
other more recent study examined the RF muscle and used SR
curve (slope and maximal MEP amplitude) and active MT to
represent corticospinal excitability. No differences in maximal
MEP amplitudes, SR curve slopes and active MT were observed
in the RF muscle between AKP and asymptomatic participants
(Rio et al., 2016). As there were only two studies used to examine
the effects of PFP on corticospinal excitability using TMS (On
et al., 2004; Rio et al., 2016), each examining different variables
to represent corticospinal excitability, additional high-quality
experimental studies are needed to provide stronger and more
conclusive evidence to support adaptations of corticospinal tract
in chronic PFP.

Cortical Reorganization
One study examined cortical reorganization in participants with
chronic PFP, via TMS delivered to the primary motor cortex
contralateral to the affected side (Te et al., 2017). Findings
included smaller map volumes, a more anteriorly located center
of gravity, and a lower number of cortical peaks for the VM,

VL, and RF muscles, as well as greater overlap in motor
cortex representations between quadriceps muscle pairs in
participants with PFP compared to asymptomatic participants
(Te et al., 2017).

Decreased map volumes in the quadriceps muscles were
suggested to be associated with reduced neural projections from
the brain to the quadriceps muscle. The authors explained that
altered map volumes could also be a result of lower cortical
excitability, however conflicting findings from other studies did
not support this plausible explanation (On et al., 2004; Rio et al.,
2016). Specifically, On et al. (2004) found that corticomotor
excitability increased in the VM and VL as a result of decreased
map volumes in participants with PFP, while Rio et al. (2016)
suggested no changes in excitability of the RF in participants
with AKP as compared to asymptomatic participants. Further
research examining the relationship betweenMEP amplitude and
decreased map volumes is required to better delineate the extent
of spinal excitability changes and cortical changes in individuals
with PFP (Te et al., 2017).

The increased number of high cortical peaks has been linked
to the potential for complex, synergistic movements (Te et al.,
2017). In addition, low cortical peaks have been hypothesized to
relate to lower excitability of the corticospinal tract. This suggests
that individuals with PFPmay not adapt to various environments
and tasks as easily as asymptomatic individuals, which may
provide an explanation as to why individuals with PFP experience
difficulties in performing certain functional tasks, such as stairs
negotiation, single leg hops, and jumps (Te et al., 2017).

Te et al. (2017) suggested that the anterior shift of
the centers of gravity of the VM, VL, and RF muscles
reflected the presence of remodeling and plasticity in the
primary motor cortex. Although this study did not specifically
examine the changes in motor control or function, similar
findings in other populations led them to suggest that the
mechanism of the anterior shift is related to synaptic changes
to the neurons that give input to pyramidal cells. Specifically,
Shanahan et al. (2015) have found an anterior shift of
motor representations of the VM, VL, and RF muscles in
participants with osteoarthritis. Such associations between the
shifts of the quadriceps muscle representations and poorer
quadriceps performance may explain the movement disorders
in participants with PFP (Te et al., 2017). As this was the only
article found that examined the relationship between cortical
reorganization and PFP, more research is needed to confirm and
generalize results.

Quality and Risk-of-Bias Assessment
Implications
The quality assessment tool and risk-of-bias assessment tool
used were beneficial for gaining an overall sense of consistency,
or lack thereof, of the studies combined. The quality for the
studies evaluated was considered fair, with scores between 6 and
8. The risk-of-bias analysis also revealed the key bias of the
current studies in this area, such as blinding of participants and
personnel, blinding of outcome measures, and no asymptomatic
control group. These assessment tools can be used for future
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TABLE 3 | Primary outcomes for all included studies.

Study Groups Summary of data

Spinal reflex excitability

Pazzinatto et al., 2019
PFP

vs.

asymptomatic

• Females with PFP had lower VM H-reflex amplitude [PFP: 0.10 (0.08) %Mmax vs.

asymptomatic: 0.25 (0.20) %Mmax] and patellar tendon reflex amplitude [PFP: 0.14

(0.09) %Mmax vs. asymptomatic: 0.23 (0.16) %Mmax].

• VM H-reflex and patellar tendon reflex were strongly correlated in both groups (PFP: r

= 0.66, p < 0.001; asymptomatic: r = 0.72; p < 0.001).

de Oliveira Silva et al.,

2016

PFP

vs.

asymptomatic

• Females with PFP had lower VM Hmax/Mmax ratio (14% lower) compared to

asymptomatic.

• VM Hmax/Mmax ratios (sensitivity = 73%, specificity = 67%) can be used to

discriminate between females with and without PFP.

de Oliveira Silva et al.,

2017

PFP

only

(no asymptomatic)

• Negative correlation between VM H-reflex amplitudes and 2 variables: worst pain in

the previous month (r = −0.71; p = 0.003) and chronicity (r = −0.71; p = 0.001).

• Positive correlation between H-reflex amplitudes and self-reported functional status (r

= 0.62; p = 0.012).

Waiteman et al., 2022
PFP only

(no asymptomatic)

• A moderate relationship between lower VM Hmax/Mmax ratio and higher variability of

submaximal knee extensor torque production (r = −0.35, p = 0.05).

• A moderate positive relationship between lower VM Hmax/Mmax ratio and lower

maximal isometric knee extensor strength (r = 0.37, p = 0.044).

Leroux et al., 1995
PFD

(before vs.

after cold application)

• No difference in H-reflex amplitudes of VM, VL, and RF in participants with PFD before

and after cold application for pain relief.

Corticospinal excitability

On et al., 2004
PFP

vs.

asymptomatic

• Greater MEP amplitudes of the VMO and VL, and smaller patellar tendon reflexes in

the PFP compared to asymptomatic group.

Rio et al., 2016
AKP

vs.

asymptomatic

• No difference in maximal MEP amplitudes [AKP: 48.73 (14.34), asymptomatic: 57.26

(18.56); p = 0.51], active MT [AKP:, asymptomatic: 42 (7.9); p = 0.06] and SR

curve slopes [AKP: 6.67 (2.00), asymptomatic: 6.02 (1.54)] of the RF muscle

between AKP and asymptomatic groups.

Cortical reorganization

Te et al., 2017
PFP

vs.

asymptomatic

• Participants with PFP had:

◦ Reduced map volumes [VM: PFP: 4.9 (1.9) cm2
× mV, asymptomatic: 8.7 (3.2) cm2

× mV; VL: PFP: 5.3 (2.0) cm2
× mV, asymptomatic: 8.7 (3.4) cm2

× mV, RF: PFP:

7.1 (1.9) cm2
× mV, asymptomatic: 10.8 (4.5) cm2

× mV; p < 0.05],

◦ Decreased number of discrete cortical peaks [VM: PFP: 1.55 (0.69), asymptomatic:

2.27 (1.35); VL: PFP: 1.46 (0.69), asymptomatic: 2.64 (1.12); RF: PFP: 1.72 (0.79),

asymptomatic: 1.73 (0.90); p < 0.05],

◦ Greater overlap of M1 representations (CoG separation) (RF andVL: PFP: 0.33 (0.17)

cm, asymptomatic: 0.62 (0.26) cm; RF and VM: PFP: 0.46 (0.26) cm,

asymptomatic: 0.53 (0.42) cm; VL and VM: PFP: 0.27 (0.14) cm, asymptomatic:

0.50 (0.49) cm; p < 0.05),

◦ Anterior-shifted location of M1 (CoG antero-posterior location) of the 3 muscles [VM:

PFP: 4.3 (0.6) cm, asymptomatic: 3.8 (1.5) cm; VL: PFP: 4.3 (0.5) cm,

asymptomatic: 3.8 (1.4) cm; RF: PFP: 4.4 (0.6) cm, asymptomatic: 3.7 (1.3) cm; p

< 0.05].

PFP, patellofemoral pain; PFD, patellofemoral dysfunction; AKP, anterior knee pain; H-reflex, Hoffmann reflex; Hmax, maximal Hoffmann reflex; Mmax, maximal M-wave; MEP, motor

evoked potential; MT, motor threshold; SR, stimulus-response; VM, vastus medialis; VMO, vastus medialis oblique; VL, vastus lateralis; RF, rectus femoris; CoG, Center of Gravity; M1,

primary motor cortex.

research to qualitatively address the potential risks of selection
bias, detection bias, or confounding variables. For example, to
optimize the study quality and reduce bias, future studies can
improve by specifying inclusion and exclusion criteria for all

participants, conducting a sample size analysis, implementing

a blinding procedure, using asymptomatic control groups, and

stating clear diagnostic criteria of PFP.

Implications for Clinical Practices and
Research
A recent systemic review highlighted the importance of
patient education in the management of PFP, including
understanding the anatomy of the joint, physiology of pain,
activity modification, and quadriceps muscle strengthening
(de Oliveira Silva et al., 2020). Our systemic review findings
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TABLE 4 | GRADE (Grading of Recommendations Assessment, Development and Evaluation) rating.

Study limitations

(risk of bias)

Indirectness Inconsistency Imprecision Publication bias GRADE conclusion

Spinal reflex excitability Yes No Yes Yes No Low credibility

Corticospinal excitability Yes No Yes Yes No Low credibility

Cortical reorganization – – – – – –

GRADE Working Group grades of evidence: high credibility, further research is very unlikely to change our confidence in the estimate of effect; moderate credibility, further research is

likely to have an important impact on our confidence in the estimate of effect and may change the estimate; low credibility, further research is very likely to have an important impact on

our confidence in the estimate of effect and is likely to change the estimate; very low credibility, we are very uncertain about the estimate.

FIGURE 3 | Meta-analysis for VM H-reflex amplitude. *Heterogeneity: Tau2 = 0.00, Chi2 = 0.91, df = 1 (P = 0.34), I2 = 0%. Test for overall effect: Z = 4.87 (P <

0.00001). IV, inverse variance; SMD, standardized mean difference.

regarding central nervous system changes in participants
with PFP highlight the need for including neurophysiological
dysfunctions of the quadriceps muscles in patient education
of this cohort. Furthermore, a potential intervention is to
alleviate central inhibition of the affectedmuscles via transcranial
direct current stimulation (tDCS), which is a non-invasive
brain stimulation that modulates cortical excitability (Lefaucheur
et al., 2017). It has been shown that a 4-week (12-session)
tDCS protocol focusing on corticomotor excitation of the knee
extensor musculature improved quadriceps muscle strength and
symptoms in participants with PFP (Rodrigues et al., 2020).

In addition, Glaviano et al. (2019) have theorized that
central inhibition of gluteal musculature is a possible mechanism
of hip muscle dysfunction and faulty movement patterns in
individuals with PFP, which may lead to prolonged dysfunction
and pain. However, this theory has not yet been tested
in individuals with PFP. Overall, most available literature
examined the spinal level and cortical level separately, thus
evidence for contributions and/or adaptations from spinal or
descending supraspinal sources remain limited. As the existing
studies examined the spinal and cortical changes utilized

a cross-sectional study design, it remains unclear whether
such changes are the risk factors of PFP or the consequents
of chronic pain (Pazzinatto et al., 2017). Taken together,
immediate future efforts should examine cortical and spinal
levels concurrently to elucidate the relative contributions of
supraspinal vs. spinal influences contributing to altered knee
and hip muscle function. Ideally, a larger scale, longitudinal
study that tracks the central nervous system adaptations in
young adults until the appearance of PFP may facilitate the
understanding the underlying neurophysiological mechanism
of PFP.

CONCLUSION

This systematic review provides the current evidence for
neurophysiological brain and spinal cord changes in participants
with PFP and has identified the need for further research on
the corticospinal excitability and spinal reflex excitability in this
population. Although there is conflicting literature surrounding
the impact of PFP on spinal reflex excitability, more recent
evidence supports the idea that spinal reflex excitability is
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decreased in individuals with PFP. Evidence of changes in brain
function is inconclusive because of the differences in outcomes
studied and limited literature available, but the current evidence
supports that PFP may have an influence on the corticospinal
tract and cortical reorganization. The need for more research on
the cortical and spinal changes associated with PFP is evident
to better understand viable treatments for individuals with this
pathology from a neurophysiological perspective in addition to
the biomechanical models currently in use.
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