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SUMMARY

RNA-binding proteins (RBPs) are key players of post-transcriptional regulation of gene expression,

relying on competitive and cooperative interactions to fine-tune their action. Several studies have

described individual interactions of RBPs with RBP mRNAs. Here we present a systematic network

investigation of fifty thousand interactions between RBPs and the UTRs of RBPmRNAs. We identified

two structural features in this network. RBP clusters are groups of densely interconnected RBPs co-

binding their targets, suggesting a tight control of cooperative and competitive behaviors. RBP chains

are hierarchical structures connecting RBP clusters and driven by evolutionarily ancient RBPs. These

features suggest that RBP chains may coordinate the different cell programs controlled by RBP clus-

ters. Under this model, the regulatory signal flows through chains from one cluster to another, imple-

menting elaborate regulatory plans. This work thus suggests RBP-RBP interactions as a backbone

driving post-transcriptional regulation of gene expression to control RBPs action on their targets.

INTRODUCTION

In the last years, post-transcriptional regulation of gene expression (PTR) has gained recognition as a

crucial determinant of protein levels and consequent cell phenotypes (Schwanhäusser et al., 2011; Vogel

et al., 2010). This has stimulated a rising interest in studies focused on RNA-binding proteins (RBPs) and

the interactions with their RNA targets.

RBPs are a key class of regulators in PTR. They are less than 2,000 proteins in the human genome (almost

1,200 verified RBPs plus several recently discovered ones [Castello et al., 2012]) and are made of modular

domains of which RRM is the most represented one, found in over 200 proteins (Lunde et al., 2007). RBPs

control processes ranging from splicing and polyadenylation to mRNA localization, stability, and transla-

tion (Gerstberger et al., 2014). To fine-tune the outcome of their regulatory action, RBPs rely on an intricate

web of competitive and cooperative interactions (Dassi, 2017).

Techniques such as ribonucleoprotein immunoprecipitation (RIP) and cross-linking and immunoprecipita-

tion (CLIP) variants (Lee and Ule, 2018) now allow us to identify the RNA targets of an RBP at the genome-

wide scale. RBPs are involved in multiple aspects of physiology (e.g., brain and ovary development, im-

mune response, and the circadian cycle [Gerstberger et al., 2014; Lim and Allada, 2013]). Furthermore,

RBPs play a role in pathology. Their alteration is indeed associated with diseases such as cancer and neuro-

logical and neuromuscular disorders (Wurth and Gebauer, 2015; Lukong et al., 2008). The importance of

obtaining a proper understanding of RBP properties and functions is thus evident.

While identifying the mRNA targets of RBPs, several works have highlighted among them an enrichment of

mRNAs coding for gene expression regulators, including other RBPs but also transcription factors (TFs).

This finding brought to the regulator-of-regulators concept (Keene, 2007; Mansfield and Keene, 2009), hint-

ing at the existence of an extensive regulatory hierarchy of RBPs. For instance, we and others have specif-

ically studied the HuR/ELAVL1 protein (Dassi et al., 2013; Mukherjee et al., 2011; Pullmann et al., 2007),

which were found to regulate the mRNAs of many RBPs (Mukherjee et al., 2011), several of which contain

its same RNA-binding domain, the RRM. The increasing number of high-throughput datasets available is

now allowing us to probe if this phenomenon occurs on a genome-wide scale. We chose to address this

issue by specifically extracting the binding map of RBPs to their cognate mRNA and mRNAs of other

RBPs. A similar approach has been previously applied for TF targets and metabolic networks in lower or-

ganisms such as Escherichia coli and Saccharomyces cerevisiae (Liu et al., 2009; Jothi et al., 2009; Pham

et al., 2007). The human TF-TF regulatory interaction network, testing the regulator-of-regulators concept

in TFs, has also been described for 41 cell types (Neph et al., 2012). The study of a cross-regulatory network
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of transcription factors, kinases, and splicing factors has been attempted by Kosti et al. (2012), narrower in

scope as it included only 20 RBPs. Also, Mukherjee et al. (2019) have recently studied the properties of the

RBP-target RNA network, although including only PAR-CLIP data and considering all interactions (not only

RBP-RBP ones).

We present here a systematic characterization of the RBP-RBP regulatory network, built by integrating

experimental data on RBPs targeting the UTRs of RBP mRNAs derived by multiple techniques. While

sharing several properties of gene regulatory networks, its distinctive local structure hints at the specific

dynamics of post-transcriptional regulation. We identified two major components that define the network

structure. First, we found groups of densely connected RBPs that control each other to likely regulate coop-

erative and competitive behaviors on mutual targets. Then, we identified hierarchical node chains as the

second feature shaping the network. In combination with RBP clusters, these widespread regulatory units

concur to the formation of a post-transcriptional backbone. This backbone acts on multiple processes at

once and could serve to coordinate major cell programs.

RESULTS

Building the RBP-RBP Network

Large-scalemapping of interactions between RBPs and their cognatemRNAs has been conducted by CLIP-

like approaches (Lee and Ule, 2018) in a few cellular systems, primarily HEK293, HeLa, and MCF7 cell lines.

We previously collected these and other interactions in the AURA 2 database (Dassi et al., 2014). We have

now built the human interaction network of RBPs and RBPs mRNAs (thereafter the RBP-RBP network) by

extracting all related data from AURA 2 and filtering each interaction by the expression of both interactors

in the HEK293 cell line (see Methods). To verify the generality of properties identified in this cell line, we

have also constructed the same network for two other frequently used cell lines, HeLa and MCF7. To do

so, we filtered the interactions by the expression of both partners (the binding RBP and the target gene

mRNA) in those two cell lines, thus retaining only possible interactions (i.e., interactions for which both part-

ners are expressed in that cell line). In our network, vertices represent RBPs, and edges are post-transcrip-

tional interactions. The presence of an edge between a source (protein) and a target (mRNA) RBP implies

binding of the target RBP mRNA by the source RBP (which could result in post-transcriptional control of

gene expression). The network includes 1,536 RBPs out of 1,827 (see Methods for details on how we built

the RBP list) connected by 47,957 interactions. A total of 176 RBPs (11,5%) have outgoing interactions in the

network (i.e., they bind the mRNA of an RBP) mostly coming from CLIP-like assays. The median network

degree (number of connections) is 29, whereas the median number of individual binding sites for each

RBP on each target RBP mRNAs is equal to 4. Among RBPs with outgoing interactions, 63 (35.8%) have

self-loops (i.e., they bind their mRNA), confirming the general propensity of RBPs for autologous regula-

tion. An example of this behavior is that of CPEB4, previously described to repress its ownmRNA to control

terminal erythropoiesis (Hu et al., 2014). All interactions are listed in Table S1. An interactive browser allow-

ing to explore this and other networks is available at the AURA 2 (Dassi et al., 2014) website (http://aura.

science.unitn.it), and the networks were also deposited in NDEX (http://www.ndexbio.org, see Methods).

The RBP-RBP Network Is a Navigable ‘‘Small-World’’ Network

We first sought to verify whether the RBP-RBP network is a typical gene regulatory network, i.e., ‘‘scale-free’’

and ‘‘small-world.’’ To this end, we computed several global properties of the HEK293 network (Figure 1).

The degree distribution (1A) follows a power-law, with most nodes having a degree lower than 50 and a

minor fraction reaching degrees over 200. This suggests that the network is scale-free, composed of a

few central hubs and many progressively more peripheral nodes. If considering the out- and in-degree

separately, the former appears strongly scale-free, whereas the latter is weaker in this respect, as would

also be expected for transcription factors networks. The diameter (1B, D = 5) indicates the network to

be largely explorable by a few steps. Clustering coefficients (1B) suggest the presence of local-scale clus-

tering (1-neighbor coefficient, CC1 = 0.507), which is lost when extending to more distant nodes

(2-neighbor coefficient, CC2 = 0.0115). Furthermore, closeness centrality (1B, Cc = 0.5033) reiterates that

most nodes are reachable by a small number of steps. We thus quantified this intuitive idea of network

small-worldness by computing the SWS measure (Humphries and Gurney, 2008). By comparing the network

with its randomly wired counterpart, this measure classifies a network as small-world when greater than 1.

We obtained a value of 31.03, clearly supporting the hypothesis. Taken together, these values indeed put

the network into the ‘‘small-world’’ class, as is most often the case for the broad class of gene regulatory

networks. Given its small diameter and high connectedness, the network can be considered navigable
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Figure 1. The RBP-RBP Network Is a Gene Regulatory Network with a Distinctive Structure

(A) Network degree distribution (up to 250), following a power-law distribution.

(B) The network diameter (top), its average clustering coefficients (middle, Watts-Strogatz 1-neighbor coefficient, named

CC1, and 2-neighbor coefficient, named CC2) and closeness centrality (bottom, minimum, average, and maximum values

for all nodes).

(C) The four most significant three-node motifs identified by FANMOD with their Z score and p value.

(D) The four most significant four-node motifs identified by FANMOD with their Z score and p value.

(E) The triad significance profile for the RBP-RBP network (orange line), the inferred RBP-RBP network (green line), and 41

TF-TF networks (gray lines). Positive z-scores indicate enrichment, negative z-scores depletion. Although most motifs

have similar z-scores in both networks, motifs 3, 4, 5, 9, 10, and 12 are differentially enriched in the RBP-RBP network,

suggesting a distinctive structure with respect to the TF-TF networks.

See also Tables S1 and S2.
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(Kleinberg, 2000), i.e., apt to promote efficient information transmission along its paths. Eventually, we

investigated the network control structure (how information can flow across it, as described in Ruths and

Ruths, 2014). We computed the network control profile, which was found to be [s = 0.00367, e = 0.99632,

i = 0.0], with s representing sources, e the external dilations, and i the internal dilations. Hence, the network

is dominated by external dilations (e), a fact that locates it in the class of top-down organization systems.

Such networks induce a correlated behavior throughout the system: members of this class are transcrip-

tional networks, peer-to-peer systems, and corporate organizations (Ruths and Ruths, 2014). The TF-TF net-

works have a similar profile (0.261, 0.699, and 0.04 for the Renal Cortical Epithelial Cell one), although less

imbalanced on external dilations. These properties also hold in the HeLa and MCF7 networks, suggesting

the stability of the network structure with different subsets of expressed RBPs (Table S2). We thus focused

on the HEK293 network only for subsequent analyses.

RBP-RBP Interactions Define a Hierarchical Network Structure

We then analyzed the local network structure by identifying motifs, i.e., recurrent patterns of interaction

between RBPs and RBPs mRNAs. We used FANMOD (Wernicke and Rasche, 2006) to look for three-

node motifs, of which several patterns have previously been characterized (e.g., the feedforward loop

and others [Milo et al., 2002]). The most significant motifs are shown in Figure 1C: among these, the

down-linked mutual dyad (DMD) is the most enriched motif in our network. Together with the single-input

module (SIM, third most enriched motif), these motifs indicate widespread use of hub-like patterns. The

enrichment in DMD and up-linked mutual dyad (UMD, fourth most enriched motif) suggest a structure

of ranked clusters for our network. Under this model, the dyads connect different hierarchical ranks within

a network, with individual ranks structured as node clusters (de Nooy et al., 2005; Johnsen, 1985). Instances

of these motifs include FXR2, HNRNPF, and TNRC6B for the DMD and IGF2BP1, YWHAE, and YWHAG for

the SIM (with the first binding to the mRNA of the other two). One example of the UMD is that of ELAVL1,

TIAL1, and TIA1 (e.g., both binding to TIA1 mRNA and each other mRNA), whose interactions were previ-

ously described to be functional, with ELAVL1 promoting TIA1 expression while TIAL1 exerts the opposite

effect (Pullmann et al., 2007).

We then identified four-node motifs, the most significant of which are shown in Figure 1D. Among these,

the forwarded uplinked mutual dyad forwards the output of an UMD to a further RBP and thus is a hierar-

chical, rank-connecting extension of this motif. Furthermore, the chain-feeding dyad is made of a dyad that

transmits its regulatory signal to two linearly connected RBP mRNAs, thus creating a hierarchical structure

as well. Given their properties, these two motifs provide further support to a ranked clusters model for the

structure of our network.

The Structure of the RBP-RBP Network Is Different from the TF-TF One

We thus sought to compare the motif structure of the RBP-RBP network with one of another network of reg-

ulators, the TF-TF network, described in Neph et al. (2012) for 41 cell types. We thus computed the triad

significance profile (TSP) for these networks as described in Milo et al. (2004). The TSP quantifies the use

of the various three-node motifs by the network under analysis with respect to random networks and

thus recapitulates its local structure. To complement this analysis, we also asked ourselves whether the

structure of our network could be considered representative of the unavailable ‘‘complete’’ RBP-RBP

network. To answer this question we thus built an inferred RBP-RBP network by collecting experimentally

determined RBP-bound mRNA regions as per a protein occupancy profiling assay in HEK293 cells (Baltz

et al., 2012). We then matched these regions to the binding motifs of 193 human RBPs derived from the

in vitro RNAcompete assay (Ray et al., 2013). We obtained a network of 108161 predicted interactions be-

tween RBPs and RBPs mRNAs. This network, independently reconstructed from two experimental datasets,

becomes a validation of the general structure we propose for the RBP-RBP network. It indeed includes all

regions found to be bound by RBPs in HEK293 cells by an experimental approach, regions that were then

assigned to a putative regulator by predictions based on experimentally determined RBP binding motifs.

We eventually compared the TSP of the three networks. The results are shown in Figure 1E, and we observe

two salient aspects. First, the RBP-RBP network and its inferred version have a very similar motif structure

(Spearman correlation = 0.78, p value = 2.62 3 10�3), with limited magnitude differences only. This sug-

gests that our network structure is reproducible and a representative cross-section of the complete set

of interactions between RBPs and an RBP mRNA. Then, the TF-TF structure is instead more distant

(mean Spearman correlation = 0.698 across the 41 networks). Indeed, 5/13 motifs are differentially
iScience 21, 706–719, November 22, 2019 709



represented in the RBP-RBP network (enriched instead of depleted or vice versa), and the DMD is preferred

over the UMD (the opposite being true for the TF-TF networks). This suggests specialization of network

structures in RBP-RBP interactions with respect to TF-TF ones.

The Stoichiometry of RBP Complexes Is Not Determined by Interactions between RBPs and

RBP mRNAs

We then asked if some type of biological constraints could be behind the evolutionary shaping of the spe-

cific geometry of the RBP-RBP network. One hypothesis is that constraints are produced by RBPs linked in

the network being part of the same ribonucleoprotein complex, assuring coordinated post-transcriptional

control to reach stoichiometry (i.e., are post-transcriptional interactions of an RBP and an RBP mRNA

selected because of the need to regulate existent protein-protein interactions between those two

RBPs?). To test this hypothesis, we overlapped the interactions in our experimental RBP-RBP network

with the experimental binary protein-protein interactions (PPIs) contained in STRING (Szklarczyk et al.,

2017), IntAct (Orchard et al., 2014), and BioPlex (Huttlin et al., 2017). We found only few RBP-RBP

mRNA interactions mirrored by PPIs (3.37% for STRING, 0.57% for IntAct, and 0.29% for BioPlex). The

same behavior, although to a slightly higher extent, appears for the TF-TF networks, with 3.27% for

STRING, 1.30% for IntAct, and 0.43% for BioPlex in the Renal Cortical Epithelial Cell network. We then

looked at the same data from the opposite perspective. In a related work based on yeast data, Pancaldi

and Bähler (2011) observed that RBPs often bind to the mRNAs that encode their physical interaction part-

ners. In our dataset, this behavior is infrequent, with only 3.8% and 10.7% of the RBP-RBP physical inter-

actions from the STRING and IntAct databases (obtained by extracting all physical protein-protein inter-

actions and filtering them by the involvement of two RBPs) respectively mirrored in our RBP-RBP network.

Globally, this suggests that the network wiring is not generally made to assure the availability of RBPs for

complex assembly.

As this analysis dealt with single interactions, we then turned to whole complexes. Indeed, stoichiometric

complexes (i.e., requiring precise quantities of each of the components for proper functioning) may

instead rely on this mechanism. We employed data from CORUM (Ruepp et al., 2010) and found 1818

interactions overlapping a complex, corresponding to only 3.79% of the network (for the TF-TF this figure

is even lower, covering 2.53% of the Renal Cortical Epithelial Cell network). Table S3 lists complexes with

at least five interactions in the network involving their subunits. A few complexes are highly represented,

including the large Drosha complex (95% of its subunits are in the network, connected by 88 interactions)

and the spliceosome (83% of its subunits and 732 interactions). This suggests that only for some notable

exceptions stoichiometry of protein complexes is possibly driving the establishment of interactions in the

RBP-RBP network. Furthermore, Pancaldi and Bähler, 2011 also hypothesized that RBPs in a complex may

coordinate the expression of non-RBPs within the same complex. Of the 2,390 human protein complexes

listed in CORUM, 658 contain at least one RBP and one non-RBP. In our dataset, only 35 of these (5.3%)

have at least one non-RBP regulated by one RBP in the complex, with a mean of 58% of regulated non-

RBPs and 13 (37%) having all non-RBPs regulated. Therefore, this observation does not hold in our

network.

Communities Do Not Globally Define the Structure of the RBP-RBP Network

To obtain a more general understanding of post-transcriptional RBP-RBP interactions, we thus asked our-

selves whether the network had a modular structure. Can we identify groups of densely connected RBPs

(communities) potentially aimed at regulating specific biological processes? To answer this question, we

used SurpriseMe (Aldecoa and Marin, 2013), a tool for the investigation of community structures. Surpris-

eMe is based on Surprise (S) maximization (Aldecoa andMarin, 2013), which has been shown to outperform

the classic Girvan-Newman modularity measure Q (Newman and Girvan, 2004). We used the communities

identified by the two best-scoring algorithms implemented in the tool, namely CPM (Palla et al., 2005) and

RNSC (King et al., 2004) (S = 13,698 and 13,353 resp.). These algorithms detected a poor degree of modu-

larity in the network. As shown in Figure 2A, 89% of the communities are formed by a single RBP (singletons)

and only eight contain more than 20 RBPs (one with CPM and seven with RNSC). Furthermore, both algo-

rithms identified a huge community comprising a substantial portion of the network, suggesting a limited

presence of true clustered structures. In that respect, the TF-TF networks appear to bemuchmoremodular,

with much fewer singletons (avg. of 53 vs. 657 for the RBP-RBP network) and higher community size (avg. of

5 vs. 2.08). Eventually, we explored the enrichment of biological functions in the communities but detected

no clear association involving most members of any of these. CPM and SCluster-derived communities are
710 iScience 21, 706–719, November 22, 2019
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Figure 2. RBPs Binding Common Sets of Targets Are Significantly More Interconnected

(A) The low modularity of the network as per the CPM and RNSC communities. Most are singletons, and one contains

more than 25% of all RBPs.

(B) Link density for the whole network and several groups of target-sharing RBPs: ARE, m6A, Poly(A), Poly(U), and TOP-

binding proteins; 1000-samples bootstrap p values are shown next to each bar.

(C) The complete network of ARE-binding proteins, revealing a hierarchical structure dominated by ELAVL1 and TIAL1.

(D) Link density for families of RNA-binding proteins found in the network. A red dotted line indicates whole-network link

density, and 1000-samples bootstrap p values are shown next to each bar.

See also Table S4.
listed in Tables S4A and S4B. Globally, these results suggest that the conventional community definition

does not fit well the RBP-RBP network, which may thus be structured differently.

RBP-RBP Interactions Occur in Clusters Dictated by Their Common Target mRNAs

The number and size of the detected communities suggest the low modularity of the RBP-RBP network,

likely due to a peculiar community structure that cannot be detected by current algorithms. To further study

this aspect we investigated a more general principle, that of interactions between RBPs in the network be-

ing due to cooperatively or competitively sharingmRNA targets. RBP-RBP network wiring constraints could

indeed be due to combinatorial RBP interactions through their targets (both RBPs, which are in the

network, and non-RBPs, which are outside it). We thus extracted mRNA targets for each RBP in the network
iScience 21, 706–719, November 22, 2019 711



from the AURA 2 database (Dassi et al., 2014) and computed their overlap for every RBP pair. We compared

these overlaps for protein-mRNA pairs in the network (interacting RBPs) and pairs not in the network (non-

interacting RBPs). The results indicated that interacting RBPs share significantly more targets than non-in-

teracting RBPs (median 141 and 52 resp., Wilcoxon test p < 2.2 3 10�16).

Examples of cooperative/competitive mechanisms that were already known, and for which the two partici-

pating RBPs bind to each other in our network, include DDX3X cooperating with PABP1 (Copsey et al.,

2017) and CELF2 competing with ELAVL1 (Sureban et al., 2007).

To investigate the biological meaning of this general phenomenon, we then studied sets of RBPs known to

bind to the same cis-element and consequently sharing most of their targets. We considered AU-Rich

Element (ARE) binding proteins (Barreau et al., 2005), proteins interacting with the 50UTR terminal oligopyr-

imidine tract (TOP) element (Tcherkezian et al., 2014; Hamilton et al., 2006), and proteins interacting with

the m6A RNA modification sites (Roignant and Soller, 2017). We also include proteins interacting with

poly(U) RNAs and with the poly(A), a major cis-determinant of mRNA stability and translation (Goss and

Kleiman, 2013). ARE-binding proteins, in particular, are known to display both cooperative and competitive

behaviors (Barreau et al., 2005). We computed link density (i.e., the fraction of all possible RBP-RBP inter-

actions made within a group) for the whole network and each group. As shown in Figure 2B, all groups have

significantly higher link densities than the whole network (7.8–18.7 times higher, 1000-samples bootstrap p

values = 0.002 or less). The group with most interactions is the ARE-binding proteins (68 interactions),

whose complete network is shown in Figure 2C. A hierarchical structure is visible, with HuR/ELAVL1 and

TIAL1 as top regulators (highest out-degree and lowest in-degree), connected to a second level (ZFP36,

HNRNPC, HNRNPD, and AUH), which then controls the remaining RBPs (lowest out-degree).

Expanding on this idea, we eventually analyzed the link density of all annotated RBP families (as defined by

Ensembl [Zerbino et al., 2018], seeMethods). We assumed that, most often, members of the same RBP fam-

ily may cooperate or compete to regulate their commonmRNA targets (Dassi, 2017). Of the 288 families, 35

have at least two members in the network (i.e., taking part in at least one interaction). An example of highly

interacting family is the fragile X mental retardation, comprising FMR1 and its two paralogs, FXR1 and

FXR2. These RBPs have largely overlapping targets and predominantly associate with polysomes to control

brain development (Li and Zhao, 2014). In the network, FMR1 binds to the other two RBPs, as does FXR2. All

three also bind to their cognate mRNA. This suggests a potentially tight control over how these RBPs

concur to regulate their common targets.

Globally, the median link density of these families is 0.24, with 32/35 having a higher density than the whole

network. Of these, 25 are significant according to a 1000-samples bootstrap (Figure 2D). Although including

only a fraction of all families, these results further indicate that interactions between RBPs and RBP mRNAs

may be needed to regulate cooperative and competitive behaviors on mutual targets. Furthermore, this

behavior could be more prevalent than is currently known. ‘‘RBP clusters’’ (including families and sets of

RBPs binding to the same cis-element) thus represent the community structure of the RBP-RBP network.
RBP Chains Are Master Regulatory Units of the Cell

The interactions identified by analyzing RBP clusters are, however, only a fraction of all links in the network.

We thus hypothesized that, alongside these community-like structures, the network could also be employ-

ing linear node chains as its functional units. To study this aspect, we extracted chains of length 4 and 5

(longest network path) from the network (examples are shown in Figure 3A). To assess their relevance,

we checked whether chains were more functionally homogeneous (i.e., composed of RBPs with more

closely related functions) than algorithm-derived communities. The latter were taken as comparison, given

their poor ability to capture the structure of the RBP-RBP network. We thus computed a functional coher-

ence score as the average semantic similarity of each pair of RBPs in a chain or community. Semantic sim-

ilarity uses functional annotations (i.e., Gene Ontology) to define how close two genes are in terms of per-

formed functions. Chains display a significantly higher functional coherence than algorithm-derived

communities (Wilcoxon test p = 9.01E-07/0.0347 for CPM/RNSC for chains of length 4; p = 7.562E-06/

0.086 for CPM/RNSC for length 5; shown as density in Figure S1). Chains thus seem to be relevant to the

RBP-RBP network organization. We performed this analysis also in the TF-TF networks, detecting chains

of both length 4 and 5. These are more abundant than in the RBP-RBP network (1.5 times the longest chains

in the Renal Cortical Ephitelial Cell network), but are significantly less functionally coherent (average
712 iScience 21, 706–719, November 22, 2019
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Figure 3. RBP Chains Dispatch Regulatory Information in the Network

(A) Examples of RBP chains. Dashed lines and dotted name represent an iRBP heading many RBP chains. Increasing node

color intensity represents the transmission of regulatory input through the chain, from the first to the last node.

(B) Evolutionary rates of iRBPs and all RBPs in the network, obtained from the ODB8 database and two articles. iRBPs have

a significantly lower rate in all datasets (Wilcoxon test p = 5.2 3 10�5, 0.0128 and 0.0016 for ODB8, NRG3950, and

PO131673).

(C) Displays the log2 fold-change for RBPs at the various levels of chains led by PABPC1, CPEB4, and METTL14 when

silencing these iRBPs. The first level of the chain is the silenced iRBPs, whereas level 5 represents the last RBP of a chain

(with levels 2 and 4 being intermediate steps of each chain). Lines represent the RBP-RBP connections in a chain, whereas

orange circles represent RBPs.

(D) An example of a chain led by PABPC1 and composed of RBPs performing a broad set of functions (main function

shown only, as per Uniprot gene descriptions).

See also Figures S1–S3 and Tables S5–S8.
0.41/0.43 vs. 0.75/0.73 for TF-TF and RBP-RBP of length 4 and 5 resp.; Wilcoxon test p < 2.23 10�16 for both

lengths), suggesting a lesser importance of such units in a denser network such as this one.

Chains are headed by a few initiator RBPs (iRBPs, 53 genes). iRBPs include genes involved in the regulation

of various aspects of RNA metabolism and ribosome biogenesis. These could be the most influential
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regulators, able to control many other RBPs and processes to dictate cell phenotypes. Therefore, iRBPs

could be essential for the proper execution of cell processes. On this assumption, we searched for iRBPs

in essential genes (defined by the underrepresentation of gene-trap vectors integration in their locus) of

two human cell lines, as per a recent work (Blomen et al., 2015). As shown in Table S1, one-third of the iRBPs

are essential in both cell lines, with 21 (40%) essential in the HAP1 line. iRBPs are enriched for essential

genes in these cell models (max. Fisher test p = 1.733 10�5), and a 1000-samples bootstrap was significant

(p < 0.001) in both cell lines and their intersection. Most iRBPs (43/53, 81%) are also essential in at least one

cellular model as per RNAi screenings included in the GenomeRNAi database (Schmidt et al., 2013). Merg-

ing all these annotations yields the remarkable total number of 46/53 iRBPs essential in at least one cell

model (86%). To further strengthen this finding, we obtained the orthologs of iRBPs in mouse, Drosophila

melanogaster, and Caenorhabditis elegans, and compared them with essential genes in those organisms.

As shown in Tables S5–S7, the enrichment of essential genes in iRBPs is highly significant also for these or-

ganisms. Finally, if iRBPs are essential to cell physiology they should be rarely targeted by copy number

imbalances in cancer, as their perturbation could negatively affect the cell fitness. Indeed, when analyzing

11,325 samples from 31 tumor types in TCGA, 7,656 samples (67.6%) have no CNA in any iRBP and 83.7% in

no more than one iRBP. Of these CNAs, 75.5% are gains/amplifications (Figure S2).

We reasoned that the iRBPs could also be highly conserved, due to their fundamental role in driving RBP

chains. We thus investigated whether these RBPs are more evolutionarily constrained than other RBPs. We

extracted evolutionary rates of sequence divergence from the ODB8 database (Zdobnov et al., 2017 and

Zhang and Yang, 2015) and rates of purifying selection from Kryuchkova-Mostacci and Robinson-Rechavi,

2015.We observed that, in all datasets, iRBPs have a significantly lower evolutionary rate than all RBPs in the

network (Figure 3B; Wilcoxon test p = 5.2 3 10�5, 0.0128 and 0.0016 for ODB8, NRG3950, and PO131673,

respectively). Furthermore, iRBP transcripts are significantly more expressed than other RBPs in HEK293

cells (median of 52.1 and 21.58 RPKM respectively, p value = 0.0065), in accordance with the observed as-

sociation between evolutionary constraints and high expression (Gout et al., 2010). The essentiality of most

iRBPs, coupled with their ultra-conservation, consistently support their importance as key cell regulators.
RBP Chains Transmit Post-transcriptional Signals

We eventually asked ourselves whether the potential regulatory information induced by RBP binding is trans-

mitted through the chains, from the iRBPs down to the last node. To study this aspect, we reanalyzed publicly

available transcriptome profiles of knock-down experiments for three iRBPs in human cells (two with chains of

length 4 and 5,PABPC1 andCPEB4, andonewith chains of length 4,METTL14, seeMethods). These RBPs act on

various processes, including, for PABPC1 and METTL14, the regulation of mRNA stability (Weng et al., 2018;

Wang and Kiledjian, 2000). We thus expect to detect at least a partial effect of their knock-down on these tran-

scriptomes. We plotted the fold-change (knock-down versus control) of the RBPs composing the chains

controlled by each of the three iRBPs. As shown in Figure 3C, a sizable fraction of all chain members are differ-

entially expressed (23.9% for PABPC1, 22.4% for CPEB4, and 46.3% for METTL14 at the adjusted p value

threshold of 0.05). When considering only a permissive fold-change threshold of 1.1, these numbers rise two

to three times (66.1% for PABPC1, 44.1% for CPEB4, and 61.9% forMETTL14; at this threshold, 49% of PABPC1

chains have at least 80% of their composing RBPs as differentially expressed, with 52% for CPEB4, and 57% for

METTL14).We also analyzed alternative splicing changes in these datasets and identified further activated chain

links (i.e., that were not activated by differential gene expression but by differential exon usage). These involve

73 additional genes for PABPC1 (15.3%), 54 for CPEB4 (11.7%), and 40 forMETTL14 (15.6%). Globally, the total

thus rises to 39.2% for PABPC1, 34.1% forCPEB4, and 61.9% forMETTL14 (adjusted p value threshold = 0.05). It

must be noted that other modes of regulation, which cannot be observed through these datasets, can also be

used by these proteins aside frommRNA stability and splicing (e.g., translational control). The amount of ‘‘acti-

vated’’ RBPs in the chains is thus here underestimated. This data suggest that the potentially regulatory infor-

mation sparked by an iRBP is indeed transmitted through its chains. As a result, the set of processes that can be

controlled by these proteins is likely broadened (an example of which is shown in Figure 3D). Consequently, we

asked ourselves which pathways were affected by RBP chains. We thus overlapped the RBPs contained in

each chain of length 5 with annotated human pathways from the MSigDB collection (Subramanian et al.,

2005). Results, displayed in Figure S3, indicate that while globally the overlap with pathways is modest (only

124/1329—9.3% of annotated pathways include one or more chain RBP), several functions are represented.

These include expected functions (e.g., RNA processing and metabolism, translation—overlapped by several

chains) but also pathways related to less conventional functions of RBPs (such as DNA repair, immunity and viral
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life cycle, intracellular signaling, and others, involving less chains). Chains are thus a functional unit in the RBP-

RBP network, complementing the observed RBP clusters.
The RBP-RBP Network Is a Robust and Efficient Hierarchy

We finally asked ourselves which were the implications of RBP chains on the global network structure. A

reasonable hypothesis is that chains form a hierarchical structure, as also suggested by the ranked clusters

model we observed for the local network structure. We thus measured how hierarchical is the RBP-RBP

network (Cheng et al., 2015), which revealed it as much more than any of the 41 TF-TF networks and of a

random, degree-preserving network. When considering a hierarchy of 2, 4, or 6 levels p value is always or-

ders of magnitude lower, with a -log10p of 14.2 versus an average of 3.85 for TF-TF networks and a non-sig-

nificant 0.99 for the random network at six levels. Furthermore, feedback loops (not coherent with a hier-

archical organization) are depleted in the network, representing 0.0085% of the motifs only. Lastly,

feedforward loops, coherent with a hierarchical organization, are instead enriched and amount to 3.29%

of the motifs.

We then assessed another desirable property, that of network robustness to the ‘‘deletion’’ (i.e., loss of

function) of an RBP from the network. To do so, we computed the pairwise disconnectivity metric on

each RBP (Potapov et al., 2008). We found only 0.14% of RBP pairs to be disconnected on average when

removing an RBP from the network (0.13% on a corresponding random, degree-preserving network), a

significantly lower value than for the TF-TF networks (average is three times higher for TFs, worst p value =

5.6E-104). The network is thus well-tolerant to losing a node (on average, only a few RBPs are disconnected

when ‘‘deleting’’ a given RBP), implying that RBP-RBP interactions are robust and suggesting the degree

structure of the network as a contributing factor. This feature is likely granted by the use of densely con-

nected RBP clusters, resulting in partially redundant binding to the same mRNAs.

Eventually, although RBP clusters are redundant by definition (as they co-regulate a largely overlapping set

of targets), we asked whether single RBP chains also shared this property. We thus computed the overlap

between all RBP targets (both RBPs in the network and non-RBPs outside it) at the various levels of each

chain of length 5. It resulted being particularly low, as only 7.6% of the targets are overlapping between

any two levels (median of all chains, average of each pair in a chain; the range is 2.8%–15.5%). Differently

from RBP clusters, we can thus say that chains are efficient, as targets are not redundantly bound by indi-

vidual RBPs along the chain. These are instead predominantly organized in complementary sets at each

chain node. This efficiency comes at the expense of robustness (i.e., if one level of the chain fails the reg-

ulatory signal would most often be lost), which is instead a feature of RBP clusters. The resulting model,

shown in Figure 4, couples hierarchical structure, network robustness through RBP clusters, and efficiency

through RBP chains.
DISCUSSION

We presented here a systematic characterization of the RBP-RBP network. Starting from several reports

hinting to a post-transcriptional hierarchy of regulators (Potapov et al., 2008; Dassi et al., 2013; Mukherjee

et al., 2011; Pullmann et al., 2007), we collected available RBP-mRNA association data and described the

network of interactions involving an RBP and the 50 or 30UTR of an RBP mRNA. The network is small-world

and scale-free, typical properties of gene regulatory networks. Although the network is partial (as data are

available for a fraction of all RBPs only), its local motif structure is highly coherent with the one of the in-

ferred network. The network is thus representative of general patterns in RBP-RBP interactions. It must

be noted that the network stems from the integration of various types of experimental techniques, not uni-

formly processed due to their different specific features. Furthermore, one should consider that not all in-

teractions scored by the CLIP and RIP assays, fromwhich themost part of the network is derived (i.e., an RBP

binding to the UTRs of the mRNA of another RBP), are likely to produce an effect on the downstream levels

and translation of the target transcript.

Its local structure is similar to the one of TF-TF networks derived by DNase footprinting (Neph et al., 2012).

However, differential enrichment of several motifs suggests that structure specialization occurs in the RBP-

RBP network with respect to the TF-TF one. This specialization could be aimed at better suiting the spec-

ificities of post-transcriptional regulation, such as the need to rapidly react to cellular stress and stimuli. In

particular, we found up- and down-linked mutual dyads as particularly enriched. These motifs are
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Figure 4. The RBP-RBP Network Is a Robust and Efficient Hierarchy

Model of the RBP-RBP network as derived from our analyses. RBPs are indicated by hexagon-shaped nodes, RBP-RBP

interactions by thick arrows (arrows pointing to the originating RBP represent autoregulation events), and targets sets by

squares, which can be shared by multiple RBPs (fraction of shared targets represented by the size of the shared area

between the two squares). RBP-RBP interactions are robust due to densely connected RBP clusters (co-binding most of

their targets), whereas RBP chains confer hierarchy and efficiency to the network, as target mRNA sets for each RBP in a

chain are completely or predominantly different (‘‘isolated’’). Dashed in- and out-going arrows hint to the presence of

further interactions within and between RBP clusters and chains in the network.
distinctive of a ranked clusters structure (Johnsen, 1985), thus suggesting that the network can be divided

into features conferring hierarchy and clusters of densely interacting nodes.

To study the role of these interactions in shaping cell phenotypes, we investigated why RBPs bind to each

other mRNA.We found a few protein complexes involved in RNAmetabolism and highly intra-regulated by

RBP-RBP interactions. However, only a fraction of all complexes display this behavior, which cannot thus be

considered general. We instead observed that clusters of RBPs having overlapping targets tend to bind to

each other’s mRNA. These interactions could represent a yet unappreciated layer of regulation for coop-

erative and competitive behaviors between RBPs. As known for ARE-binding proteins (Barreau et al., 2005),

RBPs can tune the expression of a common target by competitive or cooperative binding. We suggest that

RBPs may influence the outcome of this process also by post-transcriptionally regulating the expression of

the partner RBP. This mechanism could be used to reach precise ratios of mRNP components and yield the

intended regulatory effect on common targets.

These clusters represent ‘‘islands’’ of densely connected RBPs and are key in providing robustness to the

network. Indeed, their partially redundant binding could improve the resilience of the network to the loss-

of-function of individual RBPs.

Surprisingly, the TF-TF network by Neph et al., 2012 appears much less tolerant to losing individual tran-

scription factors than the RBP-RBP one (i.e., on average, muchmore nodes end up disconnected). We spec-

ulate that this could imply regulatory modules within the TF-TF network to be smaller and more isolated

than for RBPs. The TF-TF structure could thus sustain the ‘‘fragmentation’’ of the network better. Another

hypothesis may see the cost of redundantly wiring the TF-TF network as much higher than for the RBP-RBP

one, thus making the toll of losing connections more bearable than that of having to replicate them. Further

work may be warranted to investigate this aspect. Furthermore, these structural differences between TF-TF

and RBP-RBP networks suggest the opportunity to integrate the two, potentially including also microRNA

data, to study the combined effect and properties of the whole regulome. However, RBP clusters are not
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the only constituent feature of this network. Studying how RBPs interact with each other, we uncovered a

set of widespread linear structures which appear to bemore prevalent than communities. These structures,

which we termed RBP chains and are driven by a few initiator RBPs (iRBPs), could provide enhanced flexi-

bility with respect to a community pattern. Indeed, we believe that RBPs evolved the ability to influence a

broad set of biological processes through such chains. Most iRBPs are essential for the cell, their 30UTRs are
more conserved, and their evolutionary rates are lower than for other RBPs. Taken together, these findings

truly back the importance of iRBPs as ancient master regulators of cellular processes.

Chains profoundly shape the RBP-RBP network to be highly hierarchical. Their regulatory action confers ef-

ficiency, as the fraction of targets shared between the different chain levels is limited (i.e., targets are not

replicated along a chain), thus possibly streamlining the flow of regulatory information from iRBPs to the

final chain targets.

We have thus identified the two features hypothesized by the ranked clusters model: a hierarchy-inducing

structure (the RBP chains) and clusters of densely interacting nodes (RBP clusters). This indicates that this

model fits well with the RBP-RBP network and can be found at different depths of observation: from the

local, three-node motif structure, to the patterns defining the topology of the global network. The combi-

nation of properties offered by these features, namely robustness and efficiency, reflects the constant

evolutionary pressure shaping the fundamental cellular machinery driving the post-transcriptional regula-

tion of gene expression. Establishing robustness only through RBP clusters could lead to a weaker archi-

tecture, as the regulatory signal going through chains is not redundant and a single perturbation of the

network could cause its loss. However, it may be cheaper to obtain and more far-reaching. This consider-

ation, however, raises a question: which is the role of RBP chains in relation to RBP clusters?

We suggest that RBP chains use the modulation of RBP targets as a connector to different processes, rep-

resented by the RBP clusters. Clusters would thus be similar in concept to the regulatory modules identified

by Mukherjee et al., 2019, although made exclusively of RBPs regulating each other. We call this model the

‘‘modular controller.’’ Under this model, the signal originated from the chains iRBPs proceeds from one

RBP cluster, side-connected to the chain, to another, while flowing through the chain levels to control

several cellular processes. This pattern thus allows potentially coordinating a broad set of functions of in-

terest. Activating different chains would then result in the modulation of a different set of processes, grant-

ing substantial flexibility to the RBP-RBP network. This work thus establishes interactions among RBPs and

RBP mRNAs as a backbone driving post-transcriptional regulation of gene expression to coordinately tune

protein abundances.
Limitations of the Study

It must be noted that the network is partial, as experimental data are currently available for a fraction of all

RBPs only, and that we considered only UTR-mediated interactions (which however represent the biggest

fraction of all known RBP-mRNA interactions). Furthermore, the network stems from the integration of

various types of experimental techniques, not uniformly processed due to their different specific features.

Eventually, one should also consider that not all interactions scored by the CLIP and RIP assays, from which

the most part of the network is derived (i.e., an RBP binding to the UTRs of the mRNA of another RBP), are

likely to be functional and thus produce an effect on the downstream levels and translation of the target

transcript.
METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
DATA AND CODE AVAILABILITY

An interactive browser allowing to explore the RBP-RBP network is available at the AURA 2 website (http://

aura.science.unitn.it). The networks were deposited in NDEX (http://www.ndexbio.org) with ID ee3e8898-

6e29-11e8-a4bf-0ac135e8bacf, f5ad750b-6e29-11e8-a4bf-0ac135e8bacf, and fc1e526e-6e29-11e8-a4bf-

0ac135e8bacf.

The source scripts employed for non-trivial analyses described in the paper are available at https://

bitbucket.org/erikdassi/rbp-rbp-network.
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Supplemental Figures 

 

 

Figure S1: Functional coherence distribution for RBP chains versus communities. Related 

to Figure 3. Shows the differences in density of the functional coherence values distribution 

between RBP chains of length 5 (in red) and communities obtained by CPM (green) and RNSC 

(blue). 

 

 



 

Figure S2: Copy number imbalances of iRBPs in TCGA cancer samples. Related to Figure 3. 

Displays copy number alterations of iRBPs in 11325 samples from 31 tumor types of the TCGA 

dataset. Deletions are shown in blue while gains/amplifications are marked in red. 

 

 

 

 

 

 



 



Figure S3: Association of chain RBPs to human pathways. Related to Figure 3. Shows the 

presence of RBPs belonging to a given chain (rows) in annotated human pathways from different 

sources (columns; MSigDB collection – see Methods). A red square indicated that at least one RBP 

of that chain is annotated to that specific pathway, a blue square that none are. 

 

 

Supplemental Tables 

 

Property HEK293 HeLa MCF7 

Network diameter 5 5 6 

Clustering coefficient (CC1) 0.507 0.5061 0.4938 

Avg. clustering coefficient (CC2) 0.0115 0.0115 0.0108 

Avg. closeness centrality 0.5033 0.5035 0.5013 

SWS 31.03 30.64 31 

Control profile 
s=0.00368, 
e=0.99632, 
i=0.0 

s=0.00450, 
e=0.99474, 
i=0.00075 

s=0.00370, 
e=0.99630, 
i=0.0 

 

Table S2: Global properties of the RBP regulatory network in the three cell-lines.  Related to 

Figure 1. This table lists the values of some commonly used global network properties for the RBP 

regulatory network in HEK293, HeLa and MCF7 cell-lines. These values show that the network 

structure is stable along this three systems. 

 

RBP 
Chain 
length 

# of 
reachable 
RBPs 

# of 
chains 

Essential 
(Blomen_KBM7) 

Essential 
(Blomen_HAP1) 

Essential 
(GenomeRNAi) 

AGO4 4 64 304       

AUH  4 27 45     v 

BCCIP  4 89 542 v v v 

CELF1  4 234 3808   v v 

CIRBP  4 220 4531     v 

CPEB1  4 124 2461   v v 

CPEB4  
4 461 10951 

    
v 

5 26 47 

DKC1  4 112 1032 v v v 



EIF3A  4 29 66 v v v 

EIF3B  4 27 47 v v v 

EIF3G  4 29 68   v v 

EXOSC5  4 37 102 v v v 

FKBP4  4 60 155     v 

GNL3  4 66 249 v v v 

HNRNPM  4 52 167 v v v 

HNRNPUL1  4 56 135       

ILF3  4 29 42 v v v 

LARP7  4 25 47       

METTL14  4 257 5058 v v   

METTL3  4 120 1531 v v v 

NCL  
4 516 14362 

v v v 
5 63 202 

NPM1  4 57 437 v v v 

PABPC1  
4 481 4443 

v v 
v 

5 55 67 

PARK7  4 233 3247     v 

POLR2G  
4 951 11195 

  
v v 

5 66 129 

PPIL4  4 83 312 v v v 

PUM1  4 35 99 v v v 

PUS1  4 40 76     v 

RBM22  4 32 85 v v v 

RBM5  4 48 89   v v 

RC3H1  4 61 231     v 

RPS11  4 28 67 v v v 

RPS5  4 62 202     v 

SAFB2  4 72 314     v 

SBDS  4 64 184 v v   

SERBP1  4 28 47 v v v 

SF1  4 170 2503 v v   

SFPQ  4 65 129 v v v 

SLBP  4 280 6937 v v v 

SLTM  4 45 137 v     

SRSF3  4 228 3790 v v v 

SRSF4  4 228 3790       

SUPV3L1  4 76 241 v   v 

TARBP2  4 54 67     v 

TNRC6A  4 74 273   v   

TNRC6C  4 74 189       

WTAP  4 200 4889     v 

XPO5  4 33 108 v v v 

XRN2  4 39 109 v v v 

YTHDC1  4 138 2490 v   v 

YTHDC2  4 88 309     v 

YTHDF2  4 54 121     v 



YWHAG  4 40 90     v 

 

Table S5: iRBPs.  Related to Figure 3. The table lists initiator RBPs (iRBPs) for regulatory chains 

of length 4 and 5. Listed are the number of chains headed by each RBP, the number of reached 

RBPs and the essentiality in two human cell lines as per (Blomen et al. 2015) and in RNAi screenings 

from GenomeRNAi (Schmidt et al. 2013). iRBPs are enriched in essential genes and a significant 

fraction (30%, bootstrap p<0.001) of these is essential in both cell lines. Merging the three sources 

yields 46/53 iRBPs (86%) as essential. 

 

RBP Essential 

Ago4   

Auh   

Bccip   

Celf1   

Cirbp   

Cpeb1   

Cpeb4   

Dkc1 v 

Eif3a   

Eif3b v 

Eif3g   

Exosc5   

Fkbp4   

Gnl3 v 

Hnrnpm   

Hnrnpul1   

Ilf3   

Larp7   

Mettl14   

Mettl3   

Ncl   

Pabpc2   

Park7   

Polr2g   

Ppil4   

Pum1   

Pus1   

Rbm22   

Rbm5   

Rc3h1   



Rps11   

Rps5   

Safb2   

Sbds v 

Serbp1   

Sf1 v 

Sfpq   

Slbp   

Sltm   

Srsf3 v 

Srsf4   

Supv3l1 v 

Tarbp2   

Tnrc6a v 

Tnrc6c   

Wtap v 

Xpo5   

Xrn2   

Ythdc1   

Ythdc2   

Ythdf2   

Ywhag   

 

Table S6: Essential master RBPs in Mus musculus. Related to Figure 3. Essential mouse 

orthologs of master RBPs (9/52) were derived as the ones conferring an embryonic lethality 

phenotype in mouse, as per the Phenotype Ontology of the MGI mouse database 

(www.informatics.jax.org). 

1000-samples bootstrap p-value:  0.007 

Enrichment p-value (Fisher test):  0.0039 

 

RBP Essential 

ago1   
14-3-
3zeta v 

B52 v 

bgcn   

bru1   

bru2   

CG14641   

CG30122   



CG4887   

CG4896   

CG5808 v 

CG8549   

CG8778   

CG9286   
DJ-
1alpha v 

dj-1beta   

eIF3a   

eIF3b   

eIF3g1   

eIF3g2   

FDY   

FKBP59 v 

fl(2)d v 

gw   

Ime4   

Larp7   

loqs v 

Mettl14   

nonA v 

nonA-l v 

Nop60B v 

Ns1 v 

orb v 

orb2 v 

pum v 

PUS1   

Ranbp21   

Rat1 v 

roq   

Rpb7 v 

RpS11 v 

RpS5a v 

RpS5b v 

Rrp46   

rump v 

Saf-B   

SF1 v 

Slbp v 

Suv3   

tra2 v 

vig   

vig2 v 

x16 v 

YT521-B   

 



Table S7: Essential master RBPs in Drosophila melanogaster. Related to Figure 3. Essential 

D.melanogaster orthologs of master RBPs (25/54) were derived as the ones conferring a lethality 

phenotype in D.melanogaster, as per the Phenotype Ontology of the FlyBase database (flybase.org). 

1000-samples bootstrap p-value: <0.001 

Enrichment p-value (Fisher test):  0.032 

 

RBP Essential 

alg-1 v 

alg-2 v 

cdl-1 v 

cpb-3 v 

crn-5 v 

djr-1.1   

djr-1.2   

ech-5   

egl-45 v 

eif-3.B v 

eif-3.G v 

etr-1 v 

fbf-1 v 

fbf-2 v 

fkb-6 v 

ftt-2 v 

hrpu-1   
nono-
1 v 

nst-1 v 

par-5 v 

puf-11 v 

puf-3 v 

puf-5 v 

puf-6 v 

puf-7 v 

pus-1   
rbm-
22   

rbm-5   

rle-1 v 

rpb-7 v 

rps-11 v 

rps-5 v 

rsp-1 v 



rsp-2 v 

rsp-5 v 

rsp-6 v 

rsp-8 v 

sbds-1   

sfa-1 v 

sig-7 v 

xrn-2 v 

 

Table S8: Essential master RBPs in C.elegans. Related to Figure 3. Essential C.elegans 

orthologs of master RBPs (33/41) were derived as the ones conferring a lethality phenotype in 

C.elegans, as per the Phenotype Ontology of the WormBase database (wormbase.org). 

1000-samples bootstrap p-value: <0.001 

Enrichment p-value (Fisher test):  <2.2E-16 

 

 

Transparent Methods 

RBP list construction and annotation 

We built the list of human RNA-binding proteins by first extracting genes annotated as RNA-binding 

(GO:0003723) and being protein-coding from Ensembl v92 (Zerbino et al. 2018), then merging these 

genes with the curated RBP list from (Sebestyén et al. 2016). The resulting catalogue thus includes 

canonical and novel RBPs for a total of 1827 proteins. Families of RNA-binding proteins were 

extracted from Ensembl v92 gene families (Zerbino et al. 2018), by considering only those made of 

more than one RBP. 

 

Network construction 

Regulatory interactions involving an RBP and the mRNA of an RBP were extracted from the AURA 

2 database v2.4.4 (Dassi et al. 2014). The database is populated with significant RBP-mRNA UTR 

interactions (adjusted p-value <=0.05, determined by the specific analysis pipeline of each data type) 

derived from high-throughput (e.g. RIP-seq, CLIP-seq, and variants) as well as low-throughput 

assays (e.g. RIP-qPCR). Interactions were filtered by requiring the expression of both participants 

https://paperpile.com/c/oPhbND/bf9y
https://paperpile.com/c/oPhbND/w65x
https://paperpile.com/c/oPhbND/bf9y
https://paperpile.com/c/oPhbND/6NhH


(the regulating RBP and the target gene mRNA) in HEK293, HeLa or MCF7 cells, systems from 

which the majority of the data were derived. Expressed genes and related expression levels were 

determined by using RNA-seq profiles of HEK293 (Kishore et al. 2011), HeLa (Cabili et al. 2011) 

and MCF7 (Vanderkraats et al. 2013) cells, using an expression threshold of 0.1 RPKM. Each 

RBP/RBP mRNA is represented by a node, and edges represent regulation by the source RBP on 

the target RBP mRNA, with the edge direction defining the regulator (source node) and the regulated 

mRNA (target node).  

To build the inferred RBP-RBP network, we employed RBP-bound regions in mRNA UTRs from a 

protein occupancy profiling assay (POP) performed in HEK293 cells (Baltz et al. 2012). Briefly, 

significant regions as defined in this work (i.e. mRNA parts detected to be bound by an RBP) were 

extracted and filtered for being within a 5’ or 3’UTR according to Ensembl v92 annotation. Then, 

RNAcompete-derived PWMs, describing the binding motif of 193 human RBPs (Ray et al. 2013), 

were obtained from CISBP-RNA (Ray et al. 2013). Putative binding positions of these 193 RBPs in 

POP protein-bound regions were identified by the Biopython Bio.motifs module (Cock et al. 2009), 

using a relative score threshold of 0.99. We assigned the RBP with the highest score in each region 

as the one most likely to bind to that region, thus obtaining an (RBP, bound mRNA) pair for each 

UTR portion analyzed by Biopython. Eventually, only interactions involving two RBPs (the first 

binding to a POP region in the UTRs of the second) were used to build the network. Nodes and 

edges were defined as described for the experimental network 

 

Network properties analysis 

Network diameter, degree distribution, closeness centrality, Watts-Strogatz (CC1) and two-neighbor 

(CC2) clustering coefficient were computed by Pajek 3.14 (Batagelj & Mrvar 2002) and plotted with 

R (Tierney 2012). The SWS measure, quantifying the likelihood of the network being actually small-

world, was computed as described in (Humphries & Gurney 2008) by using the Watts-Strogatz 

clustering coefficient and generating the required random network with Pajek 3.14 (Batagelj & Mrvar 

2002). The network control structure was computed by Zen 0.9 (Ruths & Ruths 2014) with default 

parameters. The hierarchical score was computed using the source code provided in the paper 

https://paperpile.com/c/oPhbND/SRN1
https://paperpile.com/c/oPhbND/7nF8
https://paperpile.com/c/oPhbND/hAUR
https://paperpile.com/c/oPhbND/6NhH+ccSa
https://paperpile.com/c/oPhbND/6HBo
https://paperpile.com/c/oPhbND/6HBo
https://paperpile.com/c/oPhbND/6HBo+LEES
https://paperpile.com/c/oPhbND/idIT
https://paperpile.com/c/oPhbND/oH8q
https://paperpile.com/c/oPhbND/VuyS
https://paperpile.com/c/oPhbND/idIT
https://paperpile.com/c/oPhbND/idIT
https://paperpile.com/c/oPhbND/YZdY


defining this measure (Cheng et al. 2015), and pairwise disconnectivity obtained by the DiVa  

software (Potapov et al. 2008).  

The link density of a set of nodes was computed as (number of links between nodes in the set) / 

(number of nodes in the set^2). Bootstraps were performed by 1000 random selections of a number 

of nodes equal to the set size and computation of the link density for each of these. 

 

Network structure analysis 

Network motifs of size 3 and 4 were identified with FANMOD (Wernicke & Rasche 2006) using 1000 

random networks (100 for motifs of size 4, due to required computing time), 3 exchanges per edge 

and 3 exchange attempts. Triad significance profiles (describing the enrichment/depletion of each 

possible motif of a given size) for motifs of size 3 were computed as described in (Milo et al. 2004) 

for the RBP-RBP network, the inferred RBP-RBP network and the TF-TF networks described in 

(Neph et al. 2012). 

Communities were detected with the SurpriseMe 1.0.4 tool (Aldecoa & Marin 2013), employing 

several community-detection tools and summarizing their result by the S surprise measure. CPM 

(Palla et al. 2005) and RNSC (King et al. 2004), the algorithms obtaining the highest S values, were 

eventually used to define communities. Chains of length 3, 4, and 5 were extracted from the network 

with igraph 0.7 (http://igraph.org); functional coherence scores were computed with GOSemSim 2.8 

(Yu et al. 2010) as the average semantic similarity (defined over Gene Ontology functional 

annotations) of each pair of genes in a chain or community. 

 

Protein-protein interactions, complexes, and pathways overlap 

Human protein-protein interactions were extracted from STRING (Szklarczyk et al. 2017), BioPlex 

(Huttlin et al. 2017), and IntAct (Orchard et al. 2014), retaining only interactions of the “binding” type 

(physical association) and with both proteins involved being in our network. Human protein 

complexes were downloaded from the CORUM database (Ruepp et al. 2010). Overlaps were 

performed by using base library Python functions. RBP chains were overlapped with pathways 

derived from the MSigDB v7.0 collection (Subramanian et al. 2005).  

https://paperpile.com/c/oPhbND/ipMw
https://paperpile.com/c/oPhbND/mekD
https://paperpile.com/c/oPhbND/ipMw+CoZh
https://paperpile.com/c/oPhbND/S3E6
https://paperpile.com/c/oPhbND/Gfm6
https://paperpile.com/c/oPhbND/fXE9
https://paperpile.com/c/oPhbND/HqXj
https://paperpile.com/c/oPhbND/Kqh6
http://igraph.org/
https://paperpile.com/c/oPhbND/HWkw
https://paperpile.com/c/oPhbND/2tAZ
https://paperpile.com/c/oPhbND/sRuz
https://paperpile.com/c/oPhbND/bt0P
https://paperpile.com/c/oPhbND/inoh


 

Gene essentiality and phylogenetic conservation analysis 

Essential genes of human cells were obtained from (Blomen et al. 2015); genes associated with an 

embryonic lethal phenotype in mouse from the MGI (Blake et al. 2017); genes associated with a 

lethality phenotype were extracted from WormBase (Lee et al. 2018) and FlyBase (Gramates et al. 

2017) for C.elegans and D.melanogaster respectively. Orthologs of iRBPs were also extracted from 

the same databases. Bootstraps were computed by 1000 random selections of as many genes as 

iRBPs and computing the fraction of these in the essential genes set of each organism, thus 

determining an empirical p-value. The copy number alteration status for each iRBP in TCGA tumor 

samples was obtained from the cBIO portal v3.1 (Gao et al. 2013). 

UTR conservation scores were computed by averaging the nucleotide-resolution phastCons scores 

derived from the UCSC 46-way vertebrate alignment (Casper et al. 2018). The average score of all 

5’ or 3’ UTRs of a gene was employed as the conservation score for that gene 5’ or 3’UTRs. Protein 

evolutionary rates were obtained from the ODB8 database (Zdobnov et al. 2017) and two published 

works (Kryuchkova-Mostacci & Robinson-Rechavi 2015; Zhang & Yang 2015); Wilcoxon tests were 

performed by R (Tierney 2012). 

 

iRBP knock-down datasets 

RNA-seq datasets following the knock-down of PABPC1, CPEB4, and METTL14 were obtained from 

GEO (IDs: GSE88099, GSE88545, and GSE56010). Reads were quality-trimmed (min quality score 

Q30, no Ns in the read, minimum read length after processing 36nts) and adapters removed with 

Trimmomatic (Bolger et al. 2014), then aligned to the human genome (GENCODE hg38 assembly), 

and transcripts quantified (Gencode v28 annotation) with STAR 2.5.2b (Dobin et al. 2013). 

Differential expression was eventually computed with DESeq2 v1.22.2 (Love et al. 2014) using 

default parameters and an adjusted p-value threshold of 0.05. 

 

 

 

https://paperpile.com/c/oPhbND/yDOu
https://paperpile.com/c/oPhbND/Zb4y
https://paperpile.com/c/oPhbND/G9Gd
https://paperpile.com/c/oPhbND/SNOW
https://paperpile.com/c/oPhbND/SNOW
https://paperpile.com/c/oPhbND/njXI
https://paperpile.com/c/oPhbND/nyrA
https://paperpile.com/c/oPhbND/9JHi
https://paperpile.com/c/oPhbND/4NYm+NmnB
https://paperpile.com/c/oPhbND/oH8q
https://paperpile.com/c/oPhbND/Ii78
https://paperpile.com/c/oPhbND/fCwO
https://paperpile.com/c/oPhbND/Zs7X
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