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Abstract 

Glycosidases and glycosyltransferases greatly impact malignant phenotype of tumors though genetics and 
epigenetics mechanisms. As the member of glycoside hydrolase (GH) families 29A, α-L-fucosidases 
(AFUs) are involved in the hydrolysis of terminal L-fucose residues linked via α-1,2, α-1,3, α-1,4 or α-1,6 
to the reducing end of N-acetyl glucosamine (GlcNAc) of oligosaccharide chains. The defucosylation 
process mediated by AFUs contributes to the development of various diseases, such as chronic 
inflammatory diseases, immune disorders, and autoimmune diseases by reducing the interaction between 
fucosylated adhesion molecules supporting leukocyte extravasation. AFUs also impair crucial 
cell-extracellular matrix (ECM) interactions and presumably subsequent cell signaling pathways, which 
lead to changes in tumor function and behavior. There are two isoforms of AFUs in human, namely 
α-L-fucosidase 1 (FUCA1) and α-L-fucosidase 2 (FUCA2), respectively. FUCA1 is a p53 target gene and 
can hydrolyze different fucosylation sites on epidermal growth factor receptor (EGFR), thereby 
determining the activation of EGFR. FUCA2 mediates the adhesion between Helicobacter pylori and 
gastric mucosa and is upregulated in 24 tumor types. Besides, based on the participation of AFU in 
signaling pathways and tumor progression, we discuss the prospect of AFU as a therapeutic target. 
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Introduction 
Glycosylation modification of polysaccharides 

on cell surface is closely associated with cancer 
initiation and progression. As a unique monosac-
charide residue in glycans, fucose locates in the 
terminal position of oligosaccharides on human or 
other cells [1, 2]. Fucose-containing polysaccharides 
mediate events such as blood transfusion reactions [3] 
and selectin-mediated leukocyte-endothelial adhesion 
[4]. In mammals, L-fucose (6-deoxy-L-galactose) is 
incorporated into N-glycans, O-glycans and glyco-
lipids by 13 fucosyltransferases (FUTs), all of which 
utilize GDP-fucose to modify target substrates [2]. 
Among the FUTs discovered, FUT1-11 locate in the 
Golgi apparatus modify N-linked glycans via α-1,2, 
α-1,3, α-1,4 or α-1,6 link, however Pofut1 (FUT12) and 
Pofut2 (FUT13) often locate in the endoplasmic 
reticulum and act as O-fucosyltransferases that add 

fucose directly to polypeptides [5]. Conversely, AFUs 
are lysosomal exoglycosidases catalyzing the 
hydrolysis of terminal L-fucose residues linked to the 
reducing end of GlcNAc of oligosaccharide chains [6, 
7]. Fucosylation and defucosylation are two key 
processes of fucoses metabolism (Figure 1).  

To date, there are many studies and reviews on 
the function of FUTs. Most studies have shown the 
function of fucosylation and FUTs in the 
tumorigenesis and malignant progression such as 
tumor invasion and angiogenesis [8]. The activity of 
FUTs is particularly high in the serum from highly 
malignant or metastatic tumor patients, such as colon 
cancer, breast cancer and liver cancer [9]. Even within 
different subtypes of the same tumor such as 
melanoma, FUTs’ expression varies [10].  
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Figure 1. Pathways associated with fucose metabolism. A. The de nova pathway is the one of fucosylation pathway. GDP-mannose is converted to 
GDP-4-keto-6-deoxy-d-mannose by GMD(s). Then, under the catalyzation of Fx protein, it converted to GDP-L-fucose, followed by transfer to Golgi apparatus by GFT. In Golgi 
apparatus, the substrates including polysaccharide and protein are linked to GDP-L-fucose with the participation of FUT to form a fucosylated substrate, which is further 
transported to cell membrane [2, 10]. B. The salvage pathway utilizes fucose transported into the cytosol from an extracellular origin or released by catabolism of fucosylated 
glycans in lysosome, and then transported into the cytosol. Fucose is transported across the plasma membrane through a poorly characterized mechanism, L-fucose-specific 
facilitated diffusion [7]. The salvage pathway is enabled by FUK and GFPP, with L-fucose-1-phosphate as the metabolic intermediate, and the following steps are the same as the 
de novo synthesis pathway. C. The defucosylation pathway is a defucosylation process mediated by AFU in lysosome. GMD(s): GDP-mannose 4,6-dehydratase. Fx: Fx protein. 
GFT: GDP-L-fucose transporter. FUT: fucosyltransferase. GFPP: GDP-fucose pyrophosphorylase. FUK: L-fucokinase (L-fucose kinase). AFU: fucosidase 

 
Here, to improve the understanding of the 

functions of AFUs systematically, we reviewed the 
current reports of AFUs and defucosylation process in 
multiple cancers. We also summarized and discussed 
potential therapeutic strategies relevant to the 
fucosidase, which might help the development of 
novel clinic treatment strategies against cancers.  

The Structural Characteristics and 
Function of AFUs 

In human, there are two isoforms of AFUs, 
namely FUCA1 and FUCA2 that are predominantly 
localized in the tissues such as liver [11], as well as 
plasma and fibroblasts [12], respectively. FUCA1 is 
encoded by a gene on chromosome 1p (1p34) [13] and 
FUCA2 is encoded by a gene linked to plasminogen 
on chromosome 6 (6q24) [14]. They are both members 
of GH families 29A [15]. To better understand the 
structure and differences of FUCA1 and FUCA2, we 
summarized amino acid modifications and possible 
key sites for catalysis using the AlphaFold and 
UniProt database [16] (Table 1). AFUs contain a 
catalytic N-terminal domain with a (β/α)8-TIM barrel 

structure and a C-terminal domain that needs to be 
further examined [6]. Due to the existence of genetic 
polymorphism, AFUs have a certain degree of inter- 
and intra-tissue structural heterogeneity [17]. 
Interestingly, a glutamic acid mutation to alanine of 
AFU produced by lactobacillus casei at positions 274 
will switch AFU function from fucosidases to 
transfucosidases, which can transfer a fucose moiety 
to an acceptor such as GlcNAc from a simple fucosyl 
donor. This is the result of shifting equilibrium 
between open and closed conformations of an 
active-site loop [18]. The conclusions have impli-
cations for us to understand the mutation of AFUs in 
tumors. 

AFUs are main regulators of defucosylation in 
human metabolism. As glycoside hydrolases 
modifying the structure of sugar chains, FUCA1 and 
FUCA2 have wide substrate specificity for hydro-
lyzing α-1,2, α-1,3, α-1,4 or α-1,6-fucosyl linkages in 
glycolipids, glycoproteins and mucopolysaccharides 
[15, 18]. Mammalian AFUs show greater activity on 
fucose linked α-1,2 to galactose compared to fucose 
linked α-1,3, α-1,4 or α-1,6 to N-acetylglucosamine 
[19]. AFUs locate in the lysosome, and exhibit 
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maximal activity at pH values between 4 and 7 [19]. In 
almost all mammalian tissues, the majority of the 
AFUs activity is in the soluble fraction except the 
human brain [20, 21]. 10-20% of total cellular AFUs 
activity is detected in hematopoietic, epithelial and 
mesenchymal cells [21]. In the human gut, lactobacillus 
casei can produce an AFU and involve in the 
catabolism of the core-fucosylated structures of 
mammalian N-glycoproteins [22]. AFUs are involved 
in immunomodulation though regulating the rolling 
and extravasation of leukocytes [2]. AFUs treatment 
could efficiently decrease the migration capability of 
monocytes without affecting cell viability and 
morphology. The degradation of fucose-containing 
epitope may be the key to transendothelial migration 
[23]. FUCA1 can also participate in sperm transport 
and sperm–egg interactions [24]. And FUCA2 has 
been reported to mediate the adhesion between 
Helicobacter pylori and gastric mucosa, especially for 
specific strains of gastric cancer and duodenal ulcer 
[25] (Figure 2). 

Dual Contribution of AFUs to Tumors  
In cancer biology, cancer aberrant glycosylation 

reflected cancer-specific modification in glycan 
metabolism pathways. AFUs not only contribute to 
multiple malignant tumor development [26, 27], but 

also are involved in regulating pathological processes 
including immune evasion, invasion and metastasis of 
cancers [26, 28, 29]. As the lysosomal enzyme, AFUs 
maintain the dynamic balance of fucose metabolism, 
and have been recognized to reflect and contribute to 
regulating the malignant behaviors of tumors (Table 
2). The activity change of AFUs in serum or tissues 
may be employed as an indicator of tumor burden, 
metastasis and response to anti-cancer treatment [30].  

Mutations of FUCA1 can be found in various 
cancers, such as breast cancer, lung cancer and central 
nervous system cancer [31]. Published research have 
shown FUCA1 elevation is detected in endometrial 
[32], thyroid [33], cervical cancer [34], hepatocellular 
carcinoma (HCC) [35], oral cancer and oral 
precancerous lesions [36], as well as gastric cancer [33] 
and glioblastoma (GBM) [26]. Whereas a reduced 
expression and activity of AFU is observed in breast 
[37] and colorectal cancer [28]. As for FUCA2, Zhong 
etc. has shown it is upregulated in most tumors such 
as thyroid carcinoma, lung squamous cell carcinoma, 
HCC, low grade glioma (LGG) and GBM and is 
significantly associated with poor survival [38]. Due 
to the diverse metabolic characteristics and related 
molecular mechanisms, AFUs may play even 
completely opposite roles in different types of cancer.  

 

Table 1. Feature table of FUCA1 and FUCA2. 

Gene FUCA1 FUCA2 
Protein Tissue alpha-L-fucosidase Plasma alpha-L-fucosidase 
Localization tissue plasma 
Subcellular location Lysosome 
Length 466 467 
Possible key site for catalysis 296 294 
Human chromosome 1p34 6q24 
Protein family GH29A 
Mass (Da) 53,689 54,067 
Amino acid  
modifications  

170→Phosphothreonine 
241→N-linked  
268→N-linked  
382→N-linked  

171→N-linked  
239→N-linked  
301→Phosphoserine 
377→N-linked  

Structure    

Representation of the structure in FUCA1 and FUCA2 is listed from AlphaFold database (https://www.alphafold.ebi.ac.uk/). AlphaFold produces a per-residue confidence 
score (pLDDT) between 0 and 100. Among them, blue represents the confidence of the model is very high (pLDDT>90), light blue represents credible (90>pLDDT>70), 
yellow represents low (70>pLDDT>50) and orange represents very low (pLDDT<50). Some regions with low pLDDT may be unstructured in isolation. 
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Figure 2. Physiological and pathological functions of AFU-mediated defucosylation. FUCA1 is involved in diversity physiological and pathological processes in vivo. FUCA2 mainly 
mediates the adhesion of Helicobacter pylori, especially to specific strains of gastric cancer and duodenal ulcer [94]. 

 

Signaling molecules that interact with FUCA1 
involving in the progression of tumors 

p53: Transcription Factor of FUCA1 
Tumor suppressor p53 is a key regulator of 

programmed cell death [39]. p53 modulates multiple 
cellular pathways associated with tumor suppression, 
and p53-induced programmed cell death is also an 
important factor in the response to chemotherapy [40] 
(Figure 2). FUCA1 is a p53 target gene [31]. p53 
transcriptionally activates FUCA1 [27] and regulates 
fucosidase activity via FUCA1 up-regulation. 
Chemotherapeutic drugs induce cell death by FUCA1 
and fucosidase activity in a p53-dependent manner 
[41]. Research by Ezawa et al. showed FUCA1 had 
tumor-suppressing activity. The expression of FUCA1 
inducted apoptosis in COS7 cells and FUCA1 
knockdown enhanced the proliferation of H1648 cells 
[31].  

EGFR: Dual Effect under Different Defucosylation 
Processes 

EGFR plays a critical role in the pathogenesis of 
many cancers [42]. Seven related ligands active 
human EGFR and generate different signal outputs 
from the receptor [43]. The dimerization of ligands is 
crucial for them to active the EGFR [44]. Zhen, etc. has 
reported twelve N-linked glycosylation sites in the 
extracellular region of EGFR [45]. Among them, core 
fucosylation of EGFR catalyzed by FUT8 contributes 
to the activation of EGFR [46], and the dimerization 
and phosphorylation of EGFR [47]. However, the 
terminal α-1,3-fucosylation catalyzed by FUT4 or 
FUT6 would suppress EGFR dimerization and 
phosphorylation upon EGF treatment [47]. FUCA1 
can repress EGFR signaling by cleave the α-1,6 fucosyl 
link on EGFR, which has shown a direct link between 
the removal of fucosyl linkages and tumor 
suppression [31] (Figure 3). FUCA1 can also inhibit 
EGFR signal transduction and its downstream 
signaling by inhibiting Akt phosphorylation [31]. 
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Collectively, different fucosylation sites of EGFR will 
cause different modification results, which also lead 
to differences in results after AFUs treatment. Perhaps 
in the future, some AFUs targeting the core 
fucosylation site can be designed to specifically inhibit 
tumor progression caused by EGFR. 

Integrin and Epithelial-mesenchymal transition (EMT): 
Targets of AFU to Inhibit Tumor Metastasis 

The process of epithelial-to-mesenchymal 
transition (EMT) plays an important role in the 
invasion and metastasis of solid cancer cells [48]. 
Decreased FUCA1 results in increased expression of 
fucosylated N-glycans in transforming growth 
factor-beta (TGF-β) -induced EMT in non-malignant 
bladder transitional epithelial HCV29 cells [49]. 
Integrins are involved in cell–cell and cell–matrix 
interactions, which regulate processes such as 
intracellular signaling and cancer metastasis [50]. The 
ECM-integrin signaling is involved in the regulation 

of cell migration [51]. Considerable evidence indicates 
that glycosylation modulates the function of integrins 
[52], such as the ability of cells to adhere to fibronectin 
and laminin-1 [53]. The core fucosylation of α3β1 
integrins stimulates embryonic fibroblasts migration 
via laminin-5, and loss of core fucosylation will result 
in the deficiency of α3β1 integrin function and the 
reduction of integrin-stimulated phosphorylation of 
focal adhesion kinase (FAK) [54, 55]. In bladder 
cancer, calreticulin regulated cell adhesion through 
α-1,2-linked fucosylation of β1 integrin and a 
FUT1-specific fucosidase diminished the activation of 
β1 integrin [56]. In breast cancer, treatment of the cells 
with AFU decreases the colocalization of fucose with 
β1 integrins [57], partially inhibited cell adhesion to 
laminin-α5 chain-derived peptides [58]. The 
evidences suggest AFU can reverse the activation and 
function of integrins induced by fucosylation. 

 

 Table 2. AFUs’ expression or activity in tumors. 

Enzyme Tumor types Detailed 
FUCA1 downregulated Breast cancer [37] FUCA1 has been identified to effectively reduce the invasiveness of cancer cells in breast cancer [37]. 

FUCA1 could inhibit intercellular adhesion of breast cancer cells [67].  
CRC [28, 31] Both of FUCA1 mRNA and protein in adenocarcinoma-derived tissue were significantly reduced 

compared with normal mucosa. This may be related to the aberrant methylation in the promoter 
region of FUCA1 [28]. FUCA1 could induce p53-mediated cell apoptosis in colon cancer, and p53 
could directly regulate FUCA1 to promote cell death induced by chemotherapy [41].  

Neuroblastoma [95] FUCA1 was recently shown to be down-regulated in neuroblastoma with unfavorable characteristics 
[95, 96]. 

upregulated Cervical cancer [34] Vesce F etc. showed the activity of AFU was increased in cervical cancer tissue than benign conditions 
[34]. 

Endometrial cancer [32] Researchers have found an elevation of AFU activity in malignant endometrial tissues [32, 34]. 
Gastric cancer [33, 97] Gastric cancer showed enhanced AFU activity compared to normal tissue[33]. Additionally, gastric 

cancer patients show an enhanced AFU activity in serum and tumor tissues compared with normal 
samples [33, 97]. 

ESCC [98] High FUCA1 expression and high MMP-9 expression were potential predictors of shorter overall 
survival in ESCC [98]. 

Glioma [26] An integrated analysis with TCGA and Chinese Glioma Genome Atlas (CGGA) confirmed the 
overexpression of FUCA1 in high-grade glioma, which is positively correlated with the poor survival. 
The inhibition of FUCA1 could efficiently inhibit the growth of glioma cell in vivo and in vitro. FUCA1 
may become a potential target for the treatment of gliomas by promoting their autophagy [26]. 

HCC [35, 99] Serum AFU activity was significantly higher in patients with HCC than in normal subjects [35, 99]. 
AFU was a prognostic indicator for HCC [73]. 

Oral cancer [36] Serum and salivary AFU activity were significantly higher in oral precancerous conditions and oral 
cancer patients compared to the controls [100], and were higher in patients with metastasis as 
compared to nonmetastatic patients [101]. Serum AFU was identified as a useful marker for close 
monitoring of patients during post–treatment follow-up [36]. 

uncertain Ovarian cancer [34, 72] The investigation on female genital tract tumors revealed the lowest level of serum AFU activity in 
ovarian cancer patients, in comparison with benign ovarian tumors and the health female patients 
[72]. And low levels of AFU indicated mildly increased risk for ovarian cancer [102]. This might be 
related to the inhibition of AFU on the proliferation and colony formation capabilities of ovarian 
cancer cells [103]. However, Vesce F, etc. showed the activity of AFU was increased in ovarian cancer 
tissue than benign conditions [34].  

Thyroid tumours [27, 33] FUCA1 RNA expression levels were found to be lower in poorly differentiated, metastatic and 
anaplastic thyroid cancer samples (ATCs), while they were higher in papillary thyroid cancer samples 
(PTCs) and in normal thyroid tissues. The down-regulation of FUCA1 is related to the increased 
aggressiveness of thyroid cancer [27, 33]. 

FUCA2 upregulated 24 tumor types [38] Helicobacter pylori is the primary cause of gastric cancer. A previous study identified that FUCA2 was 
essential for H. pylori adhesion, especially the gastric cancer-specific strains, and may help their 
defense strategy to escape host surveillance [25]. 

In some clinical studies of tumors, AFU, rather than specific FUCA1 or FUCA2, was used to measure the level of fucosidase. Although it is more convenient to use the level of 
serum fucosidase to detect in clinical practice, FUCA1 is more common in the current study. So we will summarize the part of the unclassified studies to the ‘FUCA1’ part for 
summary. 
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Figure 3. Different EGFR fucosylation sites lead to different EGFR activation. Core fucosylation of EGFR catalyzed by FUT8 contributes to the increased dimerization and 
phosphorylation of EGFR. However, the terminal α-1,3-fucosylation catalyzed by FUT4 or FUT6 would suppress EGFR dimerization and phosphorylation upon EGF treatment. 
FUCA1 can cleave the α-1,6 or α-1,3 fucosyl link on EGFR and produce the opposite result. 

 

FUCA1 promotes tumor progression by 
affecting the tumor microenvironment (TME) 

Immune Cells 
Tumor-associated macrophages (TAMs) are 

notorious for their roles in constructing immune 
suppressive TME and promoting tumor immune 
evasion. This contributes to the progression and 
metastasis of multiple types of cancers [59]. AFUs 
have shown their potential in regulating macrophage 
behaviors. A recent study shows that FUCA1 is one of 
six M2 macrophage co-expressed genes related to M2 
macrophage infiltration in renal clear cell carcinoma 
[60]. FUCA1 promotes M2 macrophage infiltration 
and it serves as a biomarker for the phenotype and 
immune microenvironment of renal clear cell 
carcinoma [60] (Figure 2). In consistent with this, 
silencing FUCA1 in GBM efficiently inhibits the 
infiltration of macrophages by downregulating the 
expression of chemokine C-C motif ligand 
(CCL)2/CCL5 [26]. α-L-fucose may comprise an 
essential part of the macrophage membrane receptor 
for lipopolysaccharide (LPS), and this may induce the 
resistance of FUCA1-treated tumor cells to 

macrophage-mediated cytotoxicity [61]. Because of 
interference with the binding of T-cell fibronectin 
fucose residues to monocyte fucose receptors, T-cell 
treated by FUCA1 abolishes their fibronectin 
mediated agglutinating activity for human monocytes 
[62]. Additionally, lysosome and lysosomal enzymes 
are involved in B cell apoptosis. AFUs increase 
activities in human tonsil B lymphocytes undergoing 
in vitro spontaneous apoptosis [63]. The activity of 
AFUs is decreased in B cells of chronic lymphocytic 
leukaemia when compared with control or other 
leukaemic lymphoid cells [64]. 

ECM 
Cancer cells draw support from stromal cells in 

TME to escape antitumor therapeutic strategies [65]. 
This cancer-stromal cell interaction may dampen 
immunosurveillance and contribute to the immune 
suppressive mechanisms in TME. In melanoma, the 
fucose salvage related α-1,2 fucosylation pathway is 
involved in inhibiting invadopodia formation and 
ECM degradation [66]. FUCA1 has been identified to 
effectively reduce the invasiveness of cancer cells in 
breast cancer through removing fucose-rich 
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polysaccharides on cell surface and inhibiting 
fucosylation [37]. Specifically, FUCA1 decreases the 
interaction of tumor cells with a wide variety of ECM 
components, including fibronectin, laminin, type I 
collagen, hyaluronic acid and other extracellular 
matrix, which weaken the adhesion between tumor 
cells and ECM [57]. Additionally, FUCA1 could 
inhibit intercellular adhesion of breast cancer cells 
though down-regulating their CD44, CD15, and 
matrix metalloproteinases (MMP) -9 expression. The 
regulatory role of FUCA1 on two cancer stemness 
marker, CD44 and CD15, implies its potential function 
in recurrent of breast cancer [67]. FUCA1 expression 
in breast cancer with lung metastasis lesion is lower 
than that of breast cancer without lung metastasis 
[29]. In vitro experiments using AFU to remove 
α-L-fucose residues from the surface glycoprotein of 
breast cancer cells could decrease their adhesion- 
migration ability. AFU mediating defucosylation on 
these cells reduces their rolling ability and impairs the 
interaction between them and ECM, indicating the 
key role of FUCA1 in modulating tumor progression 
[57]. Further studies indicated that FUCA1 could 
downregulate MMP-9 expression and activity, 
thereby diminishing the invasive ability of 
intrahepatic cholangiocarcinoma [68]. 

Clinical significance of AFUs in the early 
diagnosis and prognosis predication of 
cancer 

Previous studies demonstrate the change of 
AFUs in serum and tumor samples of cancer patients 
[28, 38]. AFUs could be employed as an indicator of 
tumor burden, metastasis and response to anti-cancer 
treatment [30]. This arouses the interest of researchers 
because the detection of expression and activity 
changes of AFUs in serum and/or tissues may help 
the early diagnosis of cancer patients.  

Firstly, AFU is a useful serum marker for the 
diagnosis of HCC; however its diagnostic value to 
detect early-stage HCC has not yet been investigated 
comprehensively [69]. But a recent development of an 
AFU immunoassay is said to further improve the 
sensitivity of early detection in HCC patients [70]. 
Moreover, in ovarian cancer patients, the activity of 
AFU had a statistically significant deficiency [71] and 
could be used as a marker for advanced ovarian 
cancer and be unaffected by the histological type of 
ovarian cancer. Its sensitivity and specificity are 
similar to CA125, the well-known tumor marker in 
ovarian cancer [72]. The preoperative serum AFU 
shows a significant association with the prognosis of 
HCC [73] and esophageal squamous cell carcinoma 
(ESCC) [74]. Furthermore, AFU activity appears to be 
a good independent prognostic factor of tumoral 

recurrence in colorectal cancer (CRC) [75] and 
triple-negative breast cancer [29]. If we combine the 
detection of serum AFU, alpha-fetoprotein (AFP) and 
thymidine kinase 1 in the diagnosis of HCC, the 
sensitivity will be significantly improved because 
they have complementary roles [76]. In addition, the 
combination of AFU and CD26 has high sensitivity 
and specificity for the detection of early CRC [75]. But 
the results weren't all as good. In pure urothelial 
carcinoma (UC), the retrospective study indicated that 
preoperative AFU levels cannot serve as a reliable 
predictor for malignant degree and differential 
diagnosis [77]. 

Moreover, recent study reveals that FUCA2 is 
also a diagnostic and prognostic biomarker a 
therapeutic target in pan-cancer [25]. The expression 
of FUCA2 is associated with immunosuppressive 
microenvironment such as TAMs, and studies have 
indicated that FUCA2 is overexpressed in 24 tumor 
types [38]. FUCA2 also can quantify AFU 
concentrations in human blood serum for early tumor 
detection such as HCC [70]. 

Current development of defucosylation 
inhibitors and related anti-tumor 
treatment strategies 

Glycobiology field is a target with therapy 
potential that is poorly explored. At present, some 
glycans are known to impair or modulate tumor 
treatment. For example, in immunotherapy, N-linked 
glycosylation of programmed cell death ligand 1 
(PD-L1) maintains its protein stability and interacts 
with PD-1, which in turn promotes the evasion of T 
cell immunity. However, N-glycans can inhibit the 
recognition of PD-L1 antibody on the surface of tumor 
cells [78]. Through database analysis, Zhong et al. 
found that the expression of FUCA2 was positively 
correlated with the immunosuppressive gene such as 
PD-L1 [38]. PD-L1 may be inhibited by targeting 
FUCA2. But there is no related research yet. Cell 
surface sugar engineering can effectively and 
specifically guide chimeric antigen receptor (CAR) 
T-cell into tissue sites that contain E-selectin 
expressing endothelial beds to locate the lesion tumor 
site more effectively [79]. In glycosylation-mediated 
cancer-targeted drug delivery, fucose can facilitate the 
improvement of the target abilities of carriers [80]. For 
the subset of tumors overexpressing AFU, targeting 
fucose with AFU could function as a drug delivery 
vehicle. For instance, pyrrolidine-ferrocene conjugates 
are composed of L-fuco-configured dihydroxy-
pyrrolidine, which acts as an AFU ligand, is equipped 
with a cytotoxic ferrocenylamine moiety, and has a 
strong anti-tumor proliferation ability [81]. 
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Table 3. The development of defucosylation inhibitors and related anti-tumor treatment strategies. 

Inhibitors Characteristic  Ki / IC50 Structural formula Refs. 
Ferrocenyl-iminosugar conjugate A tight binding affinity for fucosidases and the 

fucosidase-targeting pyrrolidine could localize their 
deleterious effect 

Ki=23 nM† 

 

[92] 

L-fuconojirimycin 
(5-amino-5-deoxy-L-fucose) 

Inhibit FUCA1 by covalent binding of cyclophellitol 
aziridine to AFUs in a competitive activity-based 
protein profiling setting 

Kiα=3.0 nM† 

 

[82-84
] 

Kiβ=1.0 nM† 

Ki=1.7 nMu 

 
Deoxyfuconojirimycin (DFJ) 
(1,5-dideoxy-1,5-imino-L-fucitol) 

pH-dependent 
A powerful competitive inhibitor of AFU with highly 
specific 

Ki=4.8* or 6.2 
nMǂ 
Ki=10 nM¶ 

 

[85, 
87] 

N-methyl-DFJ  pH-dependent Ki=50 nMu 

 

[85] 

N-(2-fluorophenyl)-2β-deoxyfuconojiri
mycin acetamide 

Change not only the inhibition potency but also the 
inhibition profile  

IC50=0.012 
μMu 

 

[88] 

β-L-homofuconojirimycin (β-HFJ) A powerful competitive inhibitor of human liver AFU 
with highly selective 

Ki=5.3 nMǂ 
Ki=10 nM§ 

 

[87] 

Inhibitors Mechanism Ki / IC50 Structural formula Ref. 
Deoxymannojirimycin (DMJ) 
(1,5-dideoxy-1,5-imino-D-mannitol) 

A potent inhibitor of AFU Ki=4.7 μMǂ 

 

[85, 
87] 

N-methyl-DMJ (Me-DMJ) Reduce or abolish inhibition towards bovine AFUs  
Enhance inhibitory potential towards the human AFUs 

Ki=30 μMǂ 

 
Rha-DMJ  
(6-O-a-l-rhamnopyranosyl-DMJ) 

A specific inhibitor of AFUs 
The first naturally occurring glycoside of DMJ 
Much stronger inhibition towards mammalian AFUs 
than DMJ 

Ki=60 nMǂ 

 
(-)-adenophorine a moderate and distinctive AFU inhibitor IC50=72 μM† 

 

[89] 

all-cis pyrrolidine a potent specific inhibitor of AFU Ki=15 nMu 

 

[90] 

D-galacto aminomethyl pyrrolidine a selective inhibitor Ki=1.3 mMu 

 

[91] 

Ki: Inhibition constants. †: bovine kidney. ǂ: bovine epididymis. §: human placenta. ¶: human liver. u: unspecified 
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Deregulated glycosylation is a common 
post-transcriptional modification in cancers. 
Inhibition aberrant glycosylation or restoring normal 
glycosylation patterns have been explored to develop 
potential therapeutics for various types of cancers. 
According to previous reports, we summarize more 
detailed current available defucosylation inhibitors in 
Table 3. Most of the following reported AFU 
inhibitors are carried out from the perspective of 
molecular chemistry. If these inhibitors are to be used 
in the clinic, many animal experiments are needed to 
verify their effects and toxicity in vivo. Only then may 
AFU be used in clinic as a potential therapeutic target.  

Among them, L-fuconojirimycin [82-84], 
deoxymannojirimycin (DMJ, 1,5-dideoxy-1,5-imino- 
D-mannitol) [85] and deoxyfuconojirimycin (DFJ, 
1,5-dideoxy-1,5-imino-L-fucitol) [86] are effective 
AFU inhibitors. β-L-homofuconojirimycin (β-HFJ) is a 
powerful competitive inhibitor of human liver AFU 
with highly selective [87]. N-(2-fluorophenyl)-2β- 
deoxyfuconojirimycin acetamide is a more efficient 
and selective AFU inhibitor, which display very 
potent and selective inhibition of AFU, and exhibits 
about 18-fold stronger effects on AFU than original 
DFJ [88]. In addition, (-)-adenophorine [89] and all-cis 
pyrrolidine such as racemic aminofuranofucitol [90] 
has also been identified as an effective inhibitor of 
AFU. And aminomethyl pyrrolidine such as D-galacto 
aminomethyl pyrrolidine has also a AFU inhibitory 
activity [91]. On human hormone-independent breast 
cancer cell line MDA-MB-231 and the human 
melanoma cell line SK-MEL28, ferrocenyl-iminosugar 
conjugate show significant anti-cancer activity [92]. 

Discussion  
Glycosylation modifications, the structural 

changes of carbohydrates on tumor cell surface, not 
only drive critical pathological processes in cancers 
like EMT, but also regulate their responses to 
therapeutic strategy. As the key enzymes in 
defucosylation, AFUs are not only involved in 
physiological processes such as cell recognition and 
immune response, but also are associated with tumor 
immunosuppression and malignant progression. And 
although current studies confirm the occurrence of 
aberrant fucose metabolism in a variety of cancer 
cells, there are several issues worth further investi-
gations. Firstly, the detailed effects of fucosylated 
sugar chain change of fucose modified protein on 
tumorigenesis need further exploration. Secondly, it 
remains to be studied how fucosidase and fucosyl-
transferase affect the structure of polysaccharide 
chains, and which glycoproteins or glycolipids on 
cancer cell surfaces would be affected by these 
enzymes. The interactions and dependencies between 

them also deserve attention. Further investigation on 
the functions of AFUs including their mutant forms 
will help us better understand the defucosylation 
mechanism related to cancer initiation and 
progression. Mutations of FUCA1 can be found in 
various cancers and have also been linked to 
congenital disorders such as fucosidosis. Certain 
point mutants in FUCA1 gene could change its 
function from remove to add fucose residues to 
monoclonal antibody N-glycans, with significant 
impacts on their effector functions. This shows that 
the activity of the enzyme is controlled by distinct 
open and closed conformations of the active-site loop. 
Some mutations shift the balance to the open 
conformation and promote transfucosylation rather 
than hydrolysis [18]. It will provide novel ideas for the 
development of fucosidase related cancer 
therapeutics. Interestingly, recent studies demonstrate 
that, similar to the glycosylation of PD-L1 in tumor 
cells, fucosylation of PD-1 could promote its stability 
and presentation on the surface of T cells [93]. Mouse 
T cells with FUT8 gene knockout or drug inhibition 
(such as 2-fluoro-L-fucose) decrease their core 
fucosylation and PD-1 expression. These cells 
demonstrate stronger cytotoxicity and more effective 
killing effect on melanoma and lung cancer cells [93]. 
This implicates the clinical potential and possible 
synergetic effect of therapeutic strategies combined 
defucosylation regulation and immune checkpoint 
blockade like PD-1. Besides, although there are fewer 
studies on FUCA2 than on FUCA1, the existing 
researches are enough to explain the important value 
of FUCA2, including its diagnostic value for tumors 
and its role in the adhesion between Helicobacter 
pylori and gastric mucosa.  

p53 is a tumor suppressor. p53 transcriptionally 
activates FUCA1, and chemotherapeutic drugs induce 
cell death by FUCA1 in a p53-dependent manner. In 
different tumors, the content and activity of AFUs 
vary widely. Due to the close relationship between 
p53 and FUCA1, it is worth considering whether the 
status of p53 in various tumors can affect the duality 
of FUCA1. Besides, the contradictory observations 
may reflect an inadequate host-feedback mechanism 
to regulate the ‘fucose-burden’ in serum and in tissue, 
respectively. It is precisely because of the difference 
and the existence of mutations of AFUs that it is far 
from enough to find a certain AFU inhibitor. It is 
necessary to analyze specific problems and explore its 
possible mechanism in depth. It is still necessary to 
further verify the effect and safety of AFU inhibitors 
in vivo. 
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