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1  | INTRODUC TION

Reinforcement learning is how we learn from positive (reward) or 
negative (punishment) feedback and adapt behaviour to maximise re-
ward (Sutton & Barto, 2018). Stemming from early animal behavioural 
studies, including Ivan Pavlov’s salivating dogs (Todes,  1997) and 
Thorndike’s law of effect (Thorndike, 1911), reinforcement learning is 

now being applied to machine learning and neural signalling (Sutton 
& Barto, 2018). Sleep loss has previously been found to affect the 
response to feedback (Liu & Zhou,  2016; Whitney et  al.,  2015). 
However, whether sleep loss affects the incentives to learn from 
positive or negative feedback has not yet been explored.

The detrimental effects on a range of cognitive functions, includ-
ing attention and working memory, are well documented for total 
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Abstract
To learn from feedback (trial and error) is essential for all species. Insufficient sleep 
has been found to reduce the sensitivity to feedback as well as increase reward sensi-
tivity. To determine whether insufficient sleep alters learning from positive and nega-
tive feedback, healthy participants (n = 32, mean age 29.0 years, 18 women) were 
tested once after normal sleep (8 hr time in bed for 2 nights) and once after 2 nights 
of sleep restriction (4 hr/night) on a probabilistic selection task where learning be-
haviour was evaluated in three ways: as generalised learning, short-term win–stay/
lose–shift learning strategies, and trial-by-trial learning rate. Sleep restriction did not 
alter the sensitivity to either positive or negative feedback on generalised learning. 
Also, short-term win–stay/lose–shift strategies were not affected by sleep restric-
tion. Similarly, results from computational models that assess the trial-by-trial update 
of stimuli value demonstrated no difference between sleep conditions after the first 
block. However, a slower learning rate from negative feedback when evaluating all 
learning blocks was found after sleep restriction. Despite a marked increase in sleepi-
ness and slowed learning rate for negative feedback, sleep restriction did not appear 
to alter strategies and generalisation of learning from positive or negative feedback.
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sleep deprivation (Lim & Dinges, 2010; Pilcher & Huffcutt, 1996), but 
also for shorter periods of sleep restriction (van Dongen et al., 2003; 
Lowe et al., 2017). Attentional degradation after sleep loss may in turn 
cause deficits in item and associative recognition memory (Ratcliff 
& Van Dongen, 2018). Sleep deprivation increases reward-seeking 
tendencies (Venkatraman et  al.,  2011) and causes an over-activa-
tion in the reward-related neural circuitries in response to gamble 
wins (Mullin et al., 2013; Venkatraman et al., 2007), positive images 
(Gujar et al., 2011), and food desirability (Greer et al., 2013; St-Onge 
et al., 2012), compared to normal night sleep. These reward-seeking 
tendencies may also be related to findings of attenuated risk-aver-
sion after sleep loss (Killgore, 2015; Maric et al., 2017). Moreover, 
studies investigating the response to feedback have found reduced 
event-related potentials (ERP) amplitudes after 72 hr of sleep depri-
vation (Liu & Zhou, 2016) and attenuated skin conductance response 
after 62 hr of sleep deprivation (Whitney et al., 2015), which in the 
latter study was associated with an ineffective use of feedback, al-
though the authors did not investigate differences in response to 
feedback.

One of the mechanisms behind a reward-seeking behaviour 
after total sleep deprivation can be traced to a reduced availabil-
ity of D2 and D3 dopamine receptors (Volkow et  al.,  2012), which 
in turn increases the D1 receptor activation, making sleep deprived 
individuals hypersensitive to reward (Krause et al., 2017). Support of 
a direct link between dopamine availability and reinforcement learn-
ing (Garrison et al., 2013) has been found in experimental studies on 
patients with Parkinson’s disease, where patients on dopamine med-
ication prioritised learning from positive feedback while patients off 
medication prioritised avoiding negative feedback (Frank, 2004), or 
had no specific preference (McCoy et al., 2019). Moreover, reinforce-
ment learning algorithms, such as Q-learning (Sutton & Barto, 2018), 
providing a latent measure of the trial-by-trial update of the stimuli 
value have shown that the change in learning rate speed is related 
to dopamine (McCoy et al., 2019). Indirect evidence on the role of 
dopamine in reinforcement learning comes from studies on ageing, 
which leads to increased tendency to avoid negative feedback (Frank 
& Kong, 2008), and acute stress that can increase the tendency to 
learn from positive feedback (Lighthall et  al.,  2013) or reduce the 
tendency to learn from negative feedback (Petzold et al., 2010).

The main aim of the present study was to determine whether 
2  nights of sleep restriction affects the incentives to learn from 
positive or negative feedback using a probabilistic selection task 
(Frank, 2004). As there is a scarcity of studies on reward processing 
after sleep restriction, we rely on findings from total sleep depriva-
tion studies and assume that if sleep restriction, similar to total sleep 
deprivation, increases the reward incentives (Krause et  al.,  2017), 
we would expect that the difference in the proportion of correct 
responses learned from positive compared to negative feedback 
would be greater following 2 nights of sleep restriction (~4 hr) than 
after 2 nights of normal sleep (~8 hr).

We were mainly interested in the generalised reinforcement learn-
ing, that is, to what degree participants prioritised to choose the sym-
bol associated with highest positive value (A) against more neutral 

symbols (C, D, E and F) or to avoid the symbol associated with the 
highest negative value (B) against more neutral symbols. As sleep 
loss has been found to affect attention and working memory (Lim & 
Dinges, 2010; Lowe et al., 2017), we also investigated if the short-term 
learning in the initial learning phase was biased towards positive or 
negative feedback, as shown in other contexts (Lighthall et al., 2013). 
In addition, we used a computational Q-learning algorithm to investi-
gate the trial-by-trial value update for the learning rate of positive and 
negative feedback during the learning phase (Frank et al., 2007; McCoy 
et al., 2019). We measured sleepiness using the Karolinska Sleepiness 
Scale (KSS; Åkerstedt & Gillberg,  1990) and subjective stress using 
a rating scale ranging from 1  =  very relaxed (“Väldigt avspänd”) to 
9 = extremely stressed (“Extremt stressad”) (Schwarz et al., 2018).

2  | METHODS

2.1 | Participants

A total of 32 healthy individuals (18 women; mean [SD] 
age  29.0  [7.6]  years), recruited from the greater Stockholm area, 
completed this study in a within-participant cross-over fashion. All 
participants were non-tobacco users (cigarettes and snus), mod-
erate alcohol and coffee consumers (<3 glasses of alcohol and <6 
cups of coffee per day), naïve to the Japanese language, not taking 
regular medication, not working night shifts, and had normal sleep 
habits with a habitual sleep requirement of between 7.0 and 9.0 hr. 
Participants demonstrated normal/corrected-to-normal visual and 
auditory acuity, had no physiological or psychiatric pathology that 
could affect sleep or any of the measured variables, and had not 
been travelling across more than two time zones during the previ-
ous month. The study was approved by the Regional Ethical Review 
board in Stockholm, Sweden (DNR: 2010/1506-31, 2016/64-32), 
and conducted in accordance with the Helsinki Declaration. All par-
ticipants provided written informed consent prior to inclusion and 
received monetary compensation.

2.2 | Protocol

Participants were informed about the protocol and performed a 
training version of the task during an initial screening session. The 
experimental task was then completed in two test sessions, once 
after 2 consecutive nights of sleep restriction and once after 2 con-
secutive nights of normal sleep, in a counterbalanced order with at 
least a 1-week wash-out period of normal sleep between the condi-
tions. Both test sessions took place at the same time of day, with 
a starting time between 12:30 and 15:00 hours, and began with a 
calm-down period of 30  min during which participants completed 
questionnaires. Subsequently, each participant underwent five to six 
computerised experimental tasks. The tasks were always presented 
in the same order, each lasting between 10 and 40 min, with the op-
portunity to take short breaks in between. After each experimental 
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task, participants completed a short questionnaire about sleepiness 
and motivation during the just completed task.

In the sleep restriction condition, participants were given a 4-hr 
sleep opportunity, the exact timing being self-chosen between 
01:00 hours ± 1 hr and 05:00 hours ± 1 hr. In the normal sleep con-
dition, participants were instructed to make sure to get 7–8 hr time 
in bed between 23:00 hours ± 1 hr and 07:00 hours ± 1 hr. Both con-
ditions were performed in their homes. Adherence to the protocol 
was controlled with an actiograph, a wrist-worn movement sensitive 
device commonly used to measure sleep–wake activity (Actiwatch, 
Cambridge Neuro-Technology Ltd.). Participants were additionally 
instructed to send a text message to the experimenter shortly before 
going to sleep and shortly after having woken up. In the morning after 
each experimental night (2 nights of sleep restriction, 2 nights of nor-
mal sleep), participants completed a sleep diary, providing informa-
tion about sleep times, sleep quality, and the feeling of sleepiness in 
the morning. Napping, hard physical training, as well as consuming 
caffeine or alcohol was not permitted 2 days before and the day of 
the test session. Sleep parameters are presented in Table 1.

2.3 | Probabilistic selection task

To test reinforcement learning, we used a probabilistic selection task 
(Frank, 2004). This task consists of a learning phase and a test phase. 
In the learning phase participants learn from feedback to choose the 
most likely winner in a pair of ambiguous symbols. Three pairs (A/B, 
C/D, E/F, see Figure  1a) of Japanese Hiragana symbols were pre-
sented in a pseudorandomised order on the left and right of the cen-
tre of the screen (balanced). Within each pair one symbol was more 
likely to be the winning symbol, which is to render positive feedback 
(for the pair A/B the ratio was 80/20, for C/D 70/30 and for E/F 
60/40). Each trial (Figure 1b) started with a short inter-trial interval 

(250 ms) after which the symbols appeared until a response was given 
or 4,000 ms had passed, in which case the participant was informed 
that the response was missed. Responses were made by pressing on 
a keyboard, A for the left symbol or L for the right symbol and par-
ticipants were instructed to answer as fast and correctly as possible. 
Following a response, positive feedback was given as green text stat-
ing the Swedish word for “Correct” (Rätt) combined with a sound with 
ascending pitch, and negative feedback was given as red text stating 
the Swedish word for “Wrong” (Fel) combined with a sound with a de-
scending pitch. A block consisted of 60 trials where each of the three 
pairs of symbols was presented 20 times, with balanced lateralisation 
within the pairs. The learning phase was finished after a block when 
the participant had reached the learning criteria for all pairs (≥65% 
A choices for A/B trials, ≥60% C choices for C/D trials, and ≥40% E 
choices for E/F trials), or reached a maximum of six blocks. In addi-
tion, we used a training version of the task at screening, with a differ-
ent set of characters and more deterministic probabilities, but higher 
learning criteria. This was done mainly to facilitate the understanding 
of the task, and to avoid the possibility that sleep restriction would 
impair the ability to understand the task instructions. Thus, in total 
three sets of Japanese characters were used. Note that the data from 
the screening were not included in the analysis. The experiment was 
designed using Inquisit 4 (www.milli​second.com).

During the test phase, the symbols were mixed, making up 15 
combinations that were presented four times, rendering a total of 
60 trials. A trial was the same as in the learning phase but without 
feedback. This phase assesses the ability to generalise. Positive 
feedback learning is characterised by a higher accuracy for the sym-
bol with highest probability in the learning phase (symbol A) when 
paired with one of the more neutral stimuli (C, D, E or F) and neg-
ative feedback learning by higher accuracy for avoiding the symbol 
with the lowest probability (symbol B) when paired with the neutral 
stimuli. Due to the repeated measures design, two different sets of 

TA B L E  1   Mean (SD) and [range] of actiography sleep parameters calculated from the aggregated means of each participant over the 2 
nights of measurement

Normal sleep Sleep restriction BF10 BF01

Actiography

Time in bed 07:55 (00:24) 
[06:58–08:39]

04:09 (00:12) [03:43–04:40] >30 <1/30

Sleep start 23:46 (00:59) 
[22:16–03:00]

01:18 (00:44) [23:56–03:45] >30 <1/30

Sleep end 07:26 (01:03) 
[05:54–10:40]

05:16 (00:44) [03:50–07:12] >30 <1/30

Assumed sleep 07:40 (00:27) 
[06:50–08:59]

03:58 (00:12) [03:27–04:26] >30 <1/30

Sleep diary

Well rested (5 = fully, 1 = not at all) 3.6 (0.9) [1.5–5] 1.7 (0.6) [0.5–3] >30 <1/30

Easy to get up (5 = very easy, 1 = very 
difficult)

3.7 (0.8) [2–5.0] 2.3 (0.8) [1–4.5] >30 <1/30

Bayes factors were estimated using Bayesian paired t tests with default weakly informative priors (Morey & Rouder, 2015). BF10 >30 and BF01 <1/30 
indicates very strong evidence for a difference.

http://www.millisecond.com
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Japanese characters were used and order was counterbalanced be-
tween participants.

2.4 | Statistical analysis

For all analyses, we used Bayesian generalised linear mixed-effects 
models (GLMM) fitted in R (R Core Team,  2018). Mixed-effects 
models are in general preferable to single-level analyses, but 
especially on repeated measures (McElreath,  2016). A Bayesian 
approach to the GLMM provides rich information in the full pos-
terior distribution, as compared to point estimates, and allows 
evaluation of the null hypothesis (Kruschke & Liddell, 2018).

2.4.1 | Behavioural analyses

For all behavioural analyses we used weakly informative priors 
with a Student’s t distribution (df = 3, µ = 0, σ = 2.5) on the inter-
cept and slope. A Cauchy prior (location = 0, scale = 1) was used 
on the standard deviations (SDs). Posterior predictive checks 
were performed to ensure sufficient model requirements. From 
the posterior distributions we calculated the highest maximum 
a posteriori probability estimate (MAP), or the mode of the pos-
terior distribution, and 95% highest density intervals (HDI) for 
each parameter. However, for best understanding of the data 
and not merely its summary statistics, readers are encouraged to 
study the full posterior distribution. A region of practical equiva-
lence (ROPE) was used as proxy for the null hypothesis, with lim-
its set to reflect half of a small effect size (Kruschke, 2018). We 
also estimated Bayes factors, by taking the likelihood ratios of 
the posterior distribution falling within or outside the ROPE over 
the prior distribution (null) falling within or outside the ROPE 
(Makowski et al., 2019). The Bayes factors denote the evidence 
of the experimental hypothesis over the null hypothesis (BF10) 
or reversed (BF01). A BF10 >1 or BF01 <1 indicates evidence for 
the experimental and BF10 <1 or BF01 >1 indicates evidence for 
the null hypothesis, with level of evidence considered moderate 

if above 3 or below 1/3, strong if above 10 or below 1/10, and 
extreme if above 100 or below 1/100 (Beard et al., 2016).

2.4.2 | Computational model

For the computational model we used a Q-learning algorithm, 
which estimates the trial-by-trial expected value update based on 
the feedback given (Sutton & Barto,  2018). The analytic proce-
dure were based on that of McCoy et al., (2019), and we adapted 
the scripts to model sleep as a within subject parameter (scripts 
available on https://osf.io/mtszr/). The outcome parameters con-
sisted of two learning rates (α), for positive and negative feedback 
respectively, and inverse temperature (β) reflecting the consist-
ency in the choices. Weakly informative normally distributed pri-
ors (µ = 0, σ = 1) were set on the group level and individual level 
means and half-Cauchy priors (location = 0, scale = 5) were set on 
the group level SDs. Q-values were initialised at 0.5. Parameters 
were transformed to an inverse probit distribution and centred on 
zero with a SD of 1 and with restrictive boundaries of ±  5 (see 
Ahn et al., 2017). We fitted one model with data from all learning 
blocks and one with data from the first learning block only. For 
evaluative purposes, we also fitted models with a single learning 
rate parameter (positive and negative combined), although they 
did not provide a better fit than the models with two learning rate 
parameters evaluated by leave-one-out cross validation (LOO; 
Vehtari et al., 2017) (see Table S9).

For further details on the statistical analysis we refer to the 
Appendix S1.

3  | RESULTS

3.1 | Sleepiness increased

Participants were markedly sleepier after 2  nights of sleep re-
striction as indicated by extreme evidence for an increase on the 
KSS (Åkerstedt & Gillberg,  1990) (observed mean increase in 

F I G U R E  1   (a) Symbol pairs in the training and the two learning sets together with winning probability within each pair. Learning criteria 
for Set 1 and Set 2 were ≥65% A choices for A/B, ≥60% C choices for C/D, and ≥40% E choices for E/F after each block. (b) Trial example 
from learning phase. In the test phase (not depicted) no feedback was given and symbol pairs were scrambled

(a) (b)

https://osf.io/mtszr/
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sleepiness = 3.12, SD = 2.14, MAP = 3.11, 95% HDI = 2.47–3.78, 
BF10 = 1e + 10, BF01 = 8e − 11). A small increase in subjective stress 
(Schwarz et al., 2018) (mean increase in stress = 0.72, SD = 1.51) was, 
however, not distinct enough to reach the criterion of moderate evi-
dence (MAP = 0.72, 95% HDI = 0.19–1.28, BF10 = 2.45, BF01 = 0.41). 
For full posterior distributions and observed data see Figure 2.

3.2 | Sleep restriction did not affect win–stay/lose–
shift tendencies

To investigate short-term learning, we calculated the proportion of 
trials where the choice was to select the same symbol that rendered 
positive feedback on the previous trial (win–stay) and the propor-
tion of trials where the choice was to switch when given negative 
feedback (lose–shift). In the first block of the learning phase sleep 
restriction did not affect the proportion of win–stay (MAP = 0.01, 
95% HDI = −0.03 to 0.05, BF10 = 0.008, BF01 = 127) or lose–shift 
(MAP = −0.01, 95% HDI = −0.07 to 0.05, BF10 = 0.009, BF01 = 108) 
tendencies. In fact, the data suggest extreme evidence for no mean-
ingful difference between the sleep conditions (see also Figure 3). 
When averaging the data over the two sleep conditions, the propor-
tion of win–stay was higher compared to lose–shift (MAP = 0.30, 
95% HDI = 0.26–0.34, BF10 = 7e + 12, BF01 = 1e − 13).

In addition, we investigated the number of blocks needed to pass 
the learning criteria. Fewer individuals in the sleep restriction con-
dition passed the criteria before the six-block limit (26 vs. 30). Here 
we found that the predicted mean probability of passing the criteria 
after partial sleep deprivation (0.92) was slightly lower compared to 
after normal sleep (0.98) with BF10 = 7.79, BF01 = 0.13 (Figure S1). 
The average number of blocks needed to pass showed no meaningful 
difference between the sleep conditions (BF10 = 0.23, BF01 = 4.26). 
See Appendix S1 for details. We also performed a supplementary 

analysis on response times during the learning phase. These showed 
no difference between sleep conditions (Figure S4).

3.3 | Sleep restriction did not affect generalized 
learning incentives

In the test phase, we investigated how the participants had gener-
alised the learning from the learning phase. We were specifically in-
terested in whether learning was prioritised for positive or negative 
feedback. Positive feedback learning is indicated by the proportion 
of choices of the symbol with highest probability to win (A) over the 
more neutral symbols (C, D, E, F) and negative feedback learning 
is indicated by the proportion where the choice was not to select 
the symbol with least probability to win (B) when paired with the 
more neutral symbols. Here we also did not observe any differences 
between sleep conditions in the accuracy for positive (MAP = 0.0, 
95% HDI =  −0.10 to 0.11, BF10  =  0.13, BF01  =  7.54) or negative 
(MAP = −0.02, 95% HDI = −0.12 to 0.10, BF10 = 0.11, BF01 = 9.39) 
feedback learning. Instead, our data are favour the null hypothesis, 
that learned associations are practically equal for both positive and 
negative feedback after sleep restriction compared to normal sleep 
(Figure  4). Collapsing over sleep conditions there was no differ-
ence in learning accuracy between positive and negative feedback 
(MAP = 0.07, 95% HDI = −0.01 to 0.14, BF10 = 0.26, BF01 = 3.87).

To investigate whether individuals that did not reach the learn-
ing criteria before the six-block limit would bias the results, we also 
ran the same analysis excluding the individuals that did not pass the 
learning criteria within the six blocks. This did not change the results 
(see Appendix S1). Like for the learning phase we analysed the re-
sponse times during the test phase, including Choose A and Avoid 
B as a fixed parameter. There was no effect of sleep restriction or 
symbol pair on response times (Figure S9).

F I G U R E  2   Boxplots show observed sleepiness ratings according to the Karolinska Sleepiness Scale (KSS; Åkerstedt &amp; 
Gillberg, 1990), and subjective stress ratings (Schwarz et al., 2018) for the normal and restricted sleep conditions. Histograms to the right 
of each boxplot show the posterior distributions of the difference between sleep conditions with highest density intervals (HDI; thick black 
horizontal line), highest maximum a posteriori probability estimates (MAP; grey solid vertical line), and the regions of practical equivalence 
(ROPE; red shading) around zero (dotted line). Sleepiness increased strongly but an increase in stress after sleep restriction was not large 
enough to be conclusively separated from the ROPE. Bars above the histograms show Bayes factors with level of support for either 
hypothesis (BF10, red; BF01, grey) indicated by length of the bar; black lines indicate thresholds for moderate (BF >3), strong (BF >10), and 
extreme evidence (BF >100) (Beard et al., 2016)
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3.4 | Slower learning rate for negative feedback 
after sleep restriction

To study the trial-by-trial learning rate during the learning phase we 
fitted computational models utilising a Q-learning algorithm for the 
first block only, as well as all learning blocks together. See Figure 5 
for visualisation of the results. The posterior distribution of the 
positive learning rate indicated no effect of sleep restriction after 
the first block (MAP = 0.03, 95% HDI = −0.62 to 0.60, BF10 = 0.23, 
BF01 = 4.29), and anecdotal evidence for slower learning after sleep 
restriction when evaluating all learning blocks (MAP = −0.52, 95% 
HDI = −1.07 to −0.05, BF10 = 2.66, BF01 = 0.38). For the negative 
learning rate, there was anecdotal evidence for no effect of sleep 
restriction after the first block (MAP =  −0.21, 95% HDI =  −1.36 

to 0.52, BF10 = 0.49, BF01 = 2.02). However, when considering all 
learning blocks, there was strong evidence for slower learning 
after sleep restriction (MAP =  −1.65, 95% HDI =  −3.63 to −0.56, 
BF10 = 82.44, BF01 = 0.01). To further assess the influence of sleep 
restriction on positive and negative learning rate, we first calculated 
the difference in posterior distributions between the positive and 
the negative learning rate (Positive–Negative) stratified by sleep 
condition. Then we calculated the differences of these differences 
to estimate whether sleep restriction affects positive and negative 
learning rate differentially. Results showed inconclusive evidence 
both for the data from the first block (MAP = 0.95, 95% HDI = −0.49 
to 2.38, BF10 = 1.88, BF01 = 0.53) and for the data from all blocks 
(MAP = 0.15, 95% HDI = −2.27 to 1.61, BF10 = 0.88, BF01 = 1.14). For 
the choice consistency (β), indicating to what extent the individual 

F I G U R E  3   Boxplots show observed data for win–stay and lose–shift tendencies during the first block of the learning phase. Histograms 
to the right of each boxplot show the posterior distributions of the difference between sleep conditions with highest density intervals (HDI; 
thick black horizontal line), highest maximum a posteriori probability estimates (MAP; grey solid vertical line) and the regions of practical 
equivalence (ROPE; red shading) around zero (dotted line), indicating no meaningful difference between sleep conditions. Bars above the 
histograms show Bayes factors with level of support for either hypothesis (BF10, red; BF01, grey) indicated by length of the bar and black 
lines indicate thresholds for moderate (BF >3), strong (BF >10), and extreme evidence (BF >100) (Beard et al., 2016)
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equivalence (ROPE; red shading) around zero (dotted line). There was no meaningful difference in generalised learning after sleep restriction. 
Bars above the histograms show Bayes factors with level of support for either hypothesis (BF10, red; BF01, grey) is indicated by the length 
of the bar and black lines indicate thresholds for moderate (BF >3), strong (BF >10), and extreme evidence (BF >100) (Beard et al., 2016)
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explored or exploited the options based on the feedback given, there 
was no difference neither after the first block (MAP = −0.002, 95% 
HDI = −0.19 to 0.16, BF10 = 0.03, BF01 = 34.40) nor after all blocks 
(MAP = 0.09, 95% HDI = −0.07 to 0.24, BF10 = 0.06, BF01 = 17.17).

4  | DISCUSSION

In the present study, 2 nights of sleep restriction increased sleepi-
ness, but did not affect generalised learning in the test phase of 

the reinforcement learning task. Utilising Bayesian statistics with 
Bayes factors showing the probability of one hypothesis over the 
other, we found that the data favoured the null hypothesis, indicat-
ing that participants in both sleep conditions learned equally well 
from positive and negative feedback. There was no support for 
sleep restriction having an effect on the neither the win–stay nor 
lose–shift learning strategies over the first 60 trials of the learning 
phase. Complementary computational modelling using a Q-learning 
algorithm further suggested that learning rate, estimated from the 
trial-by-trial behaviour in the first block of the learning phase did 

F I G U R E  5   Posterior distributions of the computational model for the first learning block (left panel) and all learning blocks together (right 
panel). Boxplots show the estimated individual means drawn from the posterior distribution. Histograms to the right of each boxplot show 
the inverse probit transformed (φ) posterior distributions with highest density intervals (HDI; thick black horizontal line), highest maximum 
a posteriori probability estimates (MAP; grey solid vertical line) and the regions of practical equivalence (ROPE; red shading) around zero 
(dotted line). Bars above the histograms show Bayes factors with level of support for either hypothesis (BF10, red; BF01, grey) indicated 
by length of the bar and black lines indicate thresholds for moderate (BF >3), strong (BF >10), and extreme (BF >100) evidence (Beard 
et al., 2016)
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not differ between sleep conditions. However, when evaluating all 
learning phase blocks, there was strong evidence of slowed learning 
rate for negative feedback after sleep restriction.

We did not observe alterations in generalised learning or win–
stay/lose–shift tendencies after sleep restriction, as indicated by 
the null hypothesis being between seven and >100 times more 
likely than the experimental hypothesis. Most of the previous 
research is based on total sleep deprivation (Liu & Zhou,  2016; 
Whitney et al., 2015) and it is possible that 2 nights of sleep re-
striction did not have the same effect on reward incentives. It has 
been hypothesised that adenosine accumulation is involved in the 
dopamine alterations (Krause et al., 2017), and this accumulation 
could possibly have been restored enough from the, although 
short, sleep period (Elmenhorst et al., 2017). Another reason for 
the lack of effect of sleep restriction on reinforcement learning 
could be that the probabilistic selection task was not sensitive 
enough to capture such changes after sleep restriction. On the 
other hand, other studies using a similar assumption regarding do-
pamine availability, such as Parkinson’s disease (Frank, 2004; Frank 
et al., 2007; McCoy et al., 2019) and stress (Lighthall et al., 2013; 
Petzold et  al.,  2010), and the same reinforcement learning task, 
have found an effect on generalised learning. Although the prob-
abilistic selection task is a well-established paradigm, the feed-
back may not have triggered a hedonic reward signal comparable 
to those of economic, food or pleasurable images used in previous 
sleep deprivation studies (Greer et  al.,  2013; Gujar et  al.,  2011; 
Mullin et  al.,  2013; Venkatraman et  al.,  2007). Thus, the reward 
in our paradigm was potentially too weak or not valued relevant 
enough to cause detectable behavioural changes after sleep re-
striction. An avenue for further studies is to investigate the ef-
fect of total sleep deprivation on reinforcement learning, possibly 
combined with more ecologically valid or stronger reinforcers in 
relation to sleep loss.

The results from the computational model suggest that the 
trial-by-trial negative learning rate is affected by sleep restric-
tion when evaluating the full learning phase, but not when only 
evaluating data from the first block. The win–stay and lose–shift 
reflected the total proportions of respective behaviour for the 
first learning phase block, and only considered the response of the 
previous trial. The Q-learning estimates, on the other hand, was 
based on the trial-by-trial value update that considers the con-
tinuous learning from all previous feedback. For the first block, 
the results were somewhat in agreement with the win–stay and 
lose–shift results, although there is uncertainty in the effect of 
sleep restriction for learning rate from negative feedback. For 
the data from the full learning phase, we observed a slowing of 
learning rate after sleep restriction for negative feedback, and a 
slight slowing for positive feedback that was not confidently sup-
ported by the Bayes factor (BF10 = 2.66). Thus, rather than the hy-
pothesised increase in reward seeking, we observed a slowing of 
learning speed from negative feedback after sleep restriction that 
could be related to increased risk-seeking behaviour found after 
sleep restriction (Killgore, 2015; Maric et al., 2017). Reinforcement 

learning algorithms, such as Q-learning, have been directly linked 
to dopamine activity (Garrison et al., 2013). Total sleep deprivation 
has been associated with downregulation of dopamine D2 receptor 
availability (Volkow et al., 2012), and lower D2 receptor availability 
has been linked to slower learning rate specifically for negative 
feedback (Frank et  al.,  2007). Slowing in learning rate could in-
dicate problems in maintaining feedback information in working 
memory and slower integration of information over time (Frank 
et  al.,  2007). Sleep restriction caused a slower learning rate for 
negative feedback, but to some degree also affected the learn-
ing rate for positive feedback. Moreover, high uncertainty in the 
difference estimates between positive and negative learning rate 
between the two sleep conditions did not confidently favour one 
hypothesis over the other. This could be an indication of a general 
working memory decline or attention deficits commonly found 
after sleep restriction (Lowe et al., 2017) rather than being asso-
ciated to specific feedback valence. Lastly, sleep restriction did 
not affect the inverse temperature (β), indicating that the level of 
consistency in choice behaviour was similar across conditions.

To limit differences between individuals regarding time of task, 
we used a limit of six blocks for completing the learning phase, 
regardless of passing the learning criteria or not. After sleep re-
striction six out of the 32 participants did not reach the criteria 
within this limit compared to two out of the 32 after normal sleep, 
a difference with moderate support from the Bayes factor. This 
could be related to general attentional or working memory im-
pairments after sleep restriction (van Dongen et al., 2003; Lowe 
et al., 2017), but as this was not a main question of interest further 
studies are needed to explore the underlying mechanisms for why 
sleep restriction may reduce the probability of reaching a learning 
criterion.

There are some limitations in the present study worth mention-
ing. The sleep manipulation was done in the participants’ homes re-
stricting the possibilities of controlling adherence to the protocol. 
For the 2 manipulation nights, sleep was measured using actiography 
and sleep diaries. With a few exceptions, these data show satisfac-
tory adherence to the sleep restriction protocol. For the other nights 
before and in-between the test sessions we did not measure sleep 
but relied on the participants keeping to their habitual sleeping pat-
tern and following the instructions not to take naps during the day. 
However, we have little reason to believe that any divergence from 
these patterns would be other than random, therefore not changing 
the conclusions of the study. Finally, these results should be inter-
preted with the notion that 2 nights of sleep restriction may not be 
directly transferable to potential effects of total sleep deprivation. 
Sleep restriction may be a more ecologically valid form of sleep loss, 
and similar deficits have been found for executive functions and vig-
ilant attention (van Dongen et al., 2003; Lowe et al., 2017), yet less 
is known about underlying reward incentives after sleep restriction.

To conclude, 2 nights of sleep restriction did not affect the ac-
curacy in generalised learning from positive or negative feedback, 
the win–stay/lose–shift tendencies, and the modelled learning rate 
in the initial learning phase. However, considering all blocks from the 
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learning phase using a computational modelling approach revealed 
that sleep restriction causes a slower learning rate for negative 
feedback.
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