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1  | INTRODUC TION

Reinforcement learning is how we learn from positive (reward) or 
negative (punishment) feedback and adapt behaviour to maximise re-
ward (Sutton & Barto, 2018). Stemming from early animal behavioural 
studies, including Ivan Pavlov’s salivating dogs (Todes, 1997) and 
Thorndike’s law of effect (Thorndike, 1911), reinforcement learning is 

now being applied to machine learning and neural signalling (Sutton 
& Barto, 2018). Sleep loss has previously been found to affect the 
response to feedback (Liu & Zhou, 2016; Whitney et al., 2015). 
However, whether sleep loss affects the incentives to learn from 
positive or negative feedback has not yet been explored.

The detrimental effects on a range of cognitive functions, includ-
ing attention and working memory, are well documented for total 
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Abstract
To learn from feedback (trial and error) is essential for all species. Insufficient sleep 
has been found to reduce the sensitivity to feedback as well as increase reward sensi-
tivity. To determine whether insufficient sleep alters learning from positive and nega-
tive feedback, healthy participants (n = 32, mean age 29.0 years, 18 women) were 
tested once after normal sleep (8 hr time in bed for 2 nights) and once after 2 nights 
of sleep restriction (4 hr/night) on a probabilistic selection task where learning be-
haviour was evaluated in three ways: as generalised learning, short-term win–stay/
lose–shift learning strategies, and trial-by-trial learning rate. Sleep restriction did not 
alter the sensitivity to either positive or negative feedback on generalised learning. 
Also,	 short-term	win–stay/lose–shift	 strategies	were	not	affected	by	sleep	 restric-
tion. Similarly, results from computational models that assess the trial-by-trial update 
of stimuli value demonstrated no difference between sleep conditions after the first 
block. However, a slower learning rate from negative feedback when evaluating all 
learning blocks was found after sleep restriction. Despite a marked increase in sleepi-
ness and slowed learning rate for negative feedback, sleep restriction did not appear 
to alter strategies and generalisation of learning from positive or negative feedback.
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sleep deprivation (Lim & Dinges, 2010; Pilcher & Huffcutt, 1996), but 
also for shorter periods of sleep restriction (van Dongen et al., 2003; 
Lowe	et	al.,	2017).	Attentional	degradation	after	sleep	loss	may	in	turn	
cause deficits in item and associative recognition memory (Ratcliff 
& Van Dongen, 2018). Sleep deprivation increases reward-seeking 
tendencies (Venkatraman et al., 2011) and causes an over-activa-
tion in the reward-related neural circuitries in response to gamble 
wins (Mullin et al., 2013; Venkatraman et al., 2007), positive images 
(Gujar	et	al.,	2011),	and	food	desirability	(Greer	et	al.,	2013;	St-Onge	
et al., 2012), compared to normal night sleep. These reward-seeking 
tendencies may also be related to findings of attenuated risk-aver-
sion after sleep loss (Killgore, 2015; Maric et al., 2017). Moreover, 
studies investigating the response to feedback have found reduced 
event-related potentials (ERP) amplitudes after 72 hr of sleep depri-
vation (Liu & Zhou, 2016) and attenuated skin conductance response 
after 62 hr of sleep deprivation (Whitney et al., 2015), which in the 
latter study was associated with an ineffective use of feedback, al-
though the authors did not investigate differences in response to 
feedback.

One	 of	 the	 mechanisms	 behind	 a	 reward-seeking	 behaviour	
after total sleep deprivation can be traced to a reduced availabil-
ity of D2 and D3 dopamine receptors (Volkow et al., 2012), which 
in turn increases the D1 receptor activation, making sleep deprived 
individuals hypersensitive to reward (Krause et al., 2017). Support of 
a direct link between dopamine availability and reinforcement learn-
ing	(Garrison	et	al.,	2013)	has	been	found	in	experimental	studies	on	
patients with Parkinson’s disease, where patients on dopamine med-
ication prioritised learning from positive feedback while patients off 
medication prioritised avoiding negative feedback (Frank, 2004), or 
had no specific preference (McCoy et al., 2019). Moreover, reinforce-
ment learning algorithms, such as Q-learning (Sutton & Barto, 2018), 
providing a latent measure of the trial-by-trial update of the stimuli 
value have shown that the change in learning rate speed is related 
to dopamine (McCoy et al., 2019). Indirect evidence on the role of 
dopamine in reinforcement learning comes from studies on ageing, 
which leads to increased tendency to avoid negative feedback (Frank 
& Kong, 2008), and acute stress that can increase the tendency to 
learn from positive feedback (Lighthall et al., 2013) or reduce the 
tendency to learn from negative feedback (Petzold et al., 2010).

The main aim of the present study was to determine whether 
2 nights of sleep restriction affects the incentives to learn from 
positive or negative feedback using a probabilistic selection task 
(Frank,	2004).	As	there	is	a	scarcity	of	studies	on	reward	processing	
after sleep restriction, we rely on findings from total sleep depriva-
tion studies and assume that if sleep restriction, similar to total sleep 
deprivation, increases the reward incentives (Krause et al., 2017), 
we would expect that the difference in the proportion of correct 
responses learned from positive compared to negative feedback 
would be greater following 2 nights of sleep restriction (~4 hr) than 
after 2 nights of normal sleep (~8 hr).

We were mainly interested in the generalised reinforcement learn-
ing, that is, to what degree participants prioritised to choose the sym-
bol	 associated	with	 highest	 positive	 value	 (A)	 against	more	 neutral	

symbols (C, D, E and F) or to avoid the symbol associated with the 
highest	 negative	 value	 (B)	 against	 more	 neutral	 symbols.	 As	 sleep	
loss has been found to affect attention and working memory (Lim & 
Dinges, 2010; Lowe et al., 2017), we also investigated if the short-term 
learning in the initial learning phase was biased towards positive or 
negative feedback, as shown in other contexts (Lighthall et al., 2013). 
In addition, we used a computational Q-learning algorithm to investi-
gate the trial-by-trial value update for the learning rate of positive and 
negative feedback during the learning phase (Frank et al., 2007; McCoy 
et al., 2019). We measured sleepiness using the Karolinska Sleepiness 
Scale	 (KSS;	 Åkerstedt	&	Gillberg,	 1990)	 and	 subjective	 stress	 using	
a rating scale ranging from 1 = very relaxed (“Väldigt avspänd”) to 
9 = extremely stressed (“Extremt stressad”) (Schwarz et al., 2018).

2  | METHODS

2.1 | Participants

A	 total	 of	 32	 healthy	 individuals	 (18	 women;	 mean	 [SD] 
age	 29.0	 [7.6]	 years),	 recruited	 from	 the	 greater	 Stockholm	 area,	
completed	this	study	in	a	within-participant	cross-over	fashion.	All	
participants were non-tobacco users (cigarettes and snus), mod-
erate alcohol and coffee consumers (<3 glasses of alcohol and <6 
cups of coffee per day), naïve to the Japanese language, not taking 
regular medication, not working night shifts, and had normal sleep 
habits with a habitual sleep requirement of between 7.0 and 9.0 hr. 
Participants demonstrated normal/corrected-to-normal visual and 
auditory acuity, had no physiological or psychiatric pathology that 
could affect sleep or any of the measured variables, and had not 
been travelling across more than two time zones during the previ-
ous month. The study was approved by the Regional Ethical Review 
board in Stockholm, Sweden (DNR: 2010/1506-31, 2016/64-32), 
and	conducted	in	accordance	with	the	Helsinki	Declaration.	All	par-
ticipants provided written informed consent prior to inclusion and 
received monetary compensation.

2.2 | Protocol

Participants were informed about the protocol and performed a 
training version of the task during an initial screening session. The 
experimental task was then completed in two test sessions, once 
after 2 consecutive nights of sleep restriction and once after 2 con-
secutive nights of normal sleep, in a counterbalanced order with at 
least a 1-week wash-out period of normal sleep between the condi-
tions. Both test sessions took place at the same time of day, with 
a starting time between 12:30 and 15:00 hours, and began with a 
calm-down period of 30 min during which participants completed 
questionnaires. Subsequently, each participant underwent five to six 
computerised experimental tasks. The tasks were always presented 
in the same order, each lasting between 10 and 40 min, with the op-
portunity	to	take	short	breaks	in	between.	After	each	experimental	
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task, participants completed a short questionnaire about sleepiness 
and motivation during the just completed task.

In the sleep restriction condition, participants were given a 4-hr 
sleep opportunity, the exact timing being self-chosen between 
01:00 hours ± 1 hr and 05:00 hours ± 1 hr. In the normal sleep con-
dition, participants were instructed to make sure to get 7–8 hr time 
in bed between 23:00 hours ± 1 hr and 07:00 hours ± 1 hr. Both con-
ditions	were	performed	 in	their	homes.	Adherence	to	the	protocol	
was controlled with an actiograph, a wrist-worn movement sensitive 
device	commonly	used	to	measure	sleep–wake	activity	(Actiwatch,	
Cambridge Neuro-Technology Ltd.). Participants were additionally 
instructed to send a text message to the experimenter shortly before 
going to sleep and shortly after having woken up. In the morning after 
each experimental night (2 nights of sleep restriction, 2 nights of nor-
mal sleep), participants completed a sleep diary, providing informa-
tion about sleep times, sleep quality, and the feeling of sleepiness in 
the morning. Napping, hard physical training, as well as consuming 
caffeine or alcohol was not permitted 2 days before and the day of 
the test session. Sleep parameters are presented in Table 1.

2.3 | Probabilistic selection task

To test reinforcement learning, we used a probabilistic selection task 
(Frank, 2004). This task consists of a learning phase and a test phase. 
In the learning phase participants learn from feedback to choose the 
most	likely	winner	in	a	pair	of	ambiguous	symbols.	Three	pairs	(A/B,	
C/D, E/F, see Figure 1a) of Japanese Hiragana symbols were pre-
sented in a pseudorandomised order on the left and right of the cen-
tre of the screen (balanced). Within each pair one symbol was more 
likely to be the winning symbol, which is to render positive feedback 
(for	 the	 pair	 A/B	 the	 ratio	was	 80/20,	 for	C/D	70/30	 and	 for	 E/F	
60/40). Each trial (Figure 1b) started with a short inter-trial interval 

(250 ms) after which the symbols appeared until a response was given 
or 4,000 ms had passed, in which case the participant was informed 
that the response was missed. Responses were made by pressing on 
a keyboard, A for the left symbol or L for the right symbol and par-
ticipants were instructed to answer as fast and correctly as possible. 
Following a response, positive feedback was given as green text stat-
ing the Swedish word for “Correct” (Rätt) combined with a sound with 
ascending pitch, and negative feedback was given as red text stating 
the Swedish word for “Wrong” (Fel) combined with a sound with a de-
scending	pitch.	A	block	consisted	of	60	trials	where	each	of	the	three	
pairs of symbols was presented 20 times, with balanced lateralisation 
within the pairs. The learning phase was finished after a block when 
the	participant	had	reached	the	 learning	criteria	 for	all	pairs	 (≥65%	
A	choices	for	A/B	trials,	≥60%	C	choices	for	C/D	trials,	and	≥40%	E	
choices for E/F trials), or reached a maximum of six blocks. In addi-
tion, we used a training version of the task at screening, with a differ-
ent set of characters and more deterministic probabilities, but higher 
learning criteria. This was done mainly to facilitate the understanding 
of the task, and to avoid the possibility that sleep restriction would 
impair the ability to understand the task instructions. Thus, in total 
three sets of Japanese characters were used. Note that the data from 
the screening were not included in the analysis. The experiment was 
designed using Inquisit 4 (www.milli second.com).

During the test phase, the symbols were mixed, making up 15 
combinations that were presented four times, rendering a total of 
60	trials.	A	trial	was	the	same	as	in	the	learning	phase	but	without	
feedback. This phase assesses the ability to generalise. Positive 
feedback learning is characterised by a higher accuracy for the sym-
bol	with	highest	probability	in	the	learning	phase	(symbol	A)	when	
paired with one of the more neutral stimuli (C, D, E or F) and neg-
ative feedback learning by higher accuracy for avoiding the symbol 
with the lowest probability (symbol B) when paired with the neutral 
stimuli. Due to the repeated measures design, two different sets of 

TA B L E  1   Mean (SD)	and	[range]	of	actiography	sleep	parameters	calculated	from	the	aggregated	means	of	each	participant	over	the	2	
nights of measurement

Normal sleep Sleep restriction BF10 BF01

Actiography

Time in bed 07:55 (00:24) 
[06:58–08:39]

04:09	(00:12)	[03:43–04:40] >30 <1/30

Sleep start 23:46 (00:59) 
[22:16–03:00]

01:18	(00:44)	[23:56–03:45] >30 <1/30

Sleep end 07:26 (01:03) 
[05:54–10:40]

05:16	(00:44)	[03:50–07:12] >30 <1/30

Assumed	sleep 07:40 (00:27) 
[06:50–08:59]

03:58	(00:12)	[03:27–04:26] >30 <1/30

Sleep diary

Well rested (5 = fully, 1 = not at all) 3.6	(0.9)	[1.5–5] 1.7	(0.6)	[0.5–3] >30 <1/30

Easy to get up (5 = very easy, 1 = very 
difficult)

3.7	(0.8)	[2–5.0] 2.3	(0.8)	[1–4.5] >30 <1/30

Bayes factors were estimated using Bayesian paired t tests with default weakly informative priors (Morey & Rouder, 2015). BF10 >30 and BF01 <1/30 
indicates very strong evidence for a difference.

http://www.millisecond.com
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Japanese characters were used and order was counterbalanced be-
tween participants.

2.4 | Statistical analysis

For all analyses, we used Bayesian generalised linear mixed-effects 
models	 (GLMM)	 fitted	 in	 R	 (R	 Core	 Team,	 2018).	Mixed-effects	
models are in general preferable to single-level analyses, but 
especially	 on	 repeated	measures	 (McElreath,	 2016).	 A	 Bayesian	
approach	to	the	GLMM	provides	rich	information	in	the	full	pos-
terior distribution, as compared to point estimates, and allows 
evaluation of the null hypothesis (Kruschke & Liddell, 2018).

2.4.1 | Behavioural	analyses

For all behavioural analyses we used weakly informative priors 
with a Student’s t distribution (df = 3, µ = 0, σ = 2.5) on the inter-
cept	and	slope.	A	Cauchy	prior	(location	= 0, scale = 1) was used 
on the standard deviations (SDs). Posterior predictive checks 
were performed to ensure sufficient model requirements. From 
the posterior distributions we calculated the highest maximum 
a	posteriori	probability	estimate	(MAP),	or	the	mode	of	the	pos-
terior	 distribution,	 and	 95%	highest	 density	 intervals	 (HDI)	 for	
each parameter. However, for best understanding of the data 
and not merely its summary statistics, readers are encouraged to 
study	the	full	posterior	distribution.	A	region	of	practical	equiva-
lence	(ROPE)	was	used	as	proxy	for	the	null	hypothesis,	with	lim-
its set to reflect half of a small effect size (Kruschke, 2018). We 
also estimated Bayes factors, by taking the likelihood ratios of 
the	posterior	distribution	falling	within	or	outside	the	ROPE	over	
the	 prior	 distribution	 (null)	 falling	 within	 or	 outside	 the	 ROPE	
(Makowski et al., 2019). The Bayes factors denote the evidence 
of the experimental hypothesis over the null hypothesis (BF10) 
or reversed (BF01).	A	BF10 >1 or BF01 <1 indicates evidence for 
the experimental and BF10 <1 or BF01 >1 indicates evidence for 
the null hypothesis, with level of evidence considered moderate 

if above 3 or below 1/3, strong if above 10 or below 1/10, and 
extreme if above 100 or below 1/100 (Beard et al., 2016).

2.4.2 | Computational	model

For the computational model we used a Q-learning algorithm, 
which estimates the trial-by-trial expected value update based on 
the feedback given (Sutton & Barto, 2018). The analytic proce-
dure were based on that of McCoy et al., (2019), and we adapted 
the scripts to model sleep as a within subject parameter (scripts 
available on https://osf.io/mtszr/). The outcome parameters con-
sisted of two learning rates (α), for positive and negative feedback 
respectively, and inverse temperature (β) reflecting the consist-
ency in the choices. Weakly informative normally distributed pri-
ors (µ = 0, σ = 1) were set on the group level and individual level 
means and half-Cauchy priors (location = 0, scale = 5) were set on 
the group level SDs. Q-values were initialised at 0.5. Parameters 
were transformed to an inverse probit distribution and centred on 
zero with a SD of 1 and with restrictive boundaries of ± 5 (see 
Ahn	et	al.,	2017).	We	fitted	one	model	with	data	from	all	learning	
blocks and one with data from the first learning block only. For 
evaluative purposes, we also fitted models with a single learning 
rate parameter (positive and negative combined), although they 
did not provide a better fit than the models with two learning rate 
parameters	 evaluated	 by	 leave-one-out	 cross	 validation	 (LOO;	
Vehtari et al., 2017) (see Table S9).

For further details on the statistical analysis we refer to the 
Appendix	S1.

3  | RESULTS

3.1 | Sleepiness increased

Participants were markedly sleepier after 2 nights of sleep re-
striction as indicated by extreme evidence for an increase on the 
KSS	 (Åkerstedt	 &	 Gillberg,	 1990)	 (observed	 mean	 increase	 in	

F I G U R E  1   (a) Symbol pairs in the training and the two learning sets together with winning probability within each pair. Learning criteria 
for	Set	1	and	Set	2	were	≥65%	A	choices	for	A/B,	≥60%	C	choices	for	C/D,	and	≥40%	E	choices	for	E/F	after	each	block.	(b)	Trial	example	
from learning phase. In the test phase (not depicted) no feedback was given and symbol pairs were scrambled

(a) (b)

https://osf.io/mtszr/
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sleepiness = 3.12, SD =	2.14,	MAP	=	3.11,	95%	HDI	= 2.47–3.78, 
BF10 = 1e + 10, BF01 =	8e	−	11).	A	small	increase	in	subjective	stress	
(Schwarz et al., 2018) (mean increase in stress = 0.72, SD = 1.51) was, 
however, not distinct enough to reach the criterion of moderate evi-
dence	(MAP	=	0.72,	95%	HDI	= 0.19–1.28, BF10 = 2.45, BF01 = 0.41). 
For full posterior distributions and observed data see Figure 2.

3.2 | Sleep restriction did not affect win–stay/lose–
shift tendencies

To investigate short-term learning, we calculated the proportion of 
trials where the choice was to select the same symbol that rendered 
positive feedback on the previous trial (win–stay) and the propor-
tion of trials where the choice was to switch when given negative 
feedback (lose–shift). In the first block of the learning phase sleep 
restriction	did	not	affect	the	proportion	of	win–stay	(MAP	= 0.01, 
95%	HDI	=	−0.03	to	0.05,	BF10 = 0.008, BF01 = 127) or lose–shift 
(MAP	=	−0.01,	95%	HDI	=	−0.07	to	0.05,	BF10 = 0.009, BF01 = 108) 
tendencies. In fact, the data suggest extreme evidence for no mean-
ingful difference between the sleep conditions (see also Figure 3). 
When averaging the data over the two sleep conditions, the propor-
tion	of	win–stay	was	higher	 compared	 to	 lose–shift	 (MAP	= 0.30, 
95%	HDI	= 0.26–0.34, BF10 = 7e + 12, BF01 =	1e	−	13).

In addition, we investigated the number of blocks needed to pass 
the learning criteria. Fewer individuals in the sleep restriction con-
dition passed the criteria before the six-block limit (26 vs. 30). Here 
we found that the predicted mean probability of passing the criteria 
after partial sleep deprivation (0.92) was slightly lower compared to 
after normal sleep (0.98) with BF10 = 7.79, BF01 = 0.13 (Figure S1). 
The average number of blocks needed to pass showed no meaningful 
difference between the sleep conditions (BF10 = 0.23, BF01 = 4.26). 
See	Appendix	S1	 for	details.	We	also	performed	a	 supplementary	

analysis on response times during the learning phase. These showed 
no difference between sleep conditions (Figure S4).

3.3 | Sleep restriction did not affect generalized 
learning incentives

In the test phase, we investigated how the participants had gener-
alised the learning from the learning phase. We were specifically in-
terested in whether learning was prioritised for positive or negative 
feedback. Positive feedback learning is indicated by the proportion 
of	choices	of	the	symbol	with	highest	probability	to	win	(A)	over	the	
more neutral symbols (C, D, E, F) and negative feedback learning 
is indicated by the proportion where the choice was not to select 
the symbol with least probability to win (B) when paired with the 
more neutral symbols. Here we also did not observe any differences 
between	sleep	conditions	in	the	accuracy	for	positive	(MAP	= 0.0, 
95%	HDI	=	 −0.10	 to	 0.11,	 BF10 = 0.13, BF01 = 7.54) or negative 
(MAP	=	−0.02,	95%	HDI	=	−0.12	to	0.10,	BF10 = 0.11, BF01 = 9.39) 
feedback learning. Instead, our data are favour the null hypothesis, 
that learned associations are practically equal for both positive and 
negative feedback after sleep restriction compared to normal sleep 
(Figure 4). Collapsing over sleep conditions there was no differ-
ence in learning accuracy between positive and negative feedback 
(MAP	=	0.07,	95%	HDI	=	−0.01	to	0.14,	BF10 = 0.26, BF01 = 3.87).

To investigate whether individuals that did not reach the learn-
ing criteria before the six-block limit would bias the results, we also 
ran the same analysis excluding the individuals that did not pass the 
learning criteria within the six blocks. This did not change the results 
(see	Appendix	S1).	Like	for	the	 learning	phase	we	analysed	the	re-
sponse	times	during	the	test	phase,	 including	Choose	A	and	Avoid	
B as a fixed parameter. There was no effect of sleep restriction or 
symbol pair on response times (Figure S9).

F I G U R E  2   Boxplots show observed sleepiness ratings according to the Karolinska Sleepiness Scale (KSS; Åkerstedt &amp; 
Gillberg,	1990),	and	subjective	stress	ratings	(Schwarz	et	al.,	2018)	for	the	normal	and	restricted	sleep	conditions.	Histograms	to	the	right	
of each boxplot show the posterior distributions of the difference between sleep conditions with highest density intervals (HDI; thick black 
horizontal	line),	highest	maximum	a	posteriori	probability	estimates	(MAP;	grey	solid	vertical	line),	and	the	regions	of	practical	equivalence	
(ROPE;	red	shading)	around	zero	(dotted	line).	Sleepiness	increased	strongly	but	an	increase	in	stress	after	sleep	restriction	was	not	large	
enough	to	be	conclusively	separated	from	the	ROPE.	Bars	above	the	histograms	show	Bayes	factors	with	level	of	support	for	either	
hypothesis (BF10, red; BF01, grey) indicated by length of the bar; black lines indicate thresholds for moderate (BF >3), strong (BF >10), and 
extreme evidence (BF >100) (Beard et al., 2016)
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3.4 | Slower learning rate for negative feedback 
after sleep restriction

To study the trial-by-trial learning rate during the learning phase we 
fitted computational models utilising a Q-learning algorithm for the 
first block only, as well as all learning blocks together. See Figure 5 
for visualisation of the results. The posterior distribution of the 
positive learning rate indicated no effect of sleep restriction after 
the	first	block	(MAP	=	0.03,	95%	HDI	=	−0.62	to	0.60,	BF10 = 0.23, 
BF01 = 4.29), and anecdotal evidence for slower learning after sleep 
restriction	when	evaluating	all	 learning	blocks	 (MAP	=	−0.52,	95%	
HDI =	−1.07	to	−0.05,	BF10 = 2.66, BF01 = 0.38). For the negative 
learning rate, there was anecdotal evidence for no effect of sleep 
restriction	 after	 the	 first	 block	 (MAP	=	 −0.21,	 95%	HDI	=	 −1.36	

to 0.52, BF10 = 0.49, BF01 = 2.02). However, when considering all 
learning blocks, there was strong evidence for slower learning 
after	 sleep	 restriction	 (MAP	=	 −1.65,	 95%	HDI	=	 −3.63	 to	 −0.56,	
BF10 = 82.44, BF01 = 0.01). To further assess the influence of sleep 
restriction on positive and negative learning rate, we first calculated 
the difference in posterior distributions between the positive and 
the negative learning rate (Positive–Negative) stratified by sleep 
condition. Then we calculated the differences of these differences 
to estimate whether sleep restriction affects positive and negative 
learning rate differentially. Results showed inconclusive evidence 
both	for	the	data	from	the	first	block	(MAP	=	0.95,	95%	HDI	=	−0.49	
to 2.38, BF10 = 1.88, BF01 = 0.53) and for the data from all blocks 
(MAP	=	0.15,	95%	HDI	=	−2.27	to	1.61,	BF10 = 0.88, BF01 = 1.14). For 
the choice consistency (β), indicating to what extent the individual 

F I G U R E  3   Boxplots show observed data for win–stay and lose–shift tendencies during the first block of the learning phase. Histograms 
to the right of each boxplot show the posterior distributions of the difference between sleep conditions with highest density intervals (HDI; 
thick	black	horizontal	line),	highest	maximum	a	posteriori	probability	estimates	(MAP;	grey	solid	vertical	line)	and	the	regions	of	practical	
equivalence	(ROPE;	red	shading)	around	zero	(dotted	line),	indicating	no	meaningful	difference	between	sleep	conditions.	Bars	above	the	
histograms show Bayes factors with level of support for either hypothesis (BF10, red; BF01, grey) indicated by length of the bar and black 
lines indicate thresholds for moderate (BF >3), strong (BF >10), and extreme evidence (BF >100) (Beard et al., 2016)
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F I G U R E  4  Boxplots	of	the	observed	test	phase	data	for	Choose	A	(positive	feedback)	and	Avoid	B	(negative	feedback).	Histograms	to	
the right of each boxplot show the posterior distributions of the difference between sleep conditions with highest density intervals (HDI; 
thick	black	horizontal	line),	highest	maximum	a	posteriori	probability	estimates	(MAP;	grey	solid	vertical	line)	and	the	regions	of	practical	
equivalence	(ROPE;	red	shading)	around	zero	(dotted	line).	There	was	no	meaningful	difference	in	generalised	learning	after	sleep	restriction.	
Bars above the histograms show Bayes factors with level of support for either hypothesis (BF10, red; BF01, grey) is indicated by the length 
of the bar and black lines indicate thresholds for moderate (BF >3), strong (BF >10), and extreme evidence (BF >100) (Beard et al., 2016)
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explored or exploited the options based on the feedback given, there 
was	no	difference	neither	after	the	first	block	(MAP	=	−0.002,	95%	
HDI =	−0.19	to	0.16,	BF10 = 0.03, BF01 = 34.40) nor after all blocks 
(MAP	=	0.09,	95%	HDI	=	−0.07	to	0.24,	BF10 = 0.06, BF01 = 17.17).

4  | DISCUSSION

In the present study, 2 nights of sleep restriction increased sleepi-
ness, but did not affect generalised learning in the test phase of 

the reinforcement learning task. Utilising Bayesian statistics with 
Bayes factors showing the probability of one hypothesis over the 
other, we found that the data favoured the null hypothesis, indicat-
ing that participants in both sleep conditions learned equally well 
from positive and negative feedback. There was no support for 
sleep restriction having an effect on the neither the win–stay nor 
lose–shift learning strategies over the first 60 trials of the learning 
phase. Complementary computational modelling using a Q-learning 
algorithm further suggested that learning rate, estimated from the 
trial-by-trial behaviour in the first block of the learning phase did 

F I G U R E  5   Posterior distributions of the computational model for the first learning block (left panel) and all learning blocks together (right 
panel). Boxplots show the estimated individual means drawn from the posterior distribution. Histograms to the right of each boxplot show 
the inverse probit transformed (φ) posterior distributions with highest density intervals (HDI; thick black horizontal line), highest maximum 
a	posteriori	probability	estimates	(MAP;	grey	solid	vertical	line)	and	the	regions	of	practical	equivalence	(ROPE;	red	shading)	around	zero	
(dotted line). Bars above the histograms show Bayes factors with level of support for either hypothesis (BF10, red; BF01, grey) indicated 
by length of the bar and black lines indicate thresholds for moderate (BF >3), strong (BF >10), and extreme (BF >100) evidence (Beard 
et al., 2016)
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not differ between sleep conditions. However, when evaluating all 
learning phase blocks, there was strong evidence of slowed learning 
rate for negative feedback after sleep restriction.

We did not observe alterations in generalised learning or win–
stay/lose–shift tendencies after sleep restriction, as indicated by 
the null hypothesis being between seven and >100 times more 
likely than the experimental hypothesis. Most of the previous 
research is based on total sleep deprivation (Liu & Zhou, 2016; 
Whitney et al., 2015) and it is possible that 2 nights of sleep re-
striction did not have the same effect on reward incentives. It has 
been hypothesised that adenosine accumulation is involved in the 
dopamine alterations (Krause et al., 2017), and this accumulation 
could possibly have been restored enough from the, although 
short,	sleep	period	 (Elmenhorst	et	al.,	2017).	Another	reason	for	
the lack of effect of sleep restriction on reinforcement learning 
could be that the probabilistic selection task was not sensitive 
enough	 to	 capture	 such	 changes	 after	 sleep	 restriction.	 On	 the	
other hand, other studies using a similar assumption regarding do-
pamine availability, such as Parkinson’s disease (Frank, 2004; Frank 
et al., 2007; McCoy et al., 2019) and stress (Lighthall et al., 2013; 
Petzold et al., 2010), and the same reinforcement learning task, 
have	found	an	effect	on	generalised	learning.	Although	the	prob-
abilistic selection task is a well-established paradigm, the feed-
back may not have triggered a hedonic reward signal comparable 
to those of economic, food or pleasurable images used in previous 
sleep	 deprivation	 studies	 (Greer	 et	 al.,	 2013;	Gujar	 et	 al.,	 2011;	
Mullin et al., 2013; Venkatraman et al., 2007). Thus, the reward 
in our paradigm was potentially too weak or not valued relevant 
enough to cause detectable behavioural changes after sleep re-
striction.	 An	 avenue	 for	 further	 studies	 is	 to	 investigate	 the	 ef-
fect of total sleep deprivation on reinforcement learning, possibly 
combined with more ecologically valid or stronger reinforcers in 
relation to sleep loss.

The results from the computational model suggest that the 
trial-by-trial negative learning rate is affected by sleep restric-
tion when evaluating the full learning phase, but not when only 
evaluating data from the first block. The win–stay and lose–shift 
reflected the total proportions of respective behaviour for the 
first learning phase block, and only considered the response of the 
previous trial. The Q-learning estimates, on the other hand, was 
based on the trial-by-trial value update that considers the con-
tinuous learning from all previous feedback. For the first block, 
the results were somewhat in agreement with the win–stay and 
lose–shift results, although there is uncertainty in the effect of 
sleep restriction for learning rate from negative feedback. For 
the data from the full learning phase, we observed a slowing of 
learning rate after sleep restriction for negative feedback, and a 
slight slowing for positive feedback that was not confidently sup-
ported by the Bayes factor (BF10 = 2.66). Thus, rather than the hy-
pothesised increase in reward seeking, we observed a slowing of 
learning speed from negative feedback after sleep restriction that 
could be related to increased risk-seeking behaviour found after 
sleep restriction (Killgore, 2015; Maric et al., 2017). Reinforcement 

learning algorithms, such as Q-learning, have been directly linked 
to	dopamine	activity	(Garrison	et	al.,	2013).	Total	sleep	deprivation	
has been associated with downregulation of dopamine D2 receptor 
availability (Volkow et al., 2012), and lower D2 receptor availability 
has been linked to slower learning rate specifically for negative 
feedback (Frank et al., 2007). Slowing in learning rate could in-
dicate problems in maintaining feedback information in working 
memory and slower integration of information over time (Frank 
et al., 2007). Sleep restriction caused a slower learning rate for 
negative feedback, but to some degree also affected the learn-
ing rate for positive feedback. Moreover, high uncertainty in the 
difference estimates between positive and negative learning rate 
between the two sleep conditions did not confidently favour one 
hypothesis over the other. This could be an indication of a general 
working memory decline or attention deficits commonly found 
after sleep restriction (Lowe et al., 2017) rather than being asso-
ciated to specific feedback valence. Lastly, sleep restriction did 
not affect the inverse temperature (β), indicating that the level of 
consistency in choice behaviour was similar across conditions.

To limit differences between individuals regarding time of task, 
we used a limit of six blocks for completing the learning phase, 
regardless	of	passing	 the	 learning	criteria	or	not.	After	 sleep	 re-
striction six out of the 32 participants did not reach the criteria 
within this limit compared to two out of the 32 after normal sleep, 
a difference with moderate support from the Bayes factor. This 
could be related to general attentional or working memory im-
pairments after sleep restriction (van Dongen et al., 2003; Lowe 
et al., 2017), but as this was not a main question of interest further 
studies are needed to explore the underlying mechanisms for why 
sleep restriction may reduce the probability of reaching a learning 
criterion.

There are some limitations in the present study worth mention-
ing. The sleep manipulation was done in the participants’ homes re-
stricting the possibilities of controlling adherence to the protocol. 
For the 2 manipulation nights, sleep was measured using actiography 
and sleep diaries. With a few exceptions, these data show satisfac-
tory adherence to the sleep restriction protocol. For the other nights 
before and in-between the test sessions we did not measure sleep 
but relied on the participants keeping to their habitual sleeping pat-
tern and following the instructions not to take naps during the day. 
However, we have little reason to believe that any divergence from 
these patterns would be other than random, therefore not changing 
the conclusions of the study. Finally, these results should be inter-
preted with the notion that 2 nights of sleep restriction may not be 
directly transferable to potential effects of total sleep deprivation. 
Sleep restriction may be a more ecologically valid form of sleep loss, 
and similar deficits have been found for executive functions and vig-
ilant attention (van Dongen et al., 2003; Lowe et al., 2017), yet less 
is known about underlying reward incentives after sleep restriction.

To conclude, 2 nights of sleep restriction did not affect the ac-
curacy in generalised learning from positive or negative feedback, 
the win–stay/lose–shift tendencies, and the modelled learning rate 
in the initial learning phase. However, considering all blocks from the 
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learning phase using a computational modelling approach revealed 
that sleep restriction causes a slower learning rate for negative 
feedback.
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