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Abstract: There is currently no effective pharmacological therapy to improve the cognitive dysfunction
of individuals with Down syndrome (DS). Due to the overexpression of several chromosome 21 genes,
cellular and systemic oxidative stress (OS) is one of the most important neuropathological processes
that contributes to the cognitive deficits and multiple neuronal alterations in DS. In this condition, OS is
an early event that negatively affects brain development, which is also aggravated in later life stages,
contributing to neurodegeneration, accelerated aging, and the development of Alzheimer’s disease
neuropathology. Thus, therapeutic interventions that reduce OS have been proposed as a promising
strategy to avoid neurodegeneration and to improve cognition in DS patients. Several antioxidant
molecules have been proven to be effective in preclinical studies; however, clinical trials have failed
to show evidence of the efficacy of different antioxidants to improve cognitive deficits in individuals
with DS. In this review we summarize preclinical studies of cell cultures and mouse models, as well
as clinical studies in which the effect of therapies which reduce oxidative stress and mitochondrial
alterations on the cognitive dysfunction associated with DS have been assessed.
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1. Oxidative Stress (OS) in Down Syndrome (DS)

1.1. Mechanisms of OS Involved in DS

Down syndrome (DS), the most common genetic cause of intellectual disability [1], is caused by a
partial or complete triplication of the human chromosome 21 (Hsa21). Most of the altered phenotypes
of DS arise because of the altered expression of Hsa21 genes [2].

Cognitive dysfunction in DS is due to defects in the growth and differentiation of the central
nervous system that appear during early prenatal stages [3–9]. However, later in life, the cognitive
alterations in DS individuals are aggravated because their brains undergo premature aging and
present the early appearance of Alzheimer’s disease (AD) neuropathology, which is characterized
by amyloid plaque deposits, neurofibrillary tangles (NFTs) caused by hyperphosphorylation of the
tau protein, neurodegeneration, synapse loss, and neuroinflammation due to microglial activation
which increases the release of pro-inflammatory cytokines [4,10–14]. Furthermore, similar to AD,
basal forebrain cholinergic neurons (BFCNs) and noradrenergic neurons progressively degenerate in
the DS brain [15–17].

Oxidative stress (OS) is one of the most important neuropathological processes responsible
for the cognitive alterations and the deficits in neuronal function in DS. Brain tissue can be more
susceptible to undergoing elevated levels of OS than other tissues because it is rich in fatty acids
which are ideal biomolecules for peroxidation processes, and because it contains low concentrations
of antioxidant enzymes and is also characterized by a high aerobic metabolic rate [18]. In DS, as in
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other neurodegenerative diseases, increased OS is produced both by a high rate of reactive oxygen
species (ROS) production and low level of antioxidant enzymes and reducing agents [18,19]. In this
syndrome, the increase in OS is produced by the overexpression of several Hsa21 genes [4,13,20]
that encode particular proteins which directly or indirectly induce the production of ROS, damaging
molecules which are crucial for proper functioning of the cell. One of these Hsa21 genes is SOD1,
which is responsible for the expression of the enzyme superoxide Dismutase (SOD1), which transforms
superoxide anions into molecular oxygen and hydrogen peroxide (H2O2). In DS, the increased activity of
SOD1 results in the formation of excessive levels of H2O2 which are not adequately compensated by the
activity of two other antioxidant enzymes—catalase (CAT) and glutathione peroxidase (GPx)—creating
a redox imbalance. In fact, all tissues from DS patients display an altered SOD1/GPx ratio [21].

Mitochondria are the major site of production of ROS through the oxidative phosphorylation
pathway and are one of the main targets of free radicals. In DS, it has been demonstrated that
beginning at early developmental stages, there are important mitochondrial structural and functional
dysfunctions associated with high ROS production [22,23] due to the excessive generation of O2

− and
H2O2. The alterations in mitochondrial function found in trisomic cells have been demonstrated to be
caused by a loss of equilibrium between mitochondrial biogenesis and turnover [24–26]. Furthermore,
DS fibroblasts and neurons show damaged mitochondria with anomalies on their cristae [23,25,27,28].
Postmortem brain tissue from DS patients also displays severe alterations in important complex II and
V mitochondrial proteins of the mitochondrial chain [29], as well as mitochondrial DNA mutations [30].
Deficits in complex I activity associated with increased ROS production in human DS fibroblasts have
also been found [31]. Thus, the mitochondrial dysfunction raises the intracellular ROS production,
but also alters the energy metabolism, leading to a lower ATP production [32,33]. These effects play an
important role in neuronal dysfunction, affecting synaptic transmission and, as a result, impairing
cognitive function [13].

Despite insufficient CAT and GPx activity, in DS the high levels of H2O2 that are accumulated
in the cytosol are not adequately eliminated by other antioxidant enzymes, including glutathione
transferase and thioredoxin peroxidase [34]. Thus, the accumulation of H2O2 leads to the formation of
a most harmful hydroxyl radical (•OH), which damages cells, mitochondrial membranes, proteins,
and other biomolecules. In addition, the DS fetal brain shows decreased expression of peroxiredoxin 2,
an antioxidant enzyme involved in lipid and protein protection against oxidative injury [35].

To counteract excessive ROS production, cells also possess other antioxidant compounds including
glutathione, amino acids (arginine, taurine, creatine), metals (selenium and zinc), and vitamins
(vitamins E and C) [18]. DS individuals also present altered levels of these antioxidant compounds.
The glutathione system is affected in DS [36,37]. The levels of glutathione are decreased in these
individuals [38–40] and increased oxidized glutathione/glutathione ratio has been found in fibroblasts
from DS fetuses [36]. Additionally, lower blood and/or plasma levels of other antioxidant molecules
such as vitamin E, vitamin C, selenium, and zinc have been found in children and adult DS
individuals [38,41–43]. Furthermore, fetal DS brains show reduced levels of taurine in the frontal
cortex [44]. These alterations in other components of the endogenous antioxidant system may be
additional factors which contribute to the exacerbation of oxidative damage in DS.

Another Hsa21 gene, APP (Amyloid Precursor Protein), has also been implicated in the increased
ROS production characteristic of DS. It has been demonstrated that overexpression of this gene
increases the production of the APP protein and leads to the accumulation of β-amyloid (Aβ) peptides,
aggravating the redox imbalance [20,45]. Aβ accumulation has been associated with DS-related OS
and mitochondrial dysfunction [46–49]. Accumulation of Aβ in the mitochondria interferes with the
respiratory chain and facilitates the formation of membrane permeability transition pores, impairing
energy metabolism [18]. In addition, independently of Aβ deposition, APP may cause mitochondrial
dysfunction, and this may be an additional source of the increased OS in DS [50].

Besides APP and SOD, the triplication of other Hsa21 genes such as carbonyl reductase (CBR),
BACH1, and S100β has also been demonstrated to play an important role in the increased OS found in
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DS individuals [20]. The BACH1 gene is a transcriptional repressor of specific genes involved in the
cell response such as HO-1 (Heme oxigenase-1), which participates in the heme degradation. This
enzymatic step produces biliverdin, which is converted to bilirubin by the enzyme biliverdin reductase.
Bilirubin, at low concentrations, may act as a physiological antioxidant [51,52]. In DS brains, increased
BACH1 protein levels coupled with the reduced induction of HO-1 seem to be involved in the early
increase of OS [52].

The CBR gene codifies the enzyme carbonyl reductase which detoxifies the cytotoxic metabolic
intermediates carbonyls by its reduction. The levels of this enzyme are elevated in different areas of
the DS brain due to the enzyme induction produced by elevated carbonyls compounds [53].

The S100β gene, which is also triplicated in DS, is responsible for the release of proinflammatory
mediators from microglial cells, causing negative effects in neurons. Aberrant S100β production in
the brain of DS subjects promotes β-amyloid plaque formation [54]. Furthermore, the overexpression
of S100β in human DS neural progenitors increases ROS formation [55]. In rodent macrophages,
the S100β protein stimulates the production of nitric oxide (NO) [56]. NO is one of the most common
cellular free radicals and when its concentration reaches dangerously high values it undergoes redox
actions and produces reactive nitrogen species [18].

1.2. Role of Oxidative Stress in DS Neurodegeneration and Cognitive Dysfunction

In addition to affecting the integrity of important cellular components which alters proper
neurophysiological processes, OS also alters multiple pathways implicated in cell growth,
gene expression, neurodegeneration, and protein function, which plays an important role in DS
cognitive dysfunction.

Increased ROS production interacts with and induces damage to proteins, lipids, and DNA,
which alters neuronal physiology and function [20,57]. Several studies have demonstrated that neurons
from DS individuals present increased levels of different markers of lipid peroxidation, of oxidized
proteins, and of DNA damage [58–60]. Oxidative damage to proteins modifies the activity of essential
receptors, hormones, and enzymes [37], and also affects cellular functions, leading to alterations of
the intracellular degradative machinery (i.e., the proteasome system, autophagy, and exosome cargo
and release). If these oxidized proteins become dysfunctional, this exacerbates their accumulation,
aggravating neurodegeneration in DS individuals [50,61,62]. Oxidative modification of lipids also
produces structural and functional damage in cells and mitochondrial membranes [57]. Finally, there is
also evidence that suggests that in fetal and adult DS cells, an increase in OS produces an accumulation
of DNA damage and defects in DNA repair mechanisms [63–65] that leads to genomic instability.
In neurons, these alterations play a central role in the degenerative process associated with oxidative
damage in DS and other neurodegenerative diseases [66].

In addition, both OS and mitochondrial dysfunction induce premature cell senescence [66–68],
a process that is characterized by a permanent arrest of cell proliferation [69]. Amniocytes and
placentas from trisomy 21 pregnancies present a higher prevalence of senescent cells [70]. In trisomic
fibroblasts of human DS fetuses, the increased ROS production together with the subsequent amount
of oxidized proteins and the decline in the levels of ATP leads to the acquisition of premature senescent
phenotypes [68]. Fibroblasts from children with DS have an increased ratio of SOD1/GPx activity,
resulting in high levels of H2O2 which induces features of cellular senescence [71]. Thus, from prenatal
stages, intracellular OS, the decrease in the antioxidant defense system, and mitochondrial dysfunction
induce cellular senescence in DS, and this phenomenon is aggravated with aging and the development
of AD neuropathology, further exacerbating cognitive dysfunction.

Moreover, several studies have demonstrated that increased levels of ROS in DS neurons
alter the processing of the APP protein, inducing the accumulation of Aβ peptides and producing
neuroinflammation. Thus, increased OS exacerbates AD neuropathology in DS [11,12,20,46,72].

The elevation of OS in the DS brain from prenatal stages alters proper brain development because
it interferes with crucial processes such as neurogenesis, neural differentiation, migration, connectivity,
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and neuronal survival [22,50]. In later stages of life, OS is exacerbated, contributing to neuropathological
changes and degeneration, and to the development and progression of AD neuropathology and to the
cognitive dysfunction associated with DS [20,36].

2. Brain Oxidative and Mitochondrial Profile in Mouse Models of DS

To study the mechanisms implicated in the neurobiological and cognitive alterations found in
DS and to develop therapeutic approaches to reduce or prevent these impairments, several mouse
models of DS have been generated. These animals are trisomic for different sets of Hsa21 orthologous
genes localized in syntenic regions of three murine chromosomes Mmu16, Mmu17, and Mmu10,
and recapitulate most of the neuroanatomical, neurochemical, and behavioral DS phenotypes [2,73–76].
These murine models present a similar brain oxidative and mitochondrial dysfunction profile to the
one previously described for the DS population.

The Ts65Dn mouse, the best characterized and the most commonly used model of DS, shows
increased OS (lipid peroxidation and protein carbonylation) and mitochondrial dysfunction in the
hippocampus and cortex [77–83], that affects brain structure and function [75]. Although, to the best
of our knowledge, oxidative DNA damage has not been studied in the brain of this model, it has
been demonstrated that other cell types such as satellite cells of skeletal myofibers and hematopoietic
stem cells accumulate oxidative DNA damage and prematurely develop a senescent phenotype in the
Ts65Dn mouse [84–86]. This model also shows a high density of cells with an OS-associated senescent
phenotype in different areas of the hippocampus (CA1, CA3, GCL, and SGZ), cortex, and medial
septum [82,87,88].

In addition, mitochondrial structural and metabolic dysfunction and chronic oxidative damage
have also been found in different cell types including neurons of other DS mouse models such as the
Ts16, the Dp16, the Tc1, the Ts1Cje, and the Ts2Cje [89–94]. The Tc1 and Ts1Cje DS mouse models do
not have triplicated Sod1 or App genes, which as mentioned above, demonstrates that other triplicated
genes also play a role in the increased OS and mitochondrial anomalies observed in DS [92–94].
Additionally, some of these models also present OS-associated dysfunctions in autophagy and the
proteasome degradative systems, which leads to an accumulation of oxidized proteins, alters the
proteostasis network, and contributes to neurodegeneration and to cognitive dysfunction [95–98].

Thus, studies in murine models and DS individuals suggest that an increase in OS and
mitochondrial dysfunction could play an important role in the development and progression of
cognitive decline in DS. Therefore, the administration of drugs or compounds that reduce the oxidative
damage could prevent the neurobiological alterations responsible for the cognitive deficits associated
with DS.

3. Antioxidant Therapy in DS: Preclinical and Clinical Studies

Most of the preclinical studies that have assessed the efficacy of the administration of antioxidants
on the cognitive and neuronal dysfunctions associated with DS have been performed on the
Ts65Dn mouse.

3.1. Antioxidant Therapies during Adulthood

Several preclinical studies performed on different in vitro and in vivo DS models have
demonstrated that lowering OS can reduce the neurobiological and cognitive phenotypes characteristic
of DS [68,77,79,81,82,90,99] (Table 1). Supplementation of the diet of Ts65Dn mice with antioxidants
such as α-tocopherol or vitamin E reduces OS, attenuates cholinergic neuron degeneration, preserves
hippocampal morphology, and improves spatial working memory in this murine model of DS [77].
The neurohormone melatonin exerts multiple antioxidant effects, including being a potent ROS
scavenger, modulating anti- and pro-oxidant enzymes, and inducing the recovery of molecules
damaged by ROS overgeneration [100,101]. The exogenous chronic administration of melatonin
to Ts65Dn mice during adult stages improves spatial learning and memory, restores hippocampal
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long-term potentiation (LTP) and several neuromorphological alterations, and reduces cholinergic
degeneration, hippocampal OS, and the density of senescent cells in the hippocampus [81,82,102].

Based on these and other studies, the efficacy of several antioxidant molecules has been assessed
in adults with DS (Table 2). In a randomized, double-blind, placebo-controlled trial, the effects of
long-term (over a 2-year period) daily antioxidant supplementation containing α-lipoic acid, ascorbic
acid, and α-tocopherol, were evaluated in subjects with DS and dementia. This study demonstrated
that long-term supplementation with these antioxidants is safe. However, this treatment did not
improve cognitive function nor prevent cognitive decline in individuals with DS [103]. It is important
to note that dementia is a serious risk among aging individuals with DS and that current evidence
suggests that antioxidant administration is highly unlikely to be helpful at this stage. Consistent with
this lack of efficacy, a second study of a longer duration in adults older than 50 years with DS who
received ≈672 mg of vitamin E orally (twice daily) over 3 years demonstrated that vitamin E did not
delay the cognitive decline of older individuals with DS [104]. Thus, although it has been suggested
that vitamin E requires long-term supplementation to induce neuroprotection [105], these studies
indicate that supplementation with vitamin E over long periods of time to adults with DS does not
protect this population from undergoing neurodegeneration, and it does not delay or reduce the
characteristic cognitive decline. However, the lack of pro-cognitive effects reported by Sano et al. [104]
in their study may be partially due to other causes. They administered a single antioxidant (vitamin E)
which slowly penetrates in the brain only via the α-tocopherol transporter [106], whose expression
may be altered by ROS [107]. This may not ensure an adequate supply of this nutrient to the brain.
It has also been proposed that the triplication of some genes and the persistent OS beginning from the
fetal stages may also induce adaptation through the induction of compensatory mechanisms during
aging in DS cells [20,108,109], which could be another reason for the lack of pro-cognitive effects after
antioxidant therapy in adults with DS.
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Table 1. Preclinical studies that assessed the efficacy of natural and synthetic molecules with antioxidant properties in cellular and murine models of Down
syndrome (DS).

Antioxidant Drug Model of DS Dosage and Treatment Duration Results References

Vitamin E (α-tocopherol) Adult Ts65Dn mice (4 months of age) 50 ± 5 mg/kg/day supplemented in the diet for
5 months

Improvement of spatial memory, reduction of
cholinergic neurodegeneration, normalization of

OS markers
[77]

Pregnant Ts65Dn females and their pups

Pregnant Ts65Dn females received (0.1% (w/w)
α-tocopherol acetate per kilogram of diet) from

the day of conception throughout the
pregnancy and the pups received the same diet

from the day of birth for 12 weeks

Reduction of levels of lipid peroxidation products,
attenuation of cognitive impairment, improvement

of the hippocampal hypocellularity
[79]

SGS-111 DS cortical neurons cultures
Various doses from 10 nM to 100 µM (30 min

before the addition of H2O2 to the cultures and
until 24 h later)

Inhibition of the accumulation of intracellular free
radicals and lipid peroxidation damage in neurons
treated with H2O2. Reduction of the appearance of

degenerative changes and increment of
neuronal survival

[99]

Adult Ts65Dn mice (6 months of age).
Pregnant Ts65Dn females and their pups

over their entire life (5 months)

In both studies: 0.5 mg/kg (daily
subcutaneously injected). Duration of adult

treatment: 6 weeks. Duration of pre- and
postnatal treatment: 5 months

No evidence of changes in behavior or cognition [110]

Melatonin Adult Ts65Dn (6 months of age) 0.5 mg/day in their drinking water for 6 months

Improvement in spatial learning, reduction of
cholinergic neurodegeneration, improvement of

hippocampal neurogenesis, reduction of synaptic
inhibition, restoration of hippocampal LTP,

reduction of protein and lipid oxidative damage
and of the density of senescent cells in

the hippocampus

[81,82,102]

Pregnant Ts65Dn females and their pups

0.5 mg/day in their drinking water during
pregnancy to TS females until the weaning of
the offspring, and to the pups until the age of

5 months

No effect on cognitive or neurogenesis
abnormalities. Modulation of antioxidant

enzymes: SOD in the cortex, and catalase in the
hippocampus. No effect on lipid and protein

oxidative damage

[80]

7, 8-dihydroxyflavone Ts65Dn pups, young and adult stages

In all studies: 5 mg/kg (daily subcutaneously
injected). Postnatal treatment: for 12 days.

Adolescent treatment: from P3 to adolescence
(P45–50) Adult treatment: 6 weeks

Postnatal treatment: restoration of hippocampal
neurogenesis and dendritic spine development,

but 1 month after cessation of the treatment there
was no evidence of pro-cognitive effects.

Adolescent treatment: improvement in cognition.
Adult treatment: no effect on cognition

[111,112]

Apigenin Ts1Cje mothers and their pups
200–250 mg/kg/day in chow, during pregnancy

to the mothers and to their pups up until
8–10 weeks of postnatal life

Improvement of exploratory behavior [113]
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Table 1. Cont.

Antioxidant Drug Model of DS Dosage and Treatment Duration Results References

Epigallocatechin-3-gallate
(EGCG)and Resveratrol

Neuronal progenitor cells isolated from
the hippocampus of the Ts65Dn mouse

EGCG and Resveratrol, 20 µM and 10 µM,
respectively, for 24 h

Restoration of mitochondrial homeostasis and
promotion of proliferation in neuronal progenitors [83]

Epigallocatechin-3-gallate Ts65Dn pups 25 mg/kg in a daily subcutaneous injection
from postnatal day 3 to postnatal day 15

At P15 the treatment rescues hippocampal
neurogenesis. This effect was not evident 1 month

later after cessation of the treatment
[114]

Ts65Dn pups
0.4 mg/mL in their drinking water

(≈50 mg/kg/day) from postnatal day 24 to
postnatal day 68 (≈6 weeks)

No improvement in cognitive deficits and
produced detrimental skeletal effects [115]

Young adult Ts65Dn (3 months of age) 90 mg/mL for a dose of 2–3 mg per day in
drinking water for 1 month

Improvement of hippocampal-dependent
learning deficits [116]

Curcumin Pregnant Ts65Dn mice and their pups
and young mice

In both studies: 300 mg/kg in a daily
subcutaneous injection. Prenatal treatment:
from embryonic day 10 to postnatal day 2.

Postnatal treatment: from postnatal day 2 to
postnatal day 15

Prenatal effects: increase in brain weight, cell
proliferation, and pro-cognitive long-term effects.

Postnatal effects: no effect on cognition
[117]

Glucagon-like peptide 1 Adult Ts65Dn mice (9 months of age) 500 ng/g daily via intraperitoneal injection for
2–3 weeks

Reduction of mitochondrial ROS generation, of
dendritic spine morphology alterations,

and improvement of LTP and cognitive alterations
[118]

Rapamycin Adult Ts65Dn mice (6 months of age) Three times per week with a dose of 0.1 µg/µL
(1 µg/mouse) by intranasal route for 12 weeks

Restoration of mTOR pathway and reduction of
lipoxidized proteins, rescue of autophagy and
insulin signaling. Improvement in cognition

[96,98]

Pioglitazone Trisomic fetal fibroblasts 5 mM for 3 days
Improvement of mitochondrial bioenergetics:

increase of basal ATP content and oxygen
consumption rate and decrease of ROS production

[119]

Metformin Trisomic fetal fibroblasts 0.05 or 0.5 mM for 3 days

Reduction of mitochondrial abnormalities:
increases in ATP production, oxygen consumption

rate, and mitochondrial activity. Reversion of
mitochondrial fragmentation and promotion of

mitochondrial network

[24]
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Table 2. Clinical trials that assessed the efficacy of natural and synthetic molecules with antioxidant properties in DS subjects.

Type of Trial Antioxidant Subjects/Cell Type Dosage and Treatment Duration Results References

R, DB, PC α-tocopherol, ascorbic acid and
α-lipoic acid

53 individuals with
DS and dementia

(average age ≈ 50 years)

Daily dose of 900 IU of α-tocopherol, 200 mg
of ascorbic acid, and 600 mg of α-lipoic acid

for 2 years

No improvement in cognitive
functioning or stabilization of

cognitive decline
[103]

R, DB, PC Vitamin E (α-tocopherol) 337 adults with DS older than
50 years of age 1000 IU of vitamin E, twice daily for 3 years No retardation in the progression of

cognitive deterioration [104]

DB, case-control study,
PC crossover trial

Mixture of vitamins
and minerals

A total of 115 children with DS
(in the four studies) aged
between 7.5 months and

17 years old

Between 4 and 8 months depending on
the study

No significant effect on development or
behavior. No effect on intelligence

quotient tests. No effect on standard
psychological tests. Induction of various

side-effects

[120–124]

R, PC Mixture of vitamins
and minerals

156 children with DS, less than
7 months old

Daily supplementation with 10 µg of
selenium, 5 mg of zinc, 0.9 mg of vitamin A,

100 mg of vitamin E, 50 mg of vitamin C,
and 0.1 mg of folinic acid for 18 months

No benefits in psychomotor
development, language acquisition or in

the levels of markers of OS in red
blood cells

[125]

R, DB Leucovorin (folinic acid) 117 children with DS aged
between 3 and 30 months old Daily dose of 1 ± 0.3 mg/kg for 12 months

Improvement of psychomotor
development. No effect on sociability,

language or coordination
[126]

Pilot study
Mixture of nutrients zinc,

vitamins (A, C, E, B1, B2, B3, B6,
B9, B12) and minerals

40 children with DS aged
between 5 and 16 years old

5000 IU of vitamin A, 25 IU of vitamin E,
100 mg of ascorbic acid, 10 mg of thiamine
mononitrate, 10 mg of riboflavin, 3 mg of

pyridoxine hydrochloride, 5 µg of
cyanocobalamin, 50 mg of niacinamide, 1 mg

of folic acid, 12.5 mg of calcium
pantothenate, 2.5 mg of copper, 60 µg of

selenium, 1.4 mg of manganese and 5 µg of
chromium for 6 months

Reduction of serum acetyl- and
Butyrylcholinesterase. Improvement in
cognitive skills and behavioral patterns

[127]

DB Acetyl-l-carnitine 40 adults with DS aged between
18 and 30 years old

Ascending doses: 10 mg/kg/day for the first
month, 20 mg/kg/day for the second month
and afterwards 30 mg/kg/day for the rest of
the study. Duration: 6 months, followed by a

3-month “wash-out” period

No effect on cognitive abilities,
behavioral problems or daily living skills [128]

Pilot study Epigallocatechin-3-gallate
(EGCG)

31 young adults with DS aged
between 14 and 29 years old 9 mg/kg/day for 6 months Positive effects on memory recognition,

working memory, and quality of life [116]

R, DB, PC EGCG 84 young adults with DS aged
between 16 and 34 years old 9 mg/kg/day for 12 months

Improvement in visual recognition
memory, inhibitory control,

and adaptive behavior
[129]

CR EGCG plus omega-3 fish oil One DS child, 10 years and
3 months old

EGCG: 10 mg/kg/day and omega-3 fish oil:
8 mg/kg/day for 6 months

Improvement in the ability to perform
tasks requiring concentration.

Restoration of mitochondrial respiratory
chain complex activities in lymphocytes

from peripheral blood

[130]
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Table 2. Cont.

Type of Trial Antioxidant Subjects/Cell Type Dosage and Treatment Duration Results References

Vitamin E, vitamin C Healthy and DS children
between 3 and 14 years of age

Vitamin C (500 mg/day), vitamin E
(400 mg/day) administered daily for

6 months

Attenuation of systemic oxidative
damage in the blood of DS subjects.
These effects persisted for at least
6 months after the cessation of the

antioxidant therapy

[38,131]

α-tocopherol or α-lipoic acid 93 DS children between 7 and
15 years of age

α-tocopherol (400 IU/day) or α-lipoic acid
(100 mg/day) for 4 months

Attenuation of OS at the DNA level in
serum after 20 months of treatment. No
effect on RNA or DNA oxidation after

4 years of treatment

[132]

Coenzyme Q10
Children (aged 5–12 years,

n = 20) and teenagers (aged
13–17 years, n = 8) with DS

4 mg/kg/day for 20 months (children),
and 4 years (teenagers)

Reduced the activity of GPx in
erythrocytes [65,133]

Selenium 48 children with DS (aged
between 6 months and 16 years) 10 µg/kg body weight/day for 6 months Improvement of the rest-activity rhythms [134]

α-lipoic acid and L-cysteine
20 children with DS (aged

between 1 and 16 years old)
with redox imbalance

One capsule per day that contained 200 mg
of α-lipoic acid, and 200 mg of L-cysteine,

over several treatment cycles (one treatment
cycle = 30 days plus a 30 day

wash-out period)

Reduction of serum ROS [135]

R = randomized; DB = double-blind; PC = placebo-controlled; CR = case report.
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However, the results of the clinical trials might have been biased by several confounding
methodological factors such as the combination of antioxidants used, the dosage of the different
antioxidants administered, or the small sample sizes in the aforementioned clinical trials. Thus, further
studies designed to avoid these confounding factors need to be performed to confirm the lack of
efficacy of antioxidant supplementation on the cognitive status of DS adults.

The discrepancy found between the efficacy after the administration of vitamin E to the Ts65Dn
mouse and to individuals with DS might be due to the differences in the set of triplicated genes between
individuals with trisomy 21 and mouse models of DS. Although the Ts65Dn mouse model shares many
neuroanatomical, behavioral, and neurobiological similarities, as well as age-related DS phenotypes,
including the brain OS profile, with individuals with DS, a limitation of this model is that some of
the orthologous genes found in Hsa21 are not triplicated in this model, and other genes that are not
triplicated in individuals with DS are in trisomy in the Ts65Dn mouse. Thus, it is possible that the
overexpression of several other Hsa21 genes is required to develop the full spectrum of the OS profile
observed in individuals with DS and, thus, in this scenario vitamin E may not be as effective as in
animal models.

Despite the discrepancies between Hsa21 genes and its murine orthologous genes overexpressed in
people with DS and mouse models of this syndrome, because melatonin treatment in adultTs65Dn mice
demonstrated antioxidant neuroprotective properties associated with improved cognition, melatonin
could serve as a potential therapeutic agent for age-related neurodegeneration and cognitive decline
in adults with DS. Due to a variety of physiological and metabolic advantages, the protective effects
of this indoleamine against oxidative damage are more potent than those induced by vitamins C or
E [100,136]. Furthermore, this indoleamine has been approved for human use, it is normally well
tolerated in adults, it does not cause significant adverse events and it is already used in the treatment
of other neurodegenerative diseases in which OS is enhanced. Therefore, future clinical trials should
assess the efficacy of melatonin to reduce OS, to restore neuronal function and to delay the age-related
progression of cognitive alterations in the DS population.

Due to the lack of success in clinical trials after the use of vitamins and conventional antioxidants
in adults with DS, preclinical studies are investigating new therapeutic approaches to prevent OS
in order to improve cognitive function. The efficacy of other molecules which, instead of acting as
ROS scavengers, exert their effects on the molecular pathways implicated in preventing the excessive
production of ROS or in the elimination of oxidized proteins, has recently been assessed in adult Ts65Dn
mice. In this regard, the administration of a cleavage product of the natural peptide glucagon-like
peptide 1 (GLP-1) to adult Ts65Dn animals reduces mitochondrial ROS generation, decreases their
alterations in dendritic spine morphology, and improves their electrophysiological (LTP) and cognitive
alterations [118]. Associated with increased OS, in DS, disturbances of the mTOR signaling pathway
also alters the autophagy system which plays a key role in the cellular response to OS [19]. Additionally,
alterations of the brain’s insulin resistance pathway have been associated with the development of
AD in DS [137]. The administration of the mTOR pathway inhibitor, Rapamycin, which has been
demonstrated to normalize the activity of this pathway and to have antioxidant properties [98],
reduced the accumulation of lipoxidized proteins in both the hippocampi and frontal cortices of
adult Ts65Dn mice. This treatment also reduced several pathological hallmarks of AD (levels of
APP, Aβ-peptides, and hyperphosphorylated tau) and improved the cognitive performance of these
animals [98]. Besides these neuroprotective actions, in the Ts65Dn mouse, this inhibition of mTOR
signaling after rapamycin administration also prevented the abnormal autophagy and recovered the
insulin resistance pathway, thereby decreasing brain insulin resistance [137,138]. Both improvements
decrease the risk of developing AD in DS [98,137,138]. Future clinical studies should also assess the
efficacy of these compounds at inducing neuroprotection and improving cognition in the DS population
through the reduction of ROS production or by the reduction of oxidative damage.

Finally, in DS adults, neurodegeneration is not only driven by increased OS, but as mentioned
above, also by other mechanisms such as the development of AD neuropathology (formation of senile
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plaques or NFTs and accumulation of Aβ peptides) or increased neuroinflammation. Thus, it is
possible that combining antioxidants with other molecules that exert neuroprotection through other
mechanisms may be more effective at preserving brain health and cognitive abilities in DS adults.

3.2. Antioxidant Therapies in Early Life Stages

As mentioned above, OS is present in the brains of individuals with DS from early developmental
stages, producing structural and functional neuronal damage that might be irreversible during later
life stages. Thus, supplementation with antioxidants should be initiated before persistent OS occurs.

Despite the beneficial effects found in preclinical studies when antioxidant therapy is administered
to the Ts65Dn mouse during adult stages, conflicting results have been reported regarding its use at
earlier pre- or postnatal stages (i.e., during gestation and/or infancy) (Table 1). Pelsman et al. [99]
demonstrated that the administration of SGS-111, an analog of the nootropic Piracetam, to DS human
fetal cortical neurons prevented oxidative damage and apoptosis, indicating that this treatment could
be effective in rescuing the cognitive alterations that characterize DS. However, in a later study, the pre-
and postnatal administration of this compound to Ts65Dn mice did not modify the cognitive abilities of
these animals [110]. Similarly, despite melatonin-exerted neuroprotection and induced pro-cognitive
effects observed when it was administered during adult stages to Ts65Dn mice, its administration
during pre- and postnatal stages did not prevent or reduce the cognitive impairment of these animals.
The differences found between the administration of this indoleamine to Ts65Dn mice during early and
late stages were probably due to the different doses used in each case, or to the well-known differences
in pharmacokinetics between infancy and adulthood [80].

Other compounds with antioxidant properties have been shown to be beneficial in mouse models
of DS when administered during early life stages. The flavonoid 7,8-dihydroxyflavone (7,8-DHF)
possesses powerful antioxidant properties independent of its actions on the TrkB receptor [139].
Administration of 7,8-DHF to Ts65Dn mice in the postnatal period (from P3 to P15) restores their
hippocampal neurogenesis and dendritic spine development, but its effects on the brain are ephemeral
since 1 month after cessation of the treatment these mice did not show any learning and memory
improvement [111,112]. When this flavonoid was administered from P3 to adolescence (P45–50),
it enhanced the learning and memory abilities of Ts65Dn mice; however, no benefits on the cognitive
abilities of these animals were found when they received 7,8-DHF during adulthood (from 5 months
of age for a period of 6 weeks) [111,112]. Similar to what was previously mentioned regarding the
effects of melatonin administration, these results indicate that the timing of the administration of some
antioxidants is critical for the attainment of positive effects on the brain. However, this might not be the
case for all antioxidants, treatment with vitamin E during early life stages ameliorated oxidative stress
and, similar to when it was administered during adulthood, it also improved cognition in the Ts65Dn
mouse [79]. Finally, preliminary studies have shown that apigenin, an FDA-approved antioxidant
small molecule, when administered to pregnant female mice, significantly improved the postnatal
exploratory behavior in the open field of their Ts1Cje pups, and thus it may serve as a potential
candidate for prenatal therapy [113,140]. Future studies should explore its effects in later life-stages.

Early supplementation of antioxidants to children and teenagers with DS, such as vitamins
E and C, attenuates systemic oxidative damage [38,131,132] (Table 2). In a randomized controlled
trial, Mustafa et al. [132] evaluated the ability of the administration of two antioxidants, vitamin E
(266 mg/day) and α-lipoic acid (100 mg/day) over a 4-month period, to reduce lipid peroxidation and
DNA damage in serum and urine, respectively, in 93 children and teenagers ranging from 7 to 15 years
of age. While none of the antioxidants reduced the lipid peroxidation markers in serum, α-tocopherol
slightly decreased oxidative stress at the DNA level in DS children. In another study, daily antioxidant
treatment with a combination of vitamins E (400 mg/day) and C (500 mg/day) given to children and
teenagers with DS over a 6-month period decreased lipid peroxidation in the blood of DS subjects [131].
In a later study, the same group also demonstrated that administration of this combined antioxidant
therapy persistently attenuated the systemic oxidative damage even when they assessed it 6 months
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after the discontinuation of the treatment [38]. Therefore, longer treatments or higher doses such as the
ones used in the later studies may be necessary to reduce oxidative damage to lipids with vitamin E
supplementation in individuals with DS.

Other nutrients with antioxidant properties such as minerals, fatty acids, or amino acids have also
been tested in individuals with DS (Table 2). Despite promising results after prolonged Coenzyme
Q10 treatment (4 mg/kg/day for 20 months) administered to children and teenagers with DS where
Tiano et al. [65] found a reduction in DNA damage in peripheral blood leukocytes, long-term
supplementation (4 years) of this coenzyme did not affect RNA or DNA oxidation in children with
DS [133]. The different results reported between these studies may be due to the different biomarkers
used to quantify oxidative stress and antioxidant activity, or to the different cells or tissues used for each
study. Additionally, considerable attention has been given to selenium as an essential micronutrient
with important antioxidant actions through the modulation of the activity of antioxidant enzymes such
as GPx [141]. However, its supplementation over a period of 6 months to children with DS ranging from
6 months to 16 years of age caused effects opposite to those expected, since this treatment reduced the
activity of this antioxidant enzyme in erythrocytes [134]. In that study, selenium supplementation was
well tolerated, and no side effects were observed, but the authors do not recommend its supplementation
to individuals with DS. In contrast, dietary supplementation for several treatment cycles (one treatment
cycle = 30 days dietary supplementation followed by a 30-day wash-out period) with the antioxidants
α-lipoic acid and L-cysteine, which act by modulating the glutathione system, decreased serum ROS in
children with DS [135].

Although the aforementioned studies suggest that supplementation with antioxidants
(mainly antioxidant vitamins) may alleviate OS in children and young adults with DS, clinical trials
have shown that minerals, vitamins, or antioxidant supplementation provides little or no benefit to
the cognitive function of children with DS [120–124] (Table 2). Ellis et al. [125] demonstrated that
oral supplementation with a daily combination of antioxidants (selenium, zinc, vitamins A, E, and C)
and folinic acid to infants less than 7 months old with trisomy 21 for 3–8 months did not produce
any effect on language acquisition, psychomotor development, or in the levels of certain biochemical
markers of OS. These authors propose that the lack of beneficial effects could be due to the low dose
of the supplements or the short duration of the treatment (18 months) [125]. In agreement with
this idea, in a later study, oral daily long-term (12 months) folate supplementation at high doses to
children with DS (aged between 3 and 30 months) slightly improved their psychomotor development
but did not produce any changes in sociability, language, or coordination. The authors attribute
the lack of benefits found in this study after the antioxidant treatment to the wide range of ages of
the participants, which caused heterogeneity in the results of some of the variables assessed [126].
However, in another study, after 6 months of supplementation with a mixture of different nutrients
with antioxidant properties including minerals (zinc) and vitamins (vitamins A, C, E, B1, B2, B3, B6, B9,
B12) to older children with ages ranging between 5 and 16 years, cholinesterase activity increased in the
serum of children with DS. This nutritional supplementation also produced a significant improvement
in their cognitive skills and behavioral patterns [127].

Altogether, the outcome of these studies suggests that future clinical trials to evaluate the effect of
antioxidant supplementation at early life stages should employ higher doses over longer periods of
time, a larger number of subjects, a narrower age range, and should include programs to periodically
monitor whether earlier intervention with antioxidants in DS exerts beneficial effects in cognition,
and if so, whether these effects are maintained over time. Finally, because OS in DS begins during
fetal stages, in subsequent clinical studies, antioxidant therapies should begin during pregnancy after
diagnosis of trisomy 21, or in the early stages of postnatal life.



Antioxidants 2020, 9, 692 13 of 23

4. Targeting Mitochondrial Dysfunction to Reduce OS in DS

Mitochondria are the main source of ROS production, but are also one of the main targets of ROS,
therefore, new therapeutic approaches to promote mitochondrial function and/or reduce mitochondrial
damage and energy deficits in DS have emerged (Tables 1 and 2).

Several preclinical and clinical studies have demonstrated that plants and plant extracts protect
against neurodevelopmental and neurodegenerative diseases. They exert neuroprotection by diverse
mechanisms depending on their ability to act in various signaling pathways, including those related to
OS [142–144].

Acetyl-l-carnitine is a molecule derived from the acetylation of carnitine that is naturally produced
by the body, but it can also be taken as a dietary supplement. This molecule has been demonstrated
to possess multiple antioxidant properties in the nervous system, most of them related to its ability
to act on mitochondrial metabolism [145,146]. In a double-blind study that enrolled 40 adults with
DS between the ages of 18 and 30 years, acetyl-l-carnitine was administered in ascending doses:
10 mg/kg/day in the first month, 20 mg/kg/day in the second month, and 30 mg/kg/day for the rest
of the study. The individuals received the treatment for a 6-month period, followed by a 3-month
wash-out period. Psychological and behavioral assessments were performed at the start of the study
and at 3, 6, and 9 months after the start of the treatment. The authors report that the cognitive abilities,
behavioral problems, and daily living skills of the participants who received acetyl-l-carnitine did not
differ from those who received placebo at any time point of the assessments [128].

Polyphenols are secondary metabolites produced by plants and are important constituents of
the human diet. Plant polyphenol compounds produce potent neuroprotective effects because of
their ability to act over a variety of signaling proteins that affect mitochondrial homeostasis, decrease
OS, reduce Aβ accumulation, reduce neuroinflammation, and decrease cognitive decline in various
neurodevelopmental and neurodegenerative diseases, including DS [142–144]. To the best of our
knowledge, the only polyphenols that have been investigated as potential therapeutic tools in DS are
epigallocatechin-3-gallate (EGCG), resveratrol, hydroxytyrosol (HT), and curcumin.

Resveratrol, a polyphenol isolated from grapes, red wine, peanuts, and berries, and EGCG,
the most common bioactive catechin present in green tea, promote neuroprotection by different
mechanisms, including their antioxidant actions and their effects on molecular pathways implicated
in the maintenance of mitochondrial homeostasis [33]. Furthermore, EGCG is a potent and selective
inhibitor of DYRK1A activity, a kinase encoded by the Hsa21 gene DYRK1A, and thus overexpressed
in DS, that participates in numerous molecular pathways related to some of the altered phenotypes
of this syndrome. Administration of these polyphenols restores the impairment of mitochondrial
bioenergetics and biogenesis, improving the activity of mitochondrial respiratory chain complexes
and ATP production, and promotes the proliferation of neuronal progenitor cells isolated from the
hippocampus of the Ts65Dn mouse [83]. In vivo, oral administration of EGCG to Ts65Dn mice
(2–3 mg/day) normalizes the activity of DYRK1A and improves the cognitive abilities of these
mice [114]. In addition, these authors also reported that oral administration of EGCG to adults
with DS (9 mg/kg/day) for 6 months also produced benefits in different cognitive parameters [116].
However, the effects of EGCG when administered to Ts65Dn mice at early life stages are controversial.
Stagni et al. [114] administered EGCG during prenatal stages to Ts65Dn mice. Although this compound
exerted beneficial effects on neurogenesis immediately after the discontinuation of the treatment,
these effects were not maintained 1 month later [114]. In addition, EGCG administered at early
postnatal stages to Ts65Dn mice failed to improve cognition and induced skeletal anomalies [115].
Thus, similar to the aforementioned results obtained after the administration of different antioxidants
in early stages in DS, studies with EGCG in children with this syndrome must carefully choose the
dosage and duration of the treatment at different life stages in order to obtain beneficial effects on
cognition while avoiding undesirable side-effects.

The safety and efficacy of EGCG has also been tested in various clinical trials with people with
DS. A randomized, double-blind, placebo-controlled, phase 2 trial conducted with young adults with
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DS treated with EGCG (9 mg/kg/day) for 12 months improved visual recognition memory, inhibitory
control, and adaptive behavior [129]. In a case report, Vacca and Valenti, [130] evaluated the beneficial
effects of a single daily dose of a supplement that combined EGCG (10 mg/kg/day) plus omega-3 fish
oil (8 mg/kg/day) given to a DS child over a 6-month period. The results showed that the combination
of these compounds restored mitochondrial deficits and improved neuropsychological performance
without producing side effects.

In the case of resveratrol, its effectiveness has been questioned because of its low bioavailability,
and so far its efficacy on the DS population has not been assessed.

HT, a polyphenol found in olives and olive oil, has been shown to display ROS scavenging and
chelating properties by decreasing ROS generation and lipid peroxidation and reducing intracellular
iron accumulation, respectively, in DS erythrocytes [147].

Curcumin is another natural polyphenol commonly used as a food additive. Recently, we tested
its ability as a neuroprotective compound to rescue the neuromorphological and cognitive alterations
of the Ts65Dn mouse when it is administered prenatally or during early postnatal stages. In that
study, prenatal administration of curcumin increased the brain weight as well as the density of
proliferating and mature hippocampal cells, and produced a long-term improvement of cognition
in the Ts65Dn mouse, while its postnatal administration did not induce any beneficial effect in
the altered phenotypes of these animals [117]. However, the effects of curcumin administration
on OS or mitochondrial function were not evaluated in this model of DS. As curcumin also exerts
neuroprotection due to its antioxidant and anti-inflammatory actions, future studies should address
whether the curcumin-induced pro-cognitive effect in this model is mediated by its effects on redox and
mitochondrial status. Additionally, as curcumin is currently being evaluated in clinical trials [148,149],
its antioxidant and pro-cognitive effects should also be assessed in the DS population.

Finally, it has been demonstrated that the administration of compounds that act on specific
mitochondrial regulatory genes could be a promising therapy to improve mitochondrial dysfunction
in DS. One of them is metformin, an FDA-approved drug that has been shown to rescue mitochondrial
dysfunction by increasing the respiratory activity and the cellular ATP content, and also to reduce the
anomalies found in mitochondrial morphology in fibroblasts from DS fetuses [24]. It has also been
demonstrated that Pioglitazone, another FDA-approved drug for the treatment of diabetes, improves
mitochondrial bioenergetics by increasing the ATP content and the oxygen consumption rate, and by
decreasing ROS production in trisomic fetal fibroblasts [119]. However, to date, no clinical trials have
been performed to assess its efficacy in humans with DS.

These recent studies indicate that the administration of natural polyphenols or other mitochondrial
therapies may improve the oxidative status, energy metabolism and cellular function in DS individuals,
avoiding premature neurodegeneration and delaying the progression of the cognitive deficits associated
with this syndrome.

5. Conclusions

In the last few decades, the life expectancy of individuals with DS has increased considerably and
today is above the 60 s [150]. Although various pharmacotherapies have been proposed [140,151–153],
there is currently no effective treatment available to improve the cognitive disabilities of individuals
with DS. As there is compelling evidence that OS is one of the main mechanisms implicated in the
neurodevelopmental anomalies and the neurodegeneration that occurs during aging in this condition,
many preclinical and clinical studies using antioxidants to decrease oxidative damage and improve
cognition in DS have been conducted.

However, the benefits observed in preclinical studies after antioxidant therapies on the cognitive
abilities of murine models of DS stand in contrast to those obtained in clinical trials. Most available
clinical studies demonstrate that antioxidant supplementation reduces biomarkers of oxidative stress
and promotes antioxidant activity in people with DS, but failed to find either an improvement in
cognitive functioning or a stabilization of the cognitive decline in aged DS individuals. Therefore,



Antioxidants 2020, 9, 692 15 of 23

the beneficial effects of antioxidant therapies on the cognitive dysfunction in individuals with DS is
still a matter of debate and, at present, the reasons for the relative failure of antioxidant interventions
in DS are not known.

Although in vitro and in vivo DS models are useful in order to study the molecular mechanisms
implicated in brain phenotypes, as well as for screening new therapeutic molecules prior to initiating
clinical trials, they do not fully recapitulate the complex behavioral and cognitive phenotypes and the
genotype of the DS population [153], demonstrating that there is a ‘biological gap’ between studies
performed in cellular and mouse DS models and those conducted with individuals with DS. This fact
makes it difficult to translate the results obtained in DS models after antioxidant therapy into safe and
effective treatments for human subjects.

Moreover, several other factors may also contribute to failures in the translation of these antioxidant
therapies to the DS population. Among these factors are the different drug formulations, interspecies
differences in drug pharmacokinetic characteristics, the adequacy of DS models, the timing of treatments,
the lack of human translational endpoints and of standardized outcome measures, and the low number
of participants in clinical trials, among others [153].

As the results of trials using either a single antioxidant (vitamin E) or a combination of antioxidants
have not provided a unifying outcome, further investigation into antioxidant therapy for the treatment of
cognitive disturbances in DS is needed. In this regard, several recently conducted mitochondria-targeted
antioxidant interventions have led to promising results and they have therefore been proposed to be
useful as antioxidant and antiaging therapies in DS. Among them are several natural polyphenols and
other mitochondrial therapies that should be evaluated in future clinical trials. In addition, some of
these molecules are being used in humans. Another possibility when planning future trials with people
with DS could be the election of a combination of different antioxidant therapies that play a role in both
mitochondrial dysfunction and counteracting oxidative damage, to reduce OS and improve cognition.

Finally, due to the strong connection between OS and other neuropathological mechanisms that
also contributes to neurodegenerative processes in DS, future therapeutic approaches may also combine
cellular antioxidants with molecules that act on other altered process such as the prevention of Aβ

aggregation, the reduction of neuroinflammatory processes, the modulation of energy metabolism,
the regulation of protein degradative systems (autophagy and proteasome), exosome cargo and
secretion, and the acquisition of cellular senescent phenotypes, among others.
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