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Simple Summary: A new technology has been recently developed by Oxford Nanopore Technolo-
gies, enabling researchers to investigate the structure and relative abundance of specific molecules,
ribonucleic acids. The ribonucleic acids carry information from the genes to proteins, which are
responsible for virtually every process in the human organism, including disease progression and
response to therapies. Special computational methods allow identification of various activated
biological processes by analyzing the changes in concentrations of ribonucleic acids. This is of
particular interest for precision medicine which aims at single-patient analysis. Here we evaluated
whether ribonucleic acid abundances measured by new technology are suited for robust predictions
of activated biological processes in single samples. We performed simulations varying the number of
experimental replicates and analysed activated biological processes’ predictions using two algorithms.
In brief, we found that at least two replicates are required to obtain reproducible results. We hope
that our findings may be of interest to researchers planning their nanopore experiments and may
stimulate further development of clinical applications of this technology.

Abstract: Long-read direct RNA sequencing developed by Oxford Nanopore Technologies (ONT) is
quickly gaining popularity for transcriptome studies, while fast turnaround time and low cost make
it an attractive instrument for clinical applications. There is a growing interest to utilize transcriptome
data to unravel activated biological processes responsible for disease progression and response to
therapies. This trend is of particular interest for precision medicine which aims at single-patient
analysis. Here we evaluated whether gene abundances measured by MinION direct RNA sequencing
are suited to produce robust estimates of pathway activation for single sample scoring methods. We
performed multiple RNA-seq analyses for a single sample that originated from the HepG2 cell line,
namely five ONT replicates, and three replicates using Illumina NovaSeq. Two pathway scoring
methods were employed—ssGSEA and singscore. We estimated the ONT performance in terms
of detected protein-coding genes and average pairwise correlation between pathway activation
scores using an exhaustive computational scheme for all combinations of replicates. In brief, we
found that at least two ONT replicates are required to obtain reproducible pathway scores for both
algorithms. We hope that our findings may be of interest to researchers planning their ONT direct
RNA-seq experiments.

Keywords: transcriptomics; nanopore technology; RNA-seq; MinION; pathway activation; systems
biology; HepG2

1. Introduction

Transcriptome analysis aims to provide information about the complete set of RNA
transcripts in the body under certain conditions. This type of molecular profiling can
be used to quantify gene expression and capture alternative splice variants. In contrast
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with the genome, which is mostly static, the transcriptome reflects the dynamic nature of
complex regulatory interactions between genes and proteins.

While microarrays have been the most popular platform for gene expression profiling
through the 2000s, the introduction of RNA-seq technology in 2008 offered several signif-
icant advantages, including higher dynamic range, low background signal, and ability
to detect novel splice variants and mutations [1]. The short-read RNA-seq technology
has become a “gold standard” for gene expression quantification providing an in-depth
understanding of biological processes [2]. Furthermore, RNA-seq depletion protocols from
Illumina were found to work well with degraded and low-quantity samples, which is
a major advantage for potential clinical applications [3]. However, short reads are less
suitable for sequencing long transcripts, thus increasing the likelihood of mapping errors
for isoform identification [4].

A new era was opened in transcriptome analysis with the introduction of long-read
or third-generation sequencing. While conventional short-read “RNA-seq” is rather inap-
propriately termed so since the RNA molecules are not directly sequenced [5], long-read
sequencing deals with full-length native RNA molecules without the necessity to perform
reverse transcription or amplification [6]. Direct RNA sequencing allows detection of
nucleotide modifications and estimation of poly-A tails length [7,8]. In addition, it has
significant advantages in identifying alternative splicing isoforms eliminating the need for
read mapping or assembly. Spike-in experiments have shown that direct RNA sequenc-
ing can accurately quantify gene and isoform abundance [9]. The technology drawbacks
include a higher error rate at the base calling stage, lower throughput, and sensitivity to
RNA degradation [4,10].

Numerous papers have been published comparing transcriptome profiles of normal
and affected tissue to find disease biomarkers. At the same time, it turned out that the
reproducibility of such studies at the level of individual genes is relatively poor [11,12].
In fact, even random gene expression signatures perform better than some published
cancer outcome predictors [13]. Thus, instead of single gene analysis, researchers often
characterize expression on the level of gene sets (pathways). Various methods were devel-
oped to assess pathway activation from transcriptomics data reviewed elsewhere [14,15].
The overall methodology of these tools is to estimate pathway perturbation scores, thus
reducing dimensionality and noisy gene expression effect [16]. However, most methods for
pathway activation borrow gene expression data from all samples in the cohort, which may
lead to unstable scores in small data sets often encountered in practice. Instead, analysis of
a single sample may detect individual-specific changes in transcriptome, thus paving the
road to the truly personalized medicine. Recent review of methods that score molecular
signatures and operate with single-subject transcriptome data can be found in Vitali et al.
2019 [17].

Several algorithms have been developed to infer activation scores for a single patient.
One of them is an extension of the widely used Gene Set Enrichment Analysis method [18],
so-called single-sample GSEA (ssGSEA) presented in [19]. In ssGSEA the score for a
gene set is calculated as a sum of the differences between two weighted cumulative
distribution functions of gene expressions inside and outside the set [20]. ssGSEA was used
to develop an immune-based prognostic score for ovarian cancer [21], analyze the potential
mechanisms causing differences in the immune response papillary thyroid cancer [22], and
quantify the infiltration levels of immune cells in the bladder tumor microenvironment [23].

Another single sample algorithm for scoring perturbed pathways is singscore [24]. It
has been successfully used for various applications, including investigation of transcrip-
tional profiles associated with specific mutations in acute myeloid leukemia [25], detection
of NK cell infiltration in metastatic cutaneous melanoma [26], and prediction of docetaxel
response in breast cancer patients [27]. This rank-based method supports unidirectional
(e.g., all genes are up-regulated) and bidirectional (with separate up and down-regulated
genes) gene signatures and pathway scores are directly interpretable as a normalized mean
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percentile rank. Additionally, the singscore algorithm does not include the resampling step,
eliminating the necessity to run it multiple times to ensure reproducibility.

In the present work, we attempted to analyze the performance of direct RNA-seq for
single sample pathway scoring using MinION sequencer from Oxford Nanopore Tech-
nologies (ONT). We performed multiple RNA-seq replicates of HepG2 cell line using both
long-read ONT and short-read Illumina technology. By focusing on protein-coding genes
and transcripts, we assessed the reproducibility of ONT technical repeats and compared it
with the Illumina platform in terms of the required number of replicates. Our results may
be of interest for researchers planning to analyze gene abundances quantified via direct
RNA-seq ONT sequencing.

2. Materials and Methods
2.1. Cells Preparation

The HepG2 cell line was obtained from Sigma-Aldrich (Merck KGaA). After thawing,
the cells were grown in culture medium DMEM/F12 supplemented with 10% fetal bovine
serum and 100 units/mL penicillin/streptomycin (all from Gibco, Amarillo, TX, USA) in a
humidified CO2-incubator under standard conditions (5% CO2, 37 ◦C). The medium was
exchanged every 3 days.

2.2. Sample and Library Preparation

Total RNA was isolated from HepG2 cells (5th passage, Sigma-Aldrich, St. Louis, USA)
with an RNeasy Mini Kit (Qiagen, Hilden, Germany), quantified on a NanoDrop-1000
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and its quality was
assessed using a Bioanalyzer 2100 System (Agilent Technologies, Palo Alto, CA, USA).
The RNA integrity numbers were 7.9 or higher for all RNA preparations. The mRNA
extraction was conducted with a Dynabeads™ mRNA Purification Kit (Thermo Fisher
Scientific, Waltham, MA, USA). The mRNA was quantified using a Qubit 4 fluorometer
and a Qubit RNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). The mRNA
preparations were either immediately used to prepare a sequencing library or frozen and
stored at −80 ◦C until further use.

2.3. Transcriptome Profiling

Transcriptome data was obtained by high throughput paired-end sequencing using
Illumina NovaSeq 6000 with read length equal to 100 bp. The TruSeq Stranded mRNA
Library Prep Kit was used to prepare RNA libraries. All steps were carried out in accor-
dance with the manufacturer’s protocol. Transcriptome profiling was performed in three
replicates with a separate process of RNA extraction for each replicate. Samples of 30 µL
total RNA with an average concentration of 300 ng/µL, were used for sequencing.

Nanopore sequencing was carried out on a MinION sequencer (Oxford Nanopore
Technology, Oxford, UK) in 48-h single runs, using FLO-MIN106 flow cells and a Direct
RNA sequencing kit (SQK-RNA002, ONT, Oxford, UK). The sequencing libraries were
prepared following the manufacturer’s protocol and were either immediately sequenced or
stored at −80 ◦C until use. The outputs varied between 1.4 and 2.9 Gb (0.96 to 2.6 million
reads). The mean quality score for five technical replicates was equal to 10.2.

Raw sequencing data for both platforms were deposited to NCBI SRA (https://www.
ncbi.nlm.nih.gov, accessed on 7 October 2021).

2.4. Data Analysis

For Illumina replicates, quality control was performed using FastQC [28]. Quality
control for ONT data was carried out using the epi2me “Basic QC” pipeline (https://
labs.epi2me.io/, accessed on 5 September 2021). Both ONT and Illumina replicates were
aligned to the reference transcriptome Ensembl cDNA v.103. The resulting ONT fastq files
were aligned using the long-read aligner Minimap2 using the “ax splice” mode [29]. Gene
expression and isoform analysis for both platforms was performed using Salmon [30].

https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov
https://labs.epi2me.io/
https://labs.epi2me.io/
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Expression of each transcript was quantified in transcript per million (TPM) units,
giving relative abundance. Gene expression was calculated by summing all the TPMs of
the corresponding transcripts.

Human genome annotation in the form of GTF file was downloaded from Ensembl
resource (GRCh38, release 103). We limited our analysis to protein-coding transcripts by
setting the following filters: type = ‘transcript’, gene_biotype = ‘protein_coding’, tran-
script_biotype = ‘protein_coding’ and tag = ‘basic’. We also did not include transcripts
assigned to the non-standard chromosomes. This resulted in 60,740 protein-coding tran-
scripts and 19,670 genes.

Two pathway scoring methods were employed, ssGSEA [19] and singscore [24]. We
used ssGSEA implementation from the GSVA package [31], version 1.36.3, while for
singscore corresponding R-package was utilized, version 1.8.0. Prior to analyses, low
expressed genes with TPM less than 0.1 were removed. As a source of gene sets we used
WikiPathways [32], a community-curated pathway database. Pathways containing less
than 5 genes were removed, resulting in 526 pathways. Computational analyses and plots
were performed using the R software environment (version 4.0) [33]. The R code can be
found at [https://sourceforge.net/projects/ont-sysbiol/, accessed on 26 October 2021].

3. Results

The overall workflow of the experiment and summary of data processing is presented
in Figure 1. In brief, we performed multiple RNA-seq analyses for a single sample that
originated from the HepG2 cell line. Five technical replicates were done using ONT
MinION, and three technical replicates were done using Illumina NovaSeq 6000.
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Figure 1. The overall workflow of the experiment. RNA was extracted from the HepG2 cell line and technical replicates
were performed using Illumina NovaSeq 6000 (3 replicates) and Oxford Nanopore MinION (5 replicates). Expression of
protein-coding transcripts was quantified using Salmon.

We performed basecalling with Guppy v5.0.7 [34] for ONT data. Only “pass” reads
as designated by the tool were used for the subsequent analyses. Quality control for
ONT data was carried out using the epi2me “Basic QC” pipeline (https://labs.epi2me.io/,
accessed on 5 September 2021), while for Illumina data, we used FastQC [28]. Both ONT
and Illumina reads were aligned to the reference transcriptome Ensembl cDNA v.103. Gene
expression and isoform analysis was performed using Salmon [30].

The information about mapped reads, detected transcripts, and genes is provided
in Table 1 for each sample. Three out of five ONT samples were comparable in terms
of the total number of reads (approx. 1.8 million reads) except for ONT-1, which gave

https://sourceforge.net/projects/ont-sysbiol/
https://labs.epi2me.io/


Biology 2021, 10, 1131 5 of 12

2.4 million reads. Another outlier was ONT-3, which yielded only 0.95 million reads.
We nevertheless decided to include this sample in the analysis as it may reflect various
experimental difficulties occurring during the ONT RNA-seq experiment. For ONT data
average read length was found to be 1255 ± 96 bp, while Illumina experiments were
performed with each read length equal to 100 bp.

Table 1. Information about mapped reads and numbers of detected protein-coding transcripts and genes for each sample.

Sample Num Total Reads Average Read
Length

Num Mapped
Reads

Num Expressed
Protein-Coding

Transcripts

Num Expressed
Protein-Coding

Genes

ONT-1 2,416,117 1174 2,329,641 36,001 12,562
ONT-2 1,813,263 1212 1,175,355 34,898 12,361
ONT-3 956,446 1381 914,186 31,078 11,710
ONT-4 1,807,655 1176 1,630,381 34,341 12,203
ONT-5 1,875,286 1333 1,799,768 34,517 12,353

ILMN-1 59,789,684 100 53,499,563 30,552 13,961
ILMN-2 95,048,978 100 86,520,672 31,954 14,104
ILMN-3 54,075,176 100 46,702,470 28,993 13,972

The obtained results show that our data is mostly concordant with other experiments
using Illumina and ONT platforms. For example, a typical Illumina RNA-seq experiment
yields ~30 million reads, while approximately one million reads per flow cell are obtained
on average using MinION/GridION for direct RNA sequencing [35–37].

3.1. Intra- and Inter-Platform Reproducibility

Next, we turned to the evaluation of the reproducibility of gene quantification for
individual replicates. Data were restricted to genes that were observed in all replicates for
each platform. The median coefficient of variation (CV) for the Illumina platform was found
equal to 27.34%, while ONT showed a higher median CV equal to 33.93% (Figure 2a). The
inter-platform correlation measured as Spearman coefficient between replicates was high
both for ONT (average R = 0.952, Figure 2b) and Illumina (average R = 0.969, Figure 2c).

We also compared the agreement between two platforms in terms of gene ranking.
For each gene, we calculated its average rank across three Illumina replicates and five ONT
replicates. Pearson correlation between mean gene ranks was equal to R = 0.914 (Figure 2d).
As expected, more pronounced cross-platform deviations can be seen for low expressed
genes. Additionally, there were 554 genes not detected in any Illumina replicate and 1850
genes not detected in any ONT replicate. These genes are shown in Figure 2d as vertical
and horizontal spurs.

Overall our results are consistent with other findings showing good inter- and intra-
platform concordance [6,38]. However, as expected, the Illumina platform performed better
in terms of reproducibility as compared to ONT.



Biology 2021, 10, 1131 6 of 12

Biology 2021, 10, x FOR PEER REVIEW  6 of 13 
 

 

 

Figure 2. Comparison of intra‐ and inter‐platform variation of gene quantification for Illumina and 

ONT. Data were restricted  to genes  that were observed  in all replicates  for each platform. Gene 

expression was measured  in TPM units.  (a) Distribution of coefficient of variation  for both plat‐

forms.  (b)  Between  replicates  pairwise  gene  correlation matrix with  Spearman  coefficients  for 

ONT platform. (c) Between replicates pairwise gene correlation matrix with Spearman coefficients 

for  Illumina platform.  (d) Correlation between  average gene  expression  ranks  for  Illumina  and 

ONT platform. Genes are represented by dots. Horizontal and vertical spurs indicate genes not de‐

tected by ONT (n = 1850) and Illumina (n = 554) platforms, respectively. 

We also compared the agreement between two platforms in terms of gene ranking. 

For each gene, we calculated  its average rank across  three  Illumina replicates and  five 

ONT  replicates. Pearson  correlation between mean gene  ranks was equal  to R = 0.914 

(Figure  2d). As  expected, more pronounced  cross‐platform deviations  can be  seen  for 

low expressed genes. Additionally,  there were 554 genes not detected  in any  Illumina 

replicate and 1850 genes not detected  in any ONT replicate. These genes are shown  in 

Figure 2d as vertical and horizontal spurs. 

Overall our results are consistent with other findings showing good  inter‐ and  in‐

tra‐platform concordance [6,38]. However, as expected, the Illumina platform performed 

better in terms of reproducibility as compared to ONT. 

   

Figure 2. Comparison of intra- and inter-platform variation of gene quantification for Illumina and ONT. Data were
restricted to genes that were observed in all replicates for each platform. Gene expression was measured in TPM units. (a)
Distribution of coefficient of variation for both platforms. (b) Between replicates pairwise gene correlation matrix with
Spearman coefficients for ONT platform. (c) Between replicates pairwise gene correlation matrix with Spearman coefficients
for Illumina platform. (d) Correlation between average gene expression ranks for Illumina and ONT platform. Genes are
represented by dots. Horizontal and vertical spurs indicate genes not detected by ONT (n = 1850) and Illumina (n = 554)
platforms, respectively.

3.2. ONT Replicates for Gene/Transcripts Identification

One of the drawbacks of the MinION sequencing device is the much lower throughput
in terms of the read number as compared with the Illumina platform. This means that
analysis of a single replicate detects only a fraction of all expressed transcripts [9,36]. Here
we tried to estimate the number of ONT replicates required to detect the majority of protein-
coding transcripts expressed in HepG2 cells. This can be of interest to researchers who
would like to optimize the ONT-sequencing part of their experiments.

We used the following approach to simulate the various number of replicates of the
nanopore RNA-seq experiments. For each number of replicates, nrep, we took all possible
combinations of experimental replicates. For example, for nrep = 4 we had the following
combinations of ONT replicates: (1, 2, 3, 4), (1, 2, 3, 5), (1, 2, 4, 5), (1, 3, 4, 5) and (2, 3, 4, 5).
Each transcript or gene was claimed to be expressed if detected in at least one replicate
included in the combination. Results of the simulation are presented in Figure 3.
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Figure 3. Total number of detected features for various number of replicates. Different combinations of experimental
replicates ONT-1, . . . , ONT-5 were generated. Each transcript (a) or gene (b) was claimed to be expressed if it was detected
in at least one replicate included in the combination.

When changing the number of replicates, the sequencing performance was assessed
by evaluating the number of expressed transcripts and genes. For a single ONT replicate
on average, we detected 34,517 ± 557 protein-coding transcripts (median ± IQR) and
12,353 ± 158 protein-coding genes. For two ONT replicates, there were 37,172 ± 1196
transcripts and 12,906 ± 212 genes. As expected, the increased number of replicates
quantified more expressed genes and transcripts, and for five replicates, we detected a
total of 40,093 transcripts and 13,655 genes. The detection trend revealed a significant
improvement in the number of quantified genes from one replicate to two replicates while
adding more replicates gave relatively minor advantages. We may conclude that two
ONT replicates seem to be a reasonable trade-off between the number of replicates and the
number of quantified transcripts/genes.

3.3. ONT Replicates for Quantifying Pathway Activation

We evaluated whether gene abundances obtained via direct RNA sequencing with
MinION technology are robust enough to be utilized for the prediction of activated path-
ways and genesets. To check it, we analyzed various datasets generated as combinations of
ONT replicates. Data obtained from Illumina was used as a reference.

We utilized two popular methods to score molecular signatures (gene sets, pathways)
in individual samples—singscore [24] and ssGSEA [31]. Both algorithms take gene ex-
pression in a sample and a collection of gene sets as input and return scores that measure
the relative activation level of each gene set. Unlike many other methods, singscore and
ssGSEA can be applied to single-subject transcriptomes.

WikiPathways was used as a collection of genesets [32]. Pathways containing less
than five genes were removed, resulting in a total of 526 pathways. Both ONT and Illumina
RNA-seq data were processed by filtering out low abundance genes with TPM less than 0.1.

The technique for estimating the reproducibility of pathway activation was as follows.
Similar to the methodology for gene/transcript quantification described earlier, for each
number of replicates, nrep, we took all possible combinations of experimental replicates.
For example for nrep = 4 we had the following combinations of ONT replicates: (1, 2, 3, 4),
(1, 2, 3, 5), (1, 2, 4, 5), (1, 3, 4, 5) and (2, 3, 4, 5). For each combination, gene expression
was summed, simulating increased sensitivity to quantify gene abundance. Then, for each
pair of ONT replicates, e.g., (1, 2, 3, 4) and (1, 2, 3, 5), pathway scores were estimated
via either singscore or ssGSEA. Spearman correlation between pathway scores for each
pair was calculated, giving an estimate of pathway activation reproducibility. The whole
process was repeated many times for all pairwise combinations of several ONT replicates.
The same procedure was done for Illumina data. The simulation results are presented in
Figure 4, which may be viewed as a key result of our study.
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Obtained results for both pathway scoring algorithms generally coincide. As ex-
pected, the reproducibility of pathway activation scores improved with the increase in
the number of replicates. For various pairs of single ONT replicates, the average correla-
tion between singscore pathway scores was 0.858 ± 0.070 (median ± IQR), while for two
replicates, it was equal to 0.955 ± 0.023. Further increase in the number of ONT replicates
led only to relatively minor improvements in reproducibility: three replicates gave on
average 0.974 ± 0.011 correlation between pathway scores. Results of the ssGSEA algo-
rithm showed the same pattern. For different pairs of single ONT replicates, the average
correlation between ssGSEA pathway scores was 0.939 ± 0.037, while for two replicates,
it significantly increased and was equal to 0.982 ± 0.011. Average correlation coefficient
when combining various three ONT replicates was equal to 0.991 ± 0.004.

Of note, reproducibility for Illumina data was found to be substantially better. For
various pairs of single Illumina replicates, the average correlation between singscore
pathway scores was 0.916 ± 0.027, while for ssGSEA the average correlation was equal to
0.959 ± 0.013. For various pairwise combinations of two Illumina replicates, the average
correlation was 0.978 ± 0.004 for singscore and 0.990 ± 0.003 for ssGSEA. Overall using two
Illumina replicates we achieved the same results in reproducibility of pathway activation
scores as for three ONT replicates.

3.4. Confirmation of Results Using Published Data

The results obtained in the previous section were based on transcriptome profiling
of the HepG2 cell line. However, these findings may not reproduce when studying other
cell types. To check this, we searched NCBI SRA resource for similar datasets containing
multiple replicates of either Illumina or MinION direct RNA-seq profiling of the same cell
line except for the HepG2. For the HCT116 cell line, we found three replicates performed
with Illumina NovaSeq 6000 (run ids SRR12698952, SRR12698953, SRR12698954) [39] and
four direct RNA-seq replicates performed with MinION (run ids ERR6053047, ERR6053055,
ERR6053056, ERR6053057) [40]. All ONT runs had more than 800,000 reads.

The same computational pipeline comparing pathway activation scores for various
combinations of replicates was run. Simulation results for the HCT116 cell line are provided
in Supplementary (Figure S1). For various pairs of single ONT replicates, the average
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correlation between singscore pathway scores was 0.910 ± 0.037. For two replicates it
significantly increased to 0.962 ± 0.015, while adding the third replicate led to minor
reproducibility improvements, 0.980 ± 0.006. Results of the ssGSEA algorithm followed
the same pattern: for different pairs of single ONT replicates, the average correlation was
0.974 ± 0.008, while for two replicates, it increased up to 0.990 ± 0.003. For the HCT116 cell
line Illumina data performance was also substantially better compared to the ONT platform:
two Illumina replicates yielded the same reproducibility of pathway activation scores as
three ONT replicates. Overall we conclude that our HepG2 transcriptome profiling results
can be reproduced using published data on the HCT116 cell line.

4. Discussion

Nanopore RNA sequencing is becoming increasingly widespread due to its low cost,
simplicity of library preparation, and potential to sense single-molecule modifications.
Long reads make it possible to unambiguously identify expressed isoforms, thus increasing
the accuracy of abundance estimates. The portability of the MinION device, coupled with
its fast turnaround time, turns it into a promising tool to be used in clinical practice for
early diagnosis, treatment, therapeutic monitoring, etc. [41].

Indeed, precision medicine aims at understanding disease mechanisms in single
patients, and studying an individual’s transcriptome alterations may yield important
theranostic results affecting the therapy strategy. Several bioinformatics tools have been
developed to detect activated or repressed biological processes using gene expression
data. However, most of them require either a large cohort of reference samples or use
paired biopsies drawn from the same patient [17]. However, this scenario is not always
available in real clinical applications. Hence, we focused on single sample methods (namely,
ssGSEA [19] and singscore [24]) and assessed whether direct RNA-seq data generated by
the MinION platform is suitable to be used for reproducible detection of activated pathways.
Conventional transcriptome data generated by the Illumina platform for the same sample
was used as a reference to compare with.

The key parameter for transcriptome profiling is the number of quantified transcripts.
However, this value is of lesser importance for systems biology applications since algo-
rithms operate only with genes ascribed to some pathways or gene sets. Thus, we ignored
all non-coding transcripts and limited our analysis only to protein-coding genes. Using
direct RNA-seq profiling of the HepG2 cell line, we detected on average more than 34,000
protein-coding transcripts assigned to more than 12,000 genes.

Our next step was to ensure that gene quantification for individual replicates is
reproducible for intra- and inter-platform comparisons. We found that both Illumina and
ONT showed good concordance between replicates, while the former platform performed
better. This finding is in line with previous results [6,42]. The gene ranks correlation
between both platforms was also relatively high, while there were genes whose expression
was detected only by one of them.

An important parameter in planning transcriptome profiling experiments is the num-
ber of replicates. Since the MinION platform generates only a limited number of reads,
this complicates the detection of less abundant transcripts for a single replicate [36]. We
simulated the varying number of ONT replicates, estimating the total number of detected
transcripts and genes. The obtained results indicated that two ONT replicates seem to be
enough to detect expression for most of the transcripts and genes.

Using an exhaustive computational scheme for all replicate combinations and in
agreement with the previous section, we found that two ONT replicates allow one to
quantify the pathway activation with adequate reproducibility. This result was reproduced
for both ssGSEA and singscore algorithms. As expected, a further increase in the number
of ONT replicates led to improvements in pathway scoring reproducibility, while using
two replicates seemed to be a reasonable trade-off. Another expected finding was the better
performance of the Illumina NovaSeq platform as compared to the MinION device.
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It should be noted that the field of nanopore-based transcriptomics is in active devel-
opment. Direct RNA sequencing which does not utilize amplification steps has been only
recently developed by ONT [6] and more work is needed to estimate this type of data in
terms of reproducibility and biases [7,43]. To the best of our knowledge, our study is the
first to apply system biology methods for single sample detection of activated pathways to
the ONT direct RNA-seq data.

There are certain limitations of our analysis that we are aware of. Although we were
able to reproduce our HepG2-based findings using published data on the HCT116 cell
line, still this does not guarantee that it will hold for other cell types. There may be other
methods for single-sample analysis which can potentially be utilized including FAIME [44].
However, the latter is microarray-oriented and operates on the normalized gene expression
and not on more stable gene ranks. An arsenal of system biology methods has been
developed to analyze differentially expressed genes, while there was a single condition in
our experiment. So, it would be of interest to see the behavior of these algorithms for direct
RNA-seq data. However, this comparison would likely require many ONT replicates since
it has been estimated that from six to twelve Illumina RNA-seq replicates are required to
detect significantly differentially expressed genes for all fold changes [45]. We believe that
the aforementioned issues and limitations should be addressed in further research.

5. Conclusions

The aim of our study was to evaluate the performance of direct RNA-seq via ONT
MinION platform for systems biology applications, namely for single-sample quantifi-
cation of pathway activation scores. In brief, we found that at least two experimental
replicates are required to obtain reproducible results. We hope that these findings and de-
veloped methodology may be of interest to researchers planning their ONT direct RNA-seq
experiments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biology10111131/s1, Figure S1: Pairwise Spearman correlation between pathway scores for
different combinations of experimental replicates using published data for HCT 116 cell line.
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