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Abstract
Impending anthropogenic climate change will severely impact coastal organisms at 
unprecedented speed. Knowledge on organisms’ evolutionary responses to past sea- 
level fluctuations and estimation of their evolutionary potential is therefore indispen-
sable in efforts to mitigate the effects of future climate change. We sampled tens of 
thousands of genomic markers of ~300 individuals in two of the four extant horse-
shoe crab species across the complex archipelagic Singapore Straits. Carcinoscorpius 
rotundicauda Latreille, a less mobile mangrove species, has finer population structure 
and lower genetic diversity compared with the dispersive deep- sea Tachypleus gigas 
Müller. Even though the source populations of both species during the last glacial 
maximum exhibited comparable effective population sizes, the less dispersive C. ro-
tundicauda seems to lose genetic diversity much more quickly because of population 
fragmentation. Contra previous studies’ results, we predict that the more commonly 
sighted C. rotundicauda faces a more uncertain conservation plight, with a continuing 
loss in evolutionary potential and higher vulnerability to future climate change. Our 
study provides important genomic baseline data for the redirection of conservation 
measures in the face of climate change and can be used as a blueprint for assessment 
and mitigation of the adverse effects of impending sea- level rise in other systems.

K E Y W O R D S

benthic dispersal, climate change, conservation genomics, demographic reconstruction, 
seascape genomics, Sunda shelf

www.wileyonlinelibrary.com/journal/eva
mailto:﻿
mailto:﻿
mailto:﻿
mailto:﻿
https://orcid.org/0000-0001-8946-7085
http://creativecommons.org/licenses/by/4.0/
mailto:mcbbv@imcb.a-star.edu.sg
mailto:dbsrfe@nus.edu.sg


     |  2125TANG eT Al.

1  | INTRODUC TION

Global sea- level change is one of the most prominent factors shap-
ing coastal and marine natural communities through constant range 
shifts and changes in connectivity (Bird et al., 2007; Sheaves, 2009). 
Depending on life- history parameters such as habitat preference 
and dispersal ability, coastal marine species differ in their evolution-
ary responses to environmental fluctuations in the wake of sea- level 
change (Leprieur et al., 2016; Ludt & Rocha, 2015; Ni et al., 2014). 
An expanding genomic infrastructure and the recent development 
of powerful analytical approaches provide an opportunity to investi-
gate the interplay between life- history parameters and evolutionary 
responses (Gagnaire, 2020; Gagnaire et al., 2015). Understanding 
an organism's evolutionary responses to such range shifts is a criti-
cal prerequisite for the conservation of coastal marine biodiversity 
in this era of anthropogenic climate change (Chuang & Peterson, 
2016; Miller et al., 2020; Nadeau & Urban, 2019). To evaluate spe-
cies viability during environmental changes, most previous studies 
have estimated the evolutionary potential (e.g., genetic variation) of 
expanding populations by comparing them with populations in the 
core range (Berthouly- Salazar et al., 2013; Braasch et al., 2019; Chen 
et al., 2018; Pierce et al., 2000; Robalo et al., 2020; Yang et al., 2016). 
However, many environmental fluctuations result in original habitats 
becoming uninhabitable, rendering core habitats difficult to identify, 
or individuals in core habitats undergo major demographic events 
(e.g., bottlenecks) which hamper a meaningful estimation of the 
evolutionary potential of expanding and receding populations. Two 
horseshoe crab species across the Singapore Straits in South- East 
Asia, one of the world's most dynamic coastal landscapes, provide us 
with a unique opportunity to estimate the evolutionary potential of 
expanding coastal marine species whose source habitats during the 
last glacial maximum (LGM) remain unknown.

Horseshoe crabs are long- lived marine arthropods, often re-
ferred to as living fossils because of their nearly unchanged physical 
appearance over 455 million years (Rudkin et al., 2008). They occur 
across some of world's seas in four extant species. Two of them, 
Carcinoscorpius rotundicauda Latreille and Tachypleus gigas Müller, 
are widespread across coastal South- East Asia, with highly over-
lapping ranges of distribution (John et al., 2018; Sekiguchi, 1988; 
Vestbo et al., 2018). The two species diversified 248 million years 
ago (Shingate et al., 2020) and possess different numbers of chromo-
somes (C. rotundicauda of 16 pairs and T. gigas of 14 pairs, Sekiguchi, 
1988), which rules out potential for ongoing gene flow despite their 
highly overlapping ranges of distribution. Moreover, during artificial 
insemination experiments between the two species, eggs stopped 
development at blastula stage (Sekiguchi & Sugita, 1980). While sim-
ilar morphologically, C. rotundicauda is relatively smaller (Figure 1), 
with a total length of ~30 cm (Srijaya et al., 2010), compared with 
T. gigas, which has a total length of ~40 cm (Tan et al., 2012). Their 
common names, mangrove horseshoe crab (C. rotundicauda) and 
coastal horseshoe crab (T. gigas), reflect habitat preference, with the 
former found in mangroves and mudflats and the latter on sandy 
beaches (Behera et al., 2015; Cartwright- Taylor et al., 2011). Little 

information is available on the two species’ dispersal ability: one six- 
month tracking study in Singapore indicates that C. rotundicauda is 
unlikely to travel across open sea (Cartwright- Taylor & Ng, 2012), but 
allows for limited conclusions given that horseshoe crabs’ longevity 
exceeds 14 years (Sekiguchi, 1988). Based on preliminary genetic 
studies around the Malay Peninsula, population structure may be 
similar between C. rotundicauda and T. gigas, with the land barrier 
of the Malay Peninsula potentially impeding their dispersal (Adibah 
et al., 2015; Liew et al., 2015), but there is a lack of spatial analyses 
to explore dispersal patterns.

Although widespread across South- East Asia today, the two 
horseshoe crab species may be limited in their contemporary ranges 
to few refugium habitats, as the drastic decline in effective popula-
tion size during the inception of the last glacial period would suggest 
(Shingate, Ravi, Prasad, Tay, Garg et al., 2020). Akin to many other 
marine species (Crandall et al., 2012), horseshoe crabs repopulated 
the Sunda Shelf from unknown source populations at the end of 
LGM, as new coastal habitats were created by rising sea levels. Range 
expansions during the Holocene sea- level rise may have boosted ge-
netic variation as population sizes steadily increased (Wagner et al., 
1997). However, such rapid expansion may also lead to a rapid loss 
of genetic diversity, as expanding populations become susceptible 
to environmental fluctuations (Eckert et al., 2008; Peter & Slatkin, 
2013), especially in organisms with a slow reproductive rate such 
as horseshoe crabs (Shingate, Ravi, Prasad, Tay, Garg et al., 2020). 
Recent human- induced habitat degradation, pollution, and overhar-
vesting pose additional threats to the two horseshoe crab species 
(Carmichael et al., 2015; John et al., 2018, 2021). Even though the 
international conservation status remains ‘Data Deficient’ for both 
species, regional and national surveys have led to a listing of both 
species under various threat categories, for example ‘vulnerable’ for 
C. rotundicauda and ‘endangered’ for T. gigas in Singapore (Davison 
et al., 2008).

In this study, we screened hundreds of thousands of genome- 
wide single nucleotide polymorphisms (SNPs) over 300 individuals 
of the two horseshoe crab species with a comprehensive geographic 
coverage across the Singapore Straits, a complex archipelagic nexus 
on the Sunda Shelf that has undergone dramatic habitat transfor-
mation during the Holocene (i.e., roughly the past ~10,000 years). 
We aimed to measure the dispersal ability and genetic diversity of 
the two horseshoe crab species as a novel type of baseline data for 
the implementation of conservation and mitigation measures against 
the effects of impending rising sea levels. The results of this research 
are already being implemented by some local authorities.

2  | MATERIAL AND METHODS

Our sampling covered the Singapore Straits at a radius of 100 km 
around Singapore island (1°22’N, 103°48’E). A total of 188 C. rotundi-
cauda and 116 T. gigas were collected across 46 locations (Figure 1; 
Table S1). All samples were captured alive and released after mus-
cle tissue had been collected from one of their ambulatory legs, or 
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blood had been drawn from the hinge, to ensure minimal intrusive-
ness. Tissue and blood samples were preserved in absolute etha-
nol and stored at −20°C for subsequent processing. We extracted 
genomic DNA using the DNeasy Blood & Tissue Kit (Qiagen). We 
followed a double- digest RAD (ddRAD) library preparation protocol 
(Peterson et al., 2012) with few modifications. In brief, we used the 
restriction enzymes EcoRI and MSeI to digest the extracted genomic 
DNA and ligated the digested fragments with adapters. We pooled 
and selected ligated fragments of ~350 bp size using Pippin Prep 
(Sage Science) and performed eight PCR cycles on the size- selected 
fragments for final library preparation before submission for next- 
generation sequencing (Illumina HiSeq 4000, paired- end 150 bp 
read length).

We checked sequence quality using FastQC (Babraham 
Bioinformatics) and demultiplexed all sequences using process_rad-
tag as implemented in Stacks v2.4 (Rochette & Catchen, 2017). We 
aligned raw reads to whole- genome sequences of C. rotundicauda 
(Shingate, Ravi, Prasad, Tay, Garg et al., 2020) (GenBank accession 
number VWRL00000000) and T. gigas (Shingate, Ravi, Prasad, Tay, & 

Venkatesh, 2020) (GenBank accession number JAALXS000000000), 
respectively, using BWA- MEM as implemented in BWA v.0.7.15 
(Li, 2013). Reads with MAPQ scores lower than 20 were discarded. 
Using ref_map.pl, as implemented in Stacks v2.4, we called 2,720,972 
SNPs for C. rotundicauda (average stack depth 22.8x) and 2,779,046 
SNPs for T. gigas (average stack depth 21.7x) without prior popu-
lation assignment (per sample coverage weighted by sample size 
is 8.98– 54.89 for C. rotundicauda and 7.85– 31.33 for T. gigas). We 
did not assign individuals to populations based on their sampling 
locality because our sampling focused on maximizing spatial cov-
erage to guarantee as much differentiation as possible in pairwise 
spatial distances for increased robustness of the IBD- related analy-
ses (see below), leaving uneven numbers of individuals at each site. 
Therefore, we excluded some subsequent analyses that require pop-
ulation assignment, for example, the calculation of private alleles 
per population. Moreover, as the area of study is relatively small 
compared with the mobility of horseshoe crabs, analyses based on 
sampling locality determined population assignment may not be in-
formative. We used PLINK v1.9 (Purcell et al., 2007) to filter missing 

F I G U R E  1   Genetic differentiation of two horseshoe crab species across the Singapore Straits. Sampling localities are illustrated as circles 
whose gray scale corresponds to locality- specific F coefficients (calculated based on datasets C0 and T0). PCA plots are re- scaled according 
to PC values, with the color of sample points adjusted to the color gradient on map. (a) C. rotundicauda; (b) T. gigas. Mangrove distribution by 
Giri et al. (2011) is illustrated as dark- shaded coastal areas

●

●●

●

●

●

●

●

●

●

●●●

●●

●●

●●

●

●● ●

●
●● ●

●

●

●

●

●

●●

●

●●●

Johor, Malaysia

Singapore

Batam
Bintan

Kundur

Rangsang

Singapore Strait

South China Sea

Malacca Strait

Singapore Strait

Malacca Strait

South China Sea

10% missing data (dataset T1)

10% missing data (dataset C1) 0% missing data (dataset C0)

0% missing data (dataset T0)

P
C

1 
2.

41
%

P
C

1 
2.

17
%

P
C

1 
1.

11
%

P
C

1 
1.

22
%

PC2 1.11% PC2 1.20%

PC2 1.43%

PC2 1.62%

Carcinoscorpius rotundicauda

Tachypleus gigas

So
ut

h 
Ch

in
a 

Se
a

Borneo

Indochina

Batam
Bintan

Rangsang

Johor, Malaysia

Singapore

Kundur

F coefficient

0.05

0.10

0.15

F coefficient

●●

●
●●

●

●●
●●

●

●

●

●

●

●
● ●

●●● ●●

●●●

●

●●

0.02

0.04

0.06

0.08

(a)

(b)



     |  2127TANG eT Al.

data. PLINK was also run to remove physically linked loci for some 
analyses but not for others (see below) (indep- pairwise algorithm 
with a 25- SNP window sliding 10 SNPs during each step; unphased- 
hardcall r2 threshold = 0.95).

To accommodate different requirements of downstream analyt-
ical programs, we generated six SNP datasets, three for each spe-
cies: (C0) C. rotundicauda with 0% missing data and no linked loci 
(104,252 SNPs); (C0L) C. rotundicauda with 0% missing data while 
retaining linked loci (116,670 SNPs); (C1) C. rotundicauda with ~10% 
missing data and no linked loci (785,339 SNPs); (T0) T. gigas with 
0% missing data and no linked loci (94,013 SNPs); (T0L) T. gigas with 
0% missing data while retaining linked loci (108,728 SNPs); and (T1) 
T. gigas with ~10% missing data and no linked loci (432,544 SNPs). 
Detailed scripts outlining data quality control are appended in the 
supplement.

To examine genetic variation within individuals, within sampling 
localities, and among sampling localities for C. rotundicauda and 
T. gigas in our study area, we performed AMOVA, as implemented 
in the R package poppr (Kamvar et al., 2014), on datasets C0, C1, 
T0, and T1. We calculated observed and expected homozygosity 
as well as method- of- moments F coefficients for datasets C0, C1, 
T0, and T1 using the - - het function available in PLINK v1.9. We av-
eraged F for individuals collected at identical sampling localities to 
check spatial patterns in the distribution of genetic diversity. To ob-
tain an alternative proxy of genetic diversity, we calculated effec-
tive population size based on genome- wide linkage disequilibrium 
(LDNe), which is considered one of the superior ways of computing 
effective population sizes with single time point sampling (Waples, 
2016). Moreover, as chromosomal linkage and recombination infor-
mation are available for horseshoe crabs, we can rule out the usual 
shortcoming of the LDNe approach, such as the underestimation of 
recent effective population sizes (Waples et al., 2016). The estima-
tion of contemporary LDNe was conducted on datasets C0L and T0L 
using NeEstimator v2.1 (Do et al., 2014), with a random mating model 
and minimum allele frequency >0.05. We computed fluctuations of 
LDNe over time on datasets C0L and T0L using LinkNe (Hollenbeck 
et al., 2016). LinkNe requires input of locus positions in centiMor-
gans (cM), requiring us to convert the unit of original locus positions 
from bp to cM using 106 bp = 1 cM as an approximation based on 
the estimated genomic recombination rate of the Atlantic horseshoe 
crab (maternal 1.28 cM/Mb and paternal 0.76 cM/Mb) (Nossa et al., 
2014). To guarantee the precision of LDNe estimation with LinkNe, 
we set bin sizes to 0.1 cM (over 10,000 pairwise comparisons in each 
bin) and the minimum allele frequency at >0.05. We used a genera-
tion time estimate of 14 years based on life- history data (Sekiguchi, 
1988) when converting the number of generations into years. As our 
study focuses on a relatively small geographical area (~100 km ra-
dius), relatedness can be a highly accurate proxy of genetic diversity. 
To estimate pairwise relatedness on datasets C0, C1, T0, and T1, we 
used a maximum- likelihood algorithm as implemented in the R pack-
age SNPRelate (Zheng et al., 2012).

To visualize genomic diversification among individuals, we 
performed principal component analysis (PCA) based on the SNP 

genotype data, as implemented in SNPRelate, for datasets C0, C1, 
T0, and T1. In addition, we ran ADMIXTURE (Alexander et al., 2009), 
which uses maximum- likelihood ancestry estimation, across data-
sets C0, C1, T0, and T1 to detect whether there are any population 
subdivisions within our study area. We performed discriminant 
analysis of principal components (DAPC, Jombart et al., 2010) on 
datasets C0 and T0 to provide a model- free alternative for potential 
population subgrouping using the R package poppr (Kamvar et al., 
2014). To verify whether the population genetic structure is contrib-
uted by genome- wide differentiation or the ‘outlier’ loci under se-
lection, we carried out two analyses based on the results of PCA and 
ADMIXTURE respectively. For the results of PCA, we calculated the 
correlations between the dominant principal component, PC1, and 
the SNP genotypes using function snpgdsPCACorr, as implemented in 
SNPRelate. For the results of ADMIXTURE, we ran a 20,000 bp sliding 
window moving in steps 5000 bp, performing Fst calculation for the 
nonadmixed individuals (with over 80% ancestry fraction) between 
probable ancestral populations using VCFtools v0.1.16 (Danecek 
et al., 2011).

To examine spatial- genetic patterns, we calculated genetic dis-
tance matrices for datasets C0 and T0 using a relative dissimilarity 
approach (diss.dist) as implemented in the R package poppr (Kamvar 
et al., 2014) and geographic distance matrices using the least- cost 
approach implemented in the R package gdistance (Etten, 2017) to 
account for landmasses between paired individuals. Subsequently, 
using GenAlEx v.6.51 (Peakall & Smouse, 2006), we modeled linear 
isolation by distance (IBD) and performed Mantel tests with 999 
permutations to check for a spatial- genetic correlation and corre-
spondence. We also ran spatial autocorrelation analysis (Smouse & 
Peakall, 1999), as implemented in GenAlEx v6.51, for 999 permuta-
tions and 999 bootstraps, to examine dispersal patterns at different 
geographic distance classes. We mapped the spatial distribution of 
resistance to dispersal using DResD (Keis et al., 2013). DResD intakes 
the distance matrices of geographic and genetic distances to model 
nonlinear IBD, calculates IBD residuals of individual pairs, and maps 
the weighted means of IBD residuals to visualize the distribution of 
resistance to dispersal. We overlaid bathymetric data (SRTM15+) 
(Tozer et al., 2019) to verify whether sea depth is a barrier to the 
dispersal of the two horseshoe crab species.

3  | RESULTS

Overall, genetic variation is mostly contributed by within- sample 
variation (~90%) for both horseshoe crab species across the 
Singapore Straits, while variation in individuals between sampling 
localities contributes ~2% for C. rotundicauda and 0% for T. gigas 
(Table S2). C. rotundicauda and T. gigas across the Singapore Straits 
are characterized by slight inbreeding, indicated by positive F co-
efficient values calculated for all four SNP datasets: (C0) 0.0529, 
(C1) 0.1003, (T0) 0.0324, and (T1) 0.0988. When applying equal re-
gimes of missing data filtering (datasets C0 vs. T0, C1 vs. T1), C. ro-
tundicauda has a lower genetic diversity, as indicated by higher F 
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coefficients (Figure 1), than T. gigas. In both species, populations at 
the southwest end of the Singapore Straits exhibit the highest levels 
of genetic diversity (Figure 1), as shown by relatively low F coef-
ficients when considering loci shared among all individuals (datasets 
C0 and T0). A relatively low genetic diversity in C. rotundicauda as 
compared to T. gigas is also indicated by pronounced differences in 
estimates of contemporary LDNe (age = 0), 395.8 in C. rotundicauda 
and 4237.6 in T. gigas (Figure 2), even though both species are esti-
mated to have had a comparable LDNe at the end of the last glacial 
maximum (LGM) around 14,000 years ago (Figure 2). The LDNe of 
C. rotundicauda has continuously dropped throughout the Holocene 
whereas the effective population size of T. gigas has undergone a 
delayed but steeper drop over the last 5000 years, which roughly 
coincided with the recent rapid mangrove establishment across the 
Singapore Straits, following a period of more general stability in the 
early Holocene (Figure 2). We detected 45 pairs of related individu-
als (r < 0.0325, sharing an ancestor ≤5 generations ago) in C. rotundi-
cauda but none in T. gigas. A total of 39 out of these 45 pairs were 
sampled at the southeast end of the Singapore Straits; 24 of them 
were collected at overlapping sites; and 19 of them at one particular 
pair of sites ~10 km from Bintan Island (Table S3).

Principal component analysis (PCA) failed to reveal major 
subdivisions within the two horseshoe crab species (Figure 1). 
Populations of C. rotundicauda are geographically arranged along a 
northwest– southeast genomic cline (Figure 1). In contrast, T. gigas 
emerges as virtually panmictic across the study area. Based on the 
cross- validation error calculated for all tested K values (1– 15) in 
the ADMIXTURE analyses (Table S4), the most likely number of an-
cestral populations is one for both species (i.e., K = 1). The second 
likely number of ancestral populations is two, with the second low-
est cross- validation error across all four datasets, for both species. 

When enforcing K = 2 (Figure S1), individuals of T. gigas display no 
geographic structure while individuals of C. rotundicauda are divided 
into two subgroups by the Singapore Straits, with intermediate in-
dividuals on Pulau Semakau (Figure 3), a small island in the middle 
of the Singapore Straits ~7 km south of Singapore. Based on the 
Bayesian information criterion, DAPC detected a single population 
for C. rotundicauda as well as for T. gigas (Figure S2). Even though 
C. rotundicauda displayed a spatially structured regional population 
across the Singapore Straits, the genetic divergence is shallow and 
does not associate with specific genotypes or regions across the 
genome (Figures S3 and S4). The PCA and ADMIXTURE results also 
suggest the population genetic pattern of spatial divergence in C. ro-
tundicauda is most likely the result of isolation by distance rather 
than admixture of two distinct populations or natural selection. 
Otherwise, we would have observed genomic regions or genotypes 
that are highly associated with the spatial divergence.

Both horseshoe crab species display positive linear isolation 
by distance (IBD) in the study area, C. rotundicauda significantly 
so (p = 0.001, R2 = 0.217) but T. gigas not (p = 0.32, R2 = 0.0006). 
Results from spatial autocorrelation analyses (Figure 4) indicate that 
C. rotundicauda has a genetic patch size of ~35 km. In T. gigas, auto-
correlation coefficients at initial distance classes do not significantly 
deviate from the null model, indicating that this species routinely 
disperses beyond the range of our study area (>200 km). In C. ro-
tundicauda, DResD analysis detects significantly high resistance to 
dispersal around the Singapore Deeps (Bird et al., 2006) between 
Singapore and Batam Island around the deepest areas of sea of the 
entire study area (Figure 3). In T. gigas, relatively high resistance val-
ues emerge in a plain of shallow sea southwest of Singapore but with 
a lack of statistical power to support the robustness of these results 
(Figure S5).

F I G U R E  2   Effective population size 
across the Holocene of two horseshoe 
crab species. Effective population size is 
displayed with 95% confidence intervals 
(shaded area). Sea- level fluctuations 
and carbon isotope composition in the 
Singapore Straits during the Holocene are 
based on Bird et al. (2010)
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4  | DISCUSSION

We detected a relatively lower genetic diversity and finer popu-
lation structure in the less dispersive, depth- limited, mangrove- 
adapted C. rotundicauda as compared to the more dispersive, open 
sea- adapted T. gigas. Based on our study, we predict further steep 
declines in the genetic diversity of local C. rotundicauda with the 
impending human- caused sea- level rise. Further significant losses 
of genetic diversity directly translate into losses in evolutionary po-
tential (Frankham et al., 2014; Palstra & Ruzzante, 2008), which will 
contribute to an unpredictable fate of C. rotundicauda populations 
in the Singapore Straits during the periods of intense environmental 
change expected for the coming decades and centuries. In contrast, 
the genetic diversity of T. gigas may be maintained or even be fa-
vored by a rapid sea- level rise of up to 0.7 m (Stocker et al., 2013), 
but precise responses will critically depend on habitat availability 
and human disturbance.

Our population genetic analyses with a comprehensive geo-
graphic coverage yield the first firm evidence on differences in dis-
persal ability between the two horseshoe crab species (Figure 4), 
particularly as regards the depth- limited dispersal of C. rotundicauda 
(Figure 3). Our approach provides an analytical framework for the 
study of movement ecology and life history where conventional 
marking and tracking methods are not as cost- effective, especially 
in long- lived species such as horseshoe crabs whose benthic life re-
mains cryptic (Rudloe, 1979; Sekiguchi, 1988). Given size is important 
for the dispersal distance of active dispersers (Jenkins et al., 2007), 
our findings on the more limited dispersal in the smaller C. rotundi-
cauda as compared to the larger T. gigas suggest that active benthic 
dispersal of adults, rather than passive phytoplanktonic dispersal of 
larvae, better explains the differences in dispersal distances of the 
two species. This is consistent with observations of limited larval dis-
persal in the other two horseshoe crab species from the Atlantic and 

F I G U R E  3   Map of resistance to C. rotundicauda dispersal across the Singapore Straits, generated using DResD. Red indicates areas of high 
resistance whereas green indicates areas of low resistance; sampling localities are indicated with yellow dots, bathymetry is illustrated with 
blue contour lines. ADMIXTURE bars (K = 2, dataset C0) are placed adjacent to correspondent sampling localities
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East Asia (Botton & Loveland, 2003; King et al., 2005; Pierce et al., 
2000; Yang et al., 2009).

Our sampling of horseshoe crabs from randomly mixed cohorts 
may underestimate LDNe (Waples et al., 2014). Given that the two 
horseshoe crab species have a similar lifespan and generation time, 
we expect the same level of bias in LDNe for both species, ruling 
out systemic biases in our results. Our results indicate that the 
more dispersive T. gigas has lost almost half of the genetic diversity 
during the expansion from the source population whereas the less 
dispersive C. rotundicauda has lost more than 95% (Figure 2). Loss of 
genetic diversity, as reflected in reduced effective population size, 
may be the consequence of sequential founder effects (Clegg et al., 
2002), which both species would have needed to undergo in order 
to re- expand across the vast shelf. However, differences in the de-
gree of diversity loss between the two species may correspond to 
their different dispersal abilities. T. gigas was able to maintain ge-
netic exchange across fairly distant populations, keeping diversity 
loss in check (Berthouly- Salazar et al., 2013), while C. rotundicauda 
branched out into increasingly fragmented and isolated populations 
across the Sunda Shelf. Besides differences in dispersal ability, dif-
ferences in their ability to adapt to novel coastal habitats created 
by rapid sea- level rise may also have contributed to the difference 
in genetic diversity. However, this can be only tested with exclusive 
sampling beyond our study area to verify whether populations of 
C. rotundicauda from across the Sunda Shelf display the same level 
of low genetic diversity.

Our results provide important baseline data for the conserva-
tion of horseshoe crabs in the Singapore Straits and for mitigation 
against the future effects of climate change. These baseline data, 
which allow insights into both genetic diversity and dispersal abil-
ity, illustrate how dispersal ability may have contributed to present- 
day patterns of genetic diversity and therefore may offer superior 

conservation recommendations as compared to the conventional 
baseline data of census population size or effective population size 
alone. The gradual and continuous drop of effective population size in 
C. rotundicauda over the last 10,000 years stands in stark contrast to 
the massive expansion and coastal domination of its preferred man-
grove habitat in the region (Bird et al., 2010). This seeming contra-
diction underscores the importance of including a species’ dispersal 
ability and evolutionary trajectory in conservation planning (Hoban 
et al., 2013; Laikre, 2010). Our dataset affords surprising small- scale 
resolution by capturing ongoing sequential founder effects of C. ro-
tundicauda populations on Batam and Bintan islands to the south 
of the Singapore Straits. Individuals sampled around the latter two 
islands exhibit the region's lowest genetic diversity, emerging as 
isolated from all other regional populations across the deep- water 
barrier of the Singapore Straits (Figures 1 and 3). To ensure optimal 
conservation of C. rotundicauda across the Singapore Straits, resto-
ration of mangrove habitats may not be as cost- effective as conserv-
ing extant mangrove habitats in shallow parts of the Straits. Habitat 
restoration should primarily focus on creating corridors to provide 
increased connectivity between isolated populations characterized 
by low diversity. In the immediate future, further loss of genetic 
diversity in the local C. rotundicauda population unfortunately ap-
pears inevitable— intense conservation efforts notwithstanding— so 
long as sea levels continue to rise or persist at the current level. As 
for T. gigas, rapid future sea- level rise may facilitate a slight incre-
ment in the level of genetic diversity. However, the precise fate of 
local populations also depends on small- scale habitat dynamics and 
human disturbance and development, all of which need to be taken 
into consideration by conservation planners (Di Nitto et al., 2014; 
Jiang et al., 2016).

Our results identified the southeastern end of the Straits of 
Malacca as a stronghold featuring the highest genetic diversity for 

F I G U R E  4   Spatial genetic 
autocorrelation in the two horseshoe 
crab species across the Singapore Straits. 
The ending point of a distance class is on 
the x- axis, and the spatial autocorrelation 
coefficient (r) of genotypes in 
C. rotundicauda (a) and T. gigas (b) is on 
the y- axis. The two dashed lines along the 
x- axis are the permutated 95% confidence 
interval (CI) of autocorrelations under the 
null hypothesis of a random distribution 
of genotypes in space. Vertical lines are 
the bootstrapped 95% CIs with the mean 
genetic autocorrelation
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both horseshoe crab species (Figure 1), so this area should be con-
sidered of especially high conservation value. High genetic diversity 
may reflect a high abundance of individuals (Frankham, 1996), and 
this— in turn— is possibly linked to relatively high levels of productiv-
ity as indicated by the regionally highest annual levels of chlorophyll 
a concentration in this area (Siswanto & Tanaka, 2014). Systematic 
in- depth population surveys would provide invaluable additional 
data to evaluate each species’ conservation status for long- term 
conservation planning.

Recent conservation concern for horseshoe crabs in the 
Singapore Straits has revolved around both species at equal mea-
sure, with suggestions that T. gigas may even be the more endan-
gered species because of fewer detections (Cartwright- Taylor, 2015; 
Davison et al., 2008). Our results demonstrate that T. gigas, with its 
panmictic population structure and strong recolonization potential, 
is of much lesser concern than the poorly dispersive C. rotundicauda, 
which suffers from a long- term trend of decreasing effective popu-
lation size throughout the Holocene. This dichotomy highlights the 
importance of studies such as ours in identifying the right conserva-
tion targets in our efforts to mitigate the effects of future climate 
change. While limited to horseshoe crabs, our study provides a blue-
print for impending research to help safeguard the Earth's coastal 
and marine organismic communities.
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