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Abstract: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging viral hemorrhagic
fever (VHF) endemic to China, South Korea, Japan, and Vietnam. Here we characterize the
pathogenesis and natural history of disease in IFNAR-/- mice challenged with the HB29 strain of
SFTS virus (SFTSV) and demonstrate hallmark features of VHF such as vascular leak and high
concentrations of proinflammatory cytokines in blood and tissues. Treatment with FX06, a natural
plasmin digest product of fibrin in clinical development as a treatment for vascular leak, reduced
vascular permeability associated with SFTSV infection but did not significantly improve survival
outcome. Further studies are needed to assess the role of vascular compromise in the SFTS disease
process modeled in IFNAR-/- mice.

Keywords: severe fever with thrombocytopenia syndrome; Huaiyangshan banyangvirus; viral
hemorrhagic fever; vascular leak; cytokine storm

1. Introduction

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging viral hemorrhagic fever
(VHF). It is characterized by acute fever, leukopenia and thrombocytopenia with case fatality rates as
high as 30% [1–3]. The causative agent, SFTS virus (SFTSV), renamed Huaiyangshan banyangvirus of
the order Bunyavirales (family Phenuiviridae, genus Banyangvirus), is transmitted by ticks and is closely
related to Heartland virus (HRTV), which is endemic in eastern regions of the United States [4,5]. First
discovered in China in 2009, SFTSV has also emerged in South Korea, Japan and Vietnam [6–9]. There
are no licensed vaccines or antiviral compounds approved to prevent or treat SFTSV infection.

Common clinical features of SFTS and other VHFs is a prolonged and elevated profile of
proinflammatory cytokines in the blood (“cytokine storm”), vascular hyperpermeability, and endothelial
barrier dysfunction which can lead to subsequent pathophysiological effects such as disseminated
intravascular coagulation and multi-organ failure [7]. Clinical investigation and the study of SFTSV
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infection of vascular endothelial cells suggest that heightened fluid loss from the vasculature may be
due to increased and prolonged gap formation between vascular endothelial cells [10].

To date there are three lethal animal models of SFTSV infection. The immunocompetent
age-dependent ferret model mimics many of the clinical manifestations observed in human SFTS
cases [11], but limitations of high experiment costs, low availability of aged animals, and facility and
caging capacity severely restrict work. A STAT2 knockout hamster model has been described [12];
however, the limited hamster research reagents constrain the characterization of the host response to
infection. An interferon alpha/beta receptor knockout (IFNAR-/-) mouse model for SFTSV infection has
been reported [13], but clinical features of human SFTS such as vascular hyperpermeability and the
proinflammatory cytokine responses were not investigated.

In the present study, we characterized vascular leak associated with infection by the HB29 strain
of SFTSV in IFNAR-/- mice and highlight the apparent higher virulence of this strain of virus compared
to others that have been studied. In addition, we assessed the cytokine response and show that peak
fluid loss from the vasculature correlates with an increase in proinflammatory cytokines. We also
evaluated a drug that decreases vascular permeability, FX06, as a monotherapy and in combination
with the direct-acting antiviral favipiravir, in an effort to reduce fluid loss from the vasculature and
improve survival outcome in mice challenged with SFTSV.

2. Results

2.1. Lethality of SFTSV Strain HB29 in IFNAR-/- Mice

To determine the 90% lethal dose (LD90) of our HB29 virus stock, a small-scale titration of
SFTSV in IFNAR-/- mice was performed to guide the design of the full-scale pathogenesis and
pathophysiology study to assess vascular permeability, cytokine responses, viral replication and
dissemination, and histopathology during the course of infection. Groups of mice (n = 3) were
inoculated subcutaneously (SC) with serial dilutions of SFTSV and observed for signs of illness and
mortality for 21 days (Figure 1; data shown through day 15). Based on these results, the LD90 of the
SFTSV HB29 strain in IFNAR-/- mice by the SC challenge route was determined to be approximately 1
plaque forming unit (PFU). Substantial weight loss began 2–3 days post-infection (p.i.) in the groups
challenged with 10 PFU or higher and was delayed until day 5 p.i. in the group challenged with 1
PFU of SFTSV (Figure 1B). The delay in clinical disease in the 1 PFU challenge group, as measured
by weight loss, was considered for subsequent efficacy experiments on the basis that lower challenge
doses would extend the therapeutic window for the evaluation of experimental treatments.
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Figure 1. The (A) survival outcome and (B) percent weight change of IFNAR-/- mice challenged
subcutaneously (SC) with SFTSV. Male and female 4-week-old mice (n = 3/group) were challenged SC
with the indicated inoculum of SFTSV. Weight change is represented as the group mean and standard
error of the percent change in weight of surviving animals relative to their starting weights on day 0,
the day of viral challenge.
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2.2. Vascular Leak, Cytokine Response, Virology and Histopathology in IFNAR-/- Mice Infected with SFTSV

To better characterize the SFTSV infection modeled in IFNAR-/- mice, vascular leak, cytokine
profiles, viral titers, and histopathology were analyzed in cohorts of animals challenged with 3 PFU of
SFTSV, 3× the calculated LD90, to ensure more consistent and uniform disease progression. Challenge
groups of three to eight mice each were sacrificed on days 2–6 p.i. to complete the temporal analysis
(Supplementary Table S1). Body weights were recorded daily until sacrifice and are reported as the
percent change in group mean weights relative to their starting weights on the day of challenge.
A notable weight loss of 10% was observed beginning on day 3 p.i. with SFTSV and weight loss
approaching 30% was seen on day 6 p.i. (Figure 2).
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Figure 2. Percent weight change of IFNAR-/- mice challenged SC with 3 PFU of SFTSV. Animals were
weighed prior to challenge and randomly assigned to groups for sacrifice on days 2–6. The data are
represented as the percent change in weight and group mean of surviving animals relative to their
starting weights on the day of challenge. Sham-infected normal controls are included for comparison.

At the time of sacrifice on days 2–6, serum was collected from three to four animals designated for
analysis of vascular permeability. As shown in Figure 3, the mean tissue to serum ratio of Evans blue
dye (EBD) increased each day in the infected animals, reaching significance in the liver and kidney on
day 4. By day 6 p.i. three of the four animals designated for sacrifice that day had succumbed to the
infection and the fourth mouse was found in a moribund state. That animal, however, did not have
evidence of increased vascular permeability represented by leakage of EBD into the viscera (Figure 3),
likely due to the severe dehydration during the terminal stages of disease.
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Figure 3. Evaluation of vascular permeability during SFTSV infection in IFNAR-/- mice. Serum data
are reported as absorbance at 610 nm minus absorbance at 740 nm. Tissue data are reported as the
mean tissue to serum ratio of absorbance/g tissue relative to serum absorbance values. Unique symbols
at each sacrifice day represent values for the same animal across serum and all tissues. Serum could
not be obtained from three animals in the day-6 sacrifice group that succumbed to the infection prior to
sacrifice. * P < 0.05 compared to the sham-infected normal controls.
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Serum and select tissue cytokine concentrations were examined on days 2, 4 and 6 p.i. in three
to four animals per day. Similar to the cohort of animals designated for evaluation of vascular leak,
three out of the four animals designated for cytokine profiling on day 6 p.i. succumbed to infection
prior to sample collection, limiting our analysis to a single animal at that later time point. A number of
prominent proinflammatory cytokines known to be induced during VHF virus infections [14] were
found to be increased in the serum on days 4 and 6 p.i. (Figure 4). Many of these proinflammatory
mediators, including IL-6, MCP-1, TNFα, IFNγ, RANTES and IL-1β, were also present at high
concentrations on days 4 and 6 of infection in the spleen (Figure 5, Supplementary Figure S1), a major
target tissue for SFTSV replication (Figure 6) and pathology (Figure 7), as well as other tissues
(Supplementary Table S2).

To assess viral burden as the infection progressed, the serum and tissue samples collected for
cytokine profiling were also analyzed for viremia and viral loads. As described for the cytokine
analyses, samples could only be obtained from a single day 6 animal. No infectious virus was detected
in any of the tissues on day 2 p.i., but SFTSV was present consistently in the serum and all tissues except
the intestines on day 4 and 6, suggesting that viremia and systemic dissemination likely started by day
3 p.i. The highest titers were observed in spleen, followed by liver and kidney. Viral replication was
consistent with histopathology findings from the same tissue samples with documented inflammatory
lesions, primarily in the spleen and liver on days 4 and 6 p.i., with two animals presenting with
kidney lesions on day 4 (Figure 7). The splenic lesions consisted of acute, multifocal to coalescing,
neutrophilic and histiocytic splenitis with variable lympholysis, lymphoid depletion, and vascular
fibrinoid necrosis. The liver lesions consisted of acute, multifocal random, necrotizing, neutrophilic
and histiocytic hepatitis. The renal lesions observed in the day 4 animals consisted of acute, multifocal
to coalescing, tubular epithelial necrosis at the corticomedullary junction and deep cortex.
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Figure 4. Serum cytokine response to SFTSV infection in IFNAR-/- mice. Unique symbols at each
sacrifice day represent values for the same animals across all cytokines. Serum could not be obtained
from three animals in the day-6 sacrifice group that succumbed to the infection prior to sacrifice. ** P <

0.01, * P < 0.05 compared to sham-infected normal controls.
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Figure 5. Cytokine response in the spleen to SFTSV infection in IFNAR-/- mice. Unique symbols at
each sacrifice day represent values for the same animals across all cytokines. Spleen tissue could not
be obtained from three animals in the day-6 sacrifice group that succumbed to the infection prior to
sacrifice. ** P < 0.01 compared to sham-infected normal controls.
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Figure 6. Serum and tissue virus titers in IFNAR-/- mice challenged with SFTSV. Groups of animals
were sacrificed on the specified days for analysis of serum, liver, spleen, kidney, heart, lung, intestine,
and brain virus titers. The x-axes represent the respective lower limits of detection for serum and the
indicated tissues. Unique symbols at each sacrifice day correspond to the same animals across graphs
and evaluated parameters in Figures 4 and 5. CCID50, 50% cell culture infectious dose.
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Figure 7. Histopathologic findings observed during the course of SFTSV infection in IFNAR-/- mice.
Lesion severity were scored as 0 = no lesions, 1 = minimal, 2 = mild, 3 = moderate, and 4 = severe.
No lesions were found in the intestine, heart, lung, or brain (not shown). Hepatic lesions: Acute,
multifocal to coalescing, neutrophilic and histiocytic, necrotizing hepatitis. Splenic lesions: Acute,
multifocal to coalescing, suppurative and histiocytic splenitis with variable lympholysis, lymphoid
depletion, and vascular fibrinoid necrosis. Renal lesions: Acute, multifocal to coalescing tubular
epithelial necrosis at the corticomedullary junction and deep cortex. Three animals designated for
sacrifice on day 6 succumbed to SFTSV infection prior to the designated time of sacrifice and therefore
not included in the analysis. The unique symbols correspond to the same animals across all parameters
shown in Figures 4–6.

2.3. Evaluation of FX06 and Favipiravir Combination Therapy for the Treatment of SFTSV Infection and
Disease

To evaluate the ability of FX06 to extend the therapeutic window of favipiravir through the control
of vascular leak associated with SFTSV infection, we evaluated FX06 alone and in combination with
favipiravir by assessing vascular leak, viral titers, and mortality in IFNAR-/- mice challenged with 1
PFU of SFTSV. Groups of mice were treated by IP injection twice daily for 7 days with 4.8 mg/kg/day
FX06 beginning on day 3 p.i., 300 mg/kg/day favipiravir beginning on day 5 p.i., both treatment
regimens, or placebos (Supplementary Table S3). The drug combination of 4.8 mg/kg/day FX06 and
300 mg/kg/day favipiravir offered the greatest protection with three of 11 animals (27%) surviving
the SFTSV challenge (Figure 8A). Only one out of 11 animals treated with favipiravir monotherapy
started on day 5 p.i. survived the infection, and all 11 mice treated with FX06 alone succumbed by
day 10 p.i. The positive control favipiravir treatment initiated one day after challenge performed as
expected achieving 100% survival. Animal weights obtained during the course of the efficacy study
are consistent with the survival data and indicate full recovery of the surviving animals (Figure 8B).
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Figure 8. (A) Survival outcome and (B) percent weight change of IFNAR-/- mice challenged with
SFTSV and treated with FX06 alone or in combination with favipiravir. Mice in each group (n = 11)
were infected SC with approximately 1 PFU of SFTSV and treated IP, twice daily for 7 days with 4.8
mg/kg/day FX06 beginning 3 days p.i., 300 mg/kg/day favipiravir beginning 5 days p.i., or both drugs
in combination. A group of mice (n = 6) treated with 100 mg/kg/day of favipiravir starting 1 day p.i.
was included as the positive control. Weight change is represented as the group mean and standard
error of the percent change in weight of surviving animals relative to their starting weights on day 0.
***P < 0.001, compared to animals that received the placebos. Sham-infected normal controls are shown
for comparison.

Serum and tissue samples were collected from a subset of mice sacrificed on day 5 p.i. to assess
the effect of the treatments on vascular leak and viral loads. Three animals each in the FX06, favipiravir,
and combination treatment groups, and two animals in the placebo-treated group succumbed to
infection just prior to sacrifice, reducing the number of animals available for analysis. As shown in
Figure 9, the EBD tissue to serum ratio was significantly reduced in all of the tested tissues from mice
treated with both FX06 alone or in combination with favipiravir, compared to animals treated with
placebo. As expected, there was no observed reduction in serum or tissue viral titers in the mice treated
with FX06 alone or in combination with favipiravir (Supplementary Figure S2). This is consistent with
previous work in a mouse model of dengue shock syndrome [15]. In addition, it was not surprising
that viral titers in the delayed favipiravir treatment group were not impacted, as this group of mice
had only received a single treatment prior to collection of samples.
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Figure 9. Evaluation of vascular permeability in mice sacrificed on day 5 p.i. of the initial FX06
and favipiravir combination therapy study. Serum data are reported as absorbance at 610 nm minus
absorbance at 740 nm. Tissue data are reported as the mean tissue to serum ratio of absorbance/g tissue
relative to serum absorbance values. Unique symbols in each sacrifice group represent values for the
same animal across serum and all tissues. *** P < 0.001, ** P < 0.01, * P < 0.05, compared to animals that
received the placebos.

Having confirmed that FX06 treatment had the desired effect in reducing vascular leak,
we conducted a second experiment to better resolve potential synergy between FX06 and favipiravir.
Favipiravir treatment was initiated one day earlier (day 4 p.i.) at doses of 200 or 300 mg/kg/day alone
or in combination with FX06 treatment, which began on day 3 p.i. (Supplementary Table S4). Our goal
was to demonstrate that under conditions where favipiravir alone would only be partially protective
(40–60% survival), combination therapy with FX06 would improve survival outcome. Unfortunately,
our attempt to achieve approximately 50% protection with favipiravir monotherapy was unsuccessful
as 87% and 93% protection was observed with the selected doses of 200 and 300 mg/kg/day, respectively,
which did not differ significantly from the FX06 and favipiravir combination groups (Supplementary
Figure S3). Consequently, there was little to no capacity to resolve beneficial interactions when the
drugs were given in combination.
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3. Discussion

With the expanding reach of SFTSV affecting densely populated areas of Asia [9], the need for
effective therapeutics and vaccines has increased in urgency. To date there are three animal models of
SFTSV infection where lethal disease is observed [11–13], but none have been characterized in terms
of vascular leak, a cardinal feature of VHF believed to contribute to fatal outcome in severe cases of
SFTS [1,16]. In the present study, we describe the natural history of disease and pathogenesis of SFTSV
infection in IFNAR-/- mice with a focus on profiling the inflammatory cytokine response and resolving
the onset of vascular leak to facilitate comparisons between recent reports correlating cytokine levels
in human cases of SFTS with disease severity [17–21]. Similar to several recent reports with other
strains of SFTSV [22,23], we found that IFNAR-/- mice are highly sensitive to the virus with a single
PFU challenge dose achieving uniform lethality. Consequently, we selected a 3 PFU SC challenge dose
in our natural history study to resemble a low-dose human exposure.

Our study is the first to investigate changes to vascular permeability during the course of
experimental SFTSV infection. Our findings are indicative of vascular compromise starting on day
4 or 5 p.i., a time when elevated levels of prominent VHF proinflammatory cytokines such as IL-6,
MCP-1, TNFα, IFNγ, RANTES and IL-1β were present in multiple animals in the serum, spleen and
other tissues. Many of these cytokines are also markedly elevated and associated with severe cases of
disease observed in human patients [17–21]. The correlation between human case studies and our
data suggests that the IFNAR-/- mouse SFTSV infection model may be useful for evaluating antiviral
treatments combined with adjunctive therapy to limit vascular leak directly or through modulation
of the intensity and duration of the proinflammatory cytokine response. Data obtained using the
mouse model of SFTSV to investigate the use of agents that can mitigate vascular leak could be broadly
applicable to other VHF viruses that cause similar clinical manifestations.

We envision that the optimal treatment strategy for SFTS and other VHFs would include potent
direct-acting antiviral drugs that target the viral replication cycle and adjunctive therapy to control the
deleterious effects of host-mediated vascular compromise. Through targeting of multiple factors such
as viral polymerases, proteases or other essential viral enzymatic functions, the risk for development
of drug resistance is mitigated. However, even the best drug cocktail may be ineffective in cases of
advanced disease when the patient presents with vascular leak associated with hypercytokinemia.
We hypothesized that by effectively reducing or reversing vascular leak, the therapeutic window for
antiviral drug intervention could be extended. This approach was evaluated in the SFTSV IFNAR-/-

mouse model by combining favipiravir, previously shown to be efficacious in both mouse and hamster
models of SFTS [12,24], with adjunctive FX06 therapy to treat the vascular disease component based
on previous mouse data and human experience.

FX06 is a 28-amino acid natural plasmin digest product of fibrin that has been tested in mouse
models of dengue shock syndrome and LPS-induced lung inflammation, and was shown to significantly
reduce edema and vascular leakage into the lung while improving survival outcome [15]. Because
FX06 is not a direct-acting antiviral, the reduction in disease severity and improved survival outcome
is attributed to reduced vascular permeability following FX06 administration. In addition, during
the devastating 2014 Ebola virus disease outbreak in West Africa, FX06 was used as an experimental
treatment for an exported case of Ebola-induced vascular leak syndrome [25]. The extravascular
lung water index (EVLWI) used to quantitate pulmonary vascular leak during the course of the
disease reached 25 mL/kg (normal range 3–7 mL/kg), prompting the initiation of FX06 treatment
in an attempt to prevent shock and multiorgan failure. Administration of FX06 coincided with a
substantial improvement of both vascular leak syndrome parameters and respiratory function [25].
However, with only a single successful outcome to support further consideration of FX06 therapy
for the treatment of Ebola virus disease, additional supporting evidence demonstrating a beneficial
outcome in animal models of VHF would support further investigation for human use.

In our initial experiment with the SFTSV IFNAR-/- mouse infection model, we found that FX06
alone, and when combined with favipiravir, had the desired effect of reducing vascular leak. However,
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we only observed a subtle improvement in survival with the combination therapy compared to either
drug alone, but the results did not achieve statistical significance. Our target survival range for the
favipiravir monotherapy was 40%–60% based on previous work by Tani and colleagues [24]. In their
study, they initiated 300 mg/kg/day favipiravir treatment on day 5 p.i. resulting in 50% survival when
facing a 106 TCID50 challenge dose of the SPL010 strain of SFTSV. Thus, it appears that the HB29 strain
is more virulent in IFNAR-/- mice, as challenge with 1 PFU and implementation of the same favipiravir
treatment regimen starting 5 days p.i. resulted in a considerably lower survival rate of 9%. Because
some of the mice began succumbing to infection as early as day 5 p.i., favipiravir therapy initiated on
the same day was likely too late to achieve the desired survival rate of 40%–60%. In our attempt to
address this issue in a follow-up experiment, we began favipiravir treatments one day earlier on day
4 p.i. Unfortunately, this resulted in near complete protection with the monotherapy alone, severely
limiting our capacity to resolve a favorable interaction with the adjunctive FX06 therapy. In addition to
the challenge of achieving partial protection, it is unclear whether vascular leak actually contributes
to disease severity in IFNAR-/- mice or is merely an end-stage manifestation. If the latter, then one
would not expect FX06 to significantly impact survival outcome. This possibility and our study results
highlight the complexity of conducting combination therapy experiments investigating the use of
adjunctive host-directed therapies to supplement direct-acting antivirals.

4. Materials and Methods

4.1. Ethics Statement

All animal procedures used in this study complied with guidelines set by the USDA and Utah
State University Institutional Animal Care and Use Committee protocol 10097. To minimize pain
and distress, alternative endpoints for humane euthanasia included weight loss of 30% or greater
or unresponsiveness.

4.2. Animals

Male and female, 4–9-week-old, IFN-alpha/beta receptor knockout (IFNAR-/-) mice (originally
purchased from The Jackson Laboratory, MMRRC Stock No: 32045-JAX) were obtained from the
breeding colony at Utah State University (Logan, UT), quarantined for a minimum of 5 days prior to
challenge, and fed Harlan Lab Block and tap water ad libitum.

4.3. Compounds

FX06 was kindly furnished by MChE GmbH (Vienna, Austria) and prepared in sterile saline.
Favipiravir was generously provided by FUJIFILM Toyama Chemical Co., Ltd. (Toyama, Japan) and
prepared in sterile water supplemented with 42.9 mg/mL meglumine excipient.

4.4. Virus

SFTSV, strain HB29, isolated in 2010 from a patient living in Hubei province of China, was obtained
from Dr. Robert Tesh (World Reference Center for Emerging Viruses and Arboviruses, The University
of Texas Medical Branch, Galveston, TX). The virus stock (5 × 106 PFU/mL; 1 passage in Vero E6 cells)
used was from a clarified cell culture lysate preparation. Virus stock was diluted in sterile medium
and inoculated by SC injection of 0.2 mL containing the specified PFU of virus.

4.5. Determination of the SFTSV LD90 in IFNAR-/- Mice

Male and female 4–5-week-old mice were sorted to minimize weight and sex differences across
four challenge groups (n = 3 per group) and one sham-infected control group (n = 2). The challenge
groups were inoculated SC with 0.2 mL containing log10 dilutions of 1000 to 1 PFU SFTSV. The animals
were monitored daily for survival and body weight for 3 weeks. The LD90 was calculated using Prism
(GraphPad).
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4.6. Experimental Design to Characterize Vascular Leak and Hypercytokinemia

Male and female 5–week-old mice were weighed the day before infection with 3 PFU SFTSV
(weight range of 15.5–22.3 g) and sorted to minimize weight and sex differences across all groups.
Subsets of three to four mice were sacrificed on various days for analysis of vascular leak, cytokines,
viral titers, and histopathology. The experiment was designed so that groups of animals designated
for vascular leak analysis were sacrificed daily on days 2–6, and animals designated for cytokine
analysis, viral titers, and histopathology were sacrificed on days 2, 4, and 6 (Supplementary Table
S1). Sham-infected animals sacrificed on days 2, 4, and 6 were included as normal controls for all of
the analyses.

4.7. Experimental Design of FX06 Combination Therapy with Favipiravir

For the initial study, male and female 6–9-week-old IFNAR-/- mice were weighed the day before
infection (weight range of 18.6–28.4 g) and sorted to minimize weight and sex differences across all
groups. Animals in each group (n = 17) were infected with 1 PFU of SFTSV and treated twice per day
(BID) for 7 days with either 4.8 mg/kg/day FX06 beginning on day 3 p.i. or 300 mg/kg/day favipiravir
beginning on day 5 p.i. A third treatment group received both FX06 and favipiravir following the
specified dosing regimen for each compound. A group of placebo-treated mice (n = 17) was included
for comparison. Subsets of animals from each treatment group (n = 6) were selected prior to infection,
treated in parallel, and sacrificed on day 5 for analysis of vascular leak and to obtain serum, liver,
spleen, kidney, and brain tissue for analysis of viral titers. The remaining 11 animals were observed 21
days for morbidity and mortality. A group of six animals was treated with 100 mg/kg/day favipiravir,
BID for 7 days, beginning 1-day p.i., as the positive control group for survival.

In a follow-up study, favipiravir treatment was initiated one day earlier (day 4 p.i.) at doses of
200 or 300 mg/kg/day. The mice (6–10-weeks of age) were weighed two days before infection and
randomized to normalize weight and sex distribution across all treatment groups. This experiment
was designed so that animals in each group (n = 15) were treated BID for 8 days with 4.8 mg/kg/day
FX06 beginning on day 3 p.i. with 1 PFU of SFTSV, 200 mg/kg/day favipiravir beginning on day 4
p.i., or 300 mg/kg/day favipiravir beginning on day 4 p.i. Additional treatment groups included mice
that received a combination of FX06 and one of the indicated favipiravir treatments. Also, a group of
placebo-treated mice (n = 15) was included for comparison and a group of five animals was treated
with 100 mg/kg/day favipiravir, BID for 7 days, beginning 1-day p.i., as the positive control group.
All of the animals were observed 21 days for morbidity and mortality.

4.8. Vascular Permeability

Vascular permeability was assessed during the SFTSV infection as previously described [26].
Briefly, 200 µL of Evans blue dye (EBD) was injected retro-orbitally and whole blood was obtained
3 h later by submandibular bleed and processed for serum. Following euthanasia, animals were
transcardially perfused with sterile phosphate buffered saline (PBS) prior to collection of tissue samples
(liver, spleen, intestine, kidney, heart, lung and brain). Samples were incubated in formamide at 37 ◦C
overnight, followed by brief centrifugation to pellet the tissue particulate, and the supernatant was
evaluated by measuring absorbance at 610 nm and 740 nm. EBD content was reported as the optical
density (OD) at 610 nm after subtraction of the OD reading at 740 nm to correct for hemoglobin content,
and the tissue concentrations of EBD were normalized to the amount of dye present in the serum (1:10
diluted) to correct for animal-to-animal variation in the amount of EBD injected.

4.9. Cytokine Analysis

Whole blood was obtained by submandibular bleed and processed for serum. Following
euthanasia and transcardial perfusion with PBS, tissue samples were homogenized in a fixed volume
of minimum essential medium (MEM). Cytokine concentrations in the serum and tissue homogenates
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were analyzed using the Q-Plex Mouse Cytokine array (Quansys Biosciences, Logan, UT; complete
list of cytokines on the panel are shown in Supplementary Table S2) and a mouse VEGF ELISA
(ThermoFisher, USA). The assays were completed in accordance to the manufacturers’ protocols.

4.10. Virus Titer Determination

Virus titers were assayed using an infectious cell culture assay as previously described [27].
Following euthanasia and transcardial perfusion with PBS, tissue samples were homogenized in a fixed
volume of MEM and the homogenates and serum were serially diluted and added to quadruplicate
wells of Vero E6 (African green monkey kidney) cell monolayers in 96-well microtiter plates. Viral
cytopathic effect (CPE) was determined 10 days after plating, and the 50% endpoints were calculated
as described [28]. The lower limit of detection for serum samples was 1.67 log10 50% cell culture
infectious dose (CCID50) per ml and the lower limit of detection for tissues was in the range of 2.6–3.4
log10 CCID50/g. In samples presenting with undetectable virus, a value representative of the lower
limit of detection was assigned for statistical analysis.

4.11. Histopathology

Tissue samples of the liver, spleen, intestine, kidney, heart, lung, and brain were preserved in 10%
neutral-buffered formalin. Fixed tissue samples were processed and embedded in paraffin according
to routine histologic techniques. Tissue sections, 5 µm thick, were stained with hematoxylin and eosin
(H&E) and examined by light microscopy by board-certified pathologists who were blinded to the
groups and day of sacrifice. Severity of tissue lesions was scored as follows: 0 = no lesions, 1 = minimal,
2 = mild, 3 = moderate, and 4 = severe.

4.12. Statistical Analysis

The Mantel-Cox log-rank test was used for analysis of Kaplan-Meier survival curves. A one-way
analysis of variance (ANOVA) with Dunnett’s posttest to correct for multiple comparisons was used to
compare differences in vascular permeability, cytokine concentrations, and viral titers. All statistical
evaluations were done using Prism 8 (GraphPad Software, La Jolla, CA).

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/8/4/158/s1,
Table S1: Study design to characterize SFTSV infection in IFNAR-/- mice, Figure S1: Cytokine response in the
serum (closed symbols) and spleen (open symbols) to SFTSV infection in IFNAR-/- mice. Table S2: Cytokine
response to SFTSV infection in IFNAR-/- mice, Table S3: Study design to evaluate FX06 and favipiravir combination
therapy to treat SFTSV infection and disease in IFNAR-/- mice, Figure S2: Serum and tissue virus titers in IFNAR-/-

mice on day 5 p.i. of the initial FX06 and favipiravir combination therapy study, Table S4: Study design of the
second evaluation of treatment with FX06 and favipiravir combination therapy to treat severe SFTSV infection
and disease in IFNAR-/- mice, Figure S3: Survival outcome of IFNAR-/- mice in the follow-up study challenged
with SFTSV and treated with FX06 alone or in combination with favipiravir.
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