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Abstract

Leprosy is a chronic dermato-neurological disease caused by infection with Mycobacterium
leprae. In 2013 almost 200,000 new cases of leprosy were detected around the world.
Since the first symptoms take from years to decades to appear, the total number of asymp-
tomatic patients is impossible to predict. Although leprosy is one of the oldest records of
human disease, the mechanisms involved with its transmission and epidemiology are still
not completely understood. In the present work, we experimentally investigated the hypoth-
esis that the mosquitoes Aedes aegypti and Culex quinquefasciatus and the hemiptera
Rhodnius prolixus act as leprosy vectors. By means of real-time PCR quantification of M.
leprae 16SrRNA, we found that M. leprae remained viable inside the digestive tract of Rhod-
nius prolixus for 20 days after oral infection. In contrast, in the gut of both mosquito species
tested, we were not able to detect M. leprae RNA after a similar period of time. Inside the
kissing bug Rhodnius prolixus digestive tract, M. leprae was initially restricted to the anterior
midgut, but gradually moved towards the hindgut, in a time course reminiscent of the life
cycle of Trypanosoma cruzi, a well-known pathogen transmitted by this insect. The mainte-
nance of M. leprae infectivity inside the digestive tract of this kissing bug is further supported
by successful mice footpad inoculation with feces collected 20 days after infection. We con-
clude that Rhodnius prolixus defecate infective M. leprae, justifying the evaluation of the
presence of M. leprae among sylvatic and domestic kissing bugs in countries endemic for
leprosy.
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Introduction

According to WHO, the global registered prevalence of leprosy in 2013 stood at 189,018 new
cases around the world, the large majority in tropical countries [1]. Despite these numbers, lep-
rosy is not a tropical disease stricto senso, since it was highly prevalent in Europe until the 19
century. Being the first reported and well documented disease in the history of medicine, lep-
rosy was described in China, India and Egypt already in 600 A.D., being the first disease related
to an etiological agent, Mycobacterium leprae.

The most accepted transmission route of leprosy is through prolonged contact with multi-
bacillary patients, the main bacilli shedders. Due to host genetics, nutrition and immunological
factors, it is presumed that only 3-5% of human population presents the genetic and immuno-
logic susceptibility to develop leprosy [2]. The theory that recognized multibacillary patients as
the only source of infection does not explain how Europe virtually eradicated leprosy one cen-
tury before rifampicin use, or why developed countries do not observe autochthonous cases of
the disease, even receiving massive migration from highly endemic countries. Most important,
although the reported number of multibacillary patients under treatment has drastically
declined worldwide, the trend in decline stabilized several years ago [1, 3, 4].

Although being a strictly intracellular parasite, a number of data indicate that M. leprae,
similar to other uncultivable mycobacteria, could be maintained alive in environment samples
such as water reservoir and soil or inside amoebas [5-7]. In 1975, the first report of naturally
acquired leprosy in armadillos (Dasypus novemcinctus) was published [8], but the idea of lep-
rosy as a sporadic zoonosis took about four decades to be accepted. In 1983 it was confirmed
that the acid-fast bacilli isolated from wild armadillos were indeed M. leprae [9] and since then,
numerous surveys have confirmed that armadillos in the southern United States are a natural
reservoir for M. leprae, with natural populations presenting a prevalence around 20% [10, 11].
Recently, by means of genome sequencing, Truman and colleagues demonstrated that armadil-
los and humans were infected with the same M. leprae strain, strongly indicating interspecies
transmission [12]. The idea that leprosy transmission could be sustained by a mammalian res-
ervoir in nature such as armadillos and monkeys could explain why some countries, such as
Brazil, continue to register constant rate of new cases of leprosy along decades, in spite of the
reduction of poverty and improved income distribution. Most important, disease incidence
persisted even when there was progressive drop of multibacillary patients among population
due to WHO polychemotherapy use [3, 13].

Leprosy transmission by insects is an old hypothesis [14, 15], which could explain how the
bacteria circulate from armadillos to humans in US and Brazil, where the disease is highly prev-
alent at the agricultural frontier regions of the most depopulated states in the amazon region
with an average of 6 cases / 10,000 habitants, and regarding the big cities large poverty popula-
tions at south east of 1 case / 10,000 habitant [16]. Some authors described experimentally lep-
rosy transmission by Aedes aegypti, Culex fatigans and flies [14, 17-22]. Those studies,
however, were limited by the tools available at that time to study a non-cultivating mycobacte-
ria: acid-fast staining combined with fluorescence, light and electronic microscopy. Due to the
fact that insects are naturally colonized by acid-fast mycobacteria, their observation in the mid-
gut of insects fed on multibacillary patients were not accepted as demonstration of infection.

Armadillos are recognized as mammals that are parasitized by kissing bugs, the latter being
reported as a reservoir not only of M. leprae, but also of Trypanosoma cruzi, the etiological
agent of Chagas Disease [23]. It is well known that kissing bugs are frequently found in Dasy-
pus novemcinctus armadillo burrows, feeding on their blood [24]. In nature, up to 75% of the
armadillo diet is based on insects, affording ample opportunity for infection through ingestion
of kissing bugs [25]. Although an oral route of infection has been described in Chagas Disease
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and related to a more acute form of disease [26, 27], this way of pathogen entry is still contro-
versial in the case of leprosy [28].

In the present work, we hypothesize that kissing bugs such as Rhodnius prolixus, an insect
from the family Reduviidae within the order Hemiptera (infra-order: Heteroptera), known as
vectors of Chagas Disease, could also be a vector of Leprosy. We used immunofluorescence
and real-time PCR of 16SrRNA to localize and quantify M. leprae Thai-53 strain along the
digestive tract of the mosquitoes A. aegypti and C. quinquefasciatus and of the kissing bug R.
prolixus. In contrast with mosquitoes, R. prolixus is able to maintain M. leprae viability inside
its digestive tract for at least 20 days. This period is enough for the insect to start a new blood
meal, defecating a large amount of live infectious bacilli. Studies are needed to evaluate the con-
tribution of naturally infected kissing bugs to the transmission of leprosy.

Material and Methods
Insect infection

Rhodnius prolixus, A. aegypti and C. quinquefasciatus were maintained in a biosafety insectary
and fed with rabbit blood containing 10”/mL live M. leprae Thai-53 strain through a latex
membrane (R. prolixus) or a plastic paraffin film (A. aegypti and C. quinquefasciatus) coupled
to a glass chamber and maintained at 37°C with the use of a circulating water bath. The insects
were allowed to feed in the dark for no more than one hour, a time interval that did not reduce
M. leprae viability. After this time, insects not fully engorged were discarded. The adult kissing
bugs and mosquitoes typically ingested blood meal volumes of about 250ul and 2ul respec-
tively. After feeding, 13 groups of 5 R. prolixus each, and 10 groups of 10 A. aegypti or C. quin-
quefasciatus, were kept at 80% humidity and 27°C. Mosquitoes were allowed to feed ad libitum
a 10% sucrose solution. All insects were kept in those conditions for 2 hours or 20 days after
blood meal (ABM) until tissue dissection.

Mycobacterium leprae preparation and viability determination

Mpycobacterium leprae was purified from nude mouse footpad as described [29]. Briefly, both
Foxn1™™ mice hind footpad were inoculated with 10* live M. leprae. Animals were monitored
each 48 h during seven months. M. leprae infection in mice is recognized as painless, without
the display of any symptoms besides footpad swelling, and for that reason analgesic protocol
was not necessary. None of the animas died as a result of M. leprae infection. After seven
months, animals were sacrificed through intraperitoneal administration of 15 mg/Kg and 150
mg/Kg of xylazine and ketamine (Vallée, SP, Brazil) respectively, followed by cervical disloca-
tion. After skin and bones were removed, tissue was reduced in small pieces by scissors and
digested with a solution of 170 units of colagenase type I, 2 units of dispase (Life Technologies,
NY, USA), 50p mg/mL of ampicillin (Sigma, St. Louis, USA) and 150 units of DNAse (Life
Technologies, NY, USA) during 2 h at 33°C. Digested tissue was homogenized by vortex and
washed, three times in water, one time in NaOH 0.1 N and one time in RPMI medium, by cen-
trifugation at 10,000 g/5 min, and counted by acid-fast staining (Ziehl-Neelsen Kit, Becton
Dickinson). For evaluation of the preparation viability, a fluorimetric staining protocol was
used based on the LIVE/DEAD Bactlight Bacterial viability Kit (Life Technologies, CA, USA),
performed according to the manufacturer’s instructions [30]. To optimize artificial infection
yield, we only used bacterial preparations with a viability of at least 85%. Freeze-thaw inacti-
vated M. leprae was used to evidence 16Sr RNA instability inside triatomines digestive tract.
Before infection, live M. leprae was frozen in dry ice and thaw at 37°C water bath five times.
Although freeze-thaw does not drastically alter RNA content compared to other inactivation
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techniques such as irradiation or heat, M. leprae inactivation by freezing is a well characterize
phenomenon [31].

To determine viable M. leprae titer inside insects digestive tract we used gPCR 16S cDNA/
DNA rate, as described elsewhere [32]. Briefly, a pool of 10 mosquitoes or R. prolixus two
hours or 20 days after feeding on blood were dissected in PBS and mosquitos thorax and abdo-
men or R. prolixus posterior midgut, hindgut and rectum were removed under sterile condi-
tions and transferred to FastRNA Blue tubes (MP Biomedicals), containing 1mL of TRIzol.
Tissues were homogenized by vortex and M. leprae RNA and DNA were extracted after disrup-
tion in Fast Prep FP 24 homogenizer (MP Biomedicals, CA, USA) at a speed of 6.5 m/s for 45
sec. The tubes were cooled on ice for 2 min between two sections of disruption. After homoge-
nization the tubes were cooled for 5 min and then received 200 ul of chloroform. After rapid
mixing by inversion, tubes were centrifuged at 12,000 x g at 4°C for 15 min. The upper fase
containing the RNA was transferred to a new tube, treated with DNA-Free kit (Ambion, Inc.,
Austin, USA) as specified by the manufacturer and precipitated by standard ethanol technique.
Precipitated RNA was solubilized in RN Ase free water and stored at -80°C until use. The DNA
was purified by adding 100 pl of 10 mM Tris-EDTA (pH 8.0) and 150 pl of isoamyl alcohol
and precipitated with 0.3 M sodium acetate with two volumes of cold ethanol. The DNA pellet
was washed in 70% ethanol, dissolved in 30 pl of sterile distilled water and stored at -80°C until
use. Qualitative RNA analysis was performed in agarose gel electrophoresis and quantification
of both DNA and RNA were performed in NanoDrop One (Thermo Fisher Scientific, MA,
USA). The M. leprae RNA was reverse transcribed using random primers and superscript III
following manufacturer’s instructions (Invitrogen, CA, USA). The levels of M. leprae 16SrTRNA
mRNA and DNA were determined in all tissues by real-time RT-PCR, using the primer pairs
sense 5/ GCA TGT CTT GTG GTG GAA AGC ‘3 and anti-sense 5’ CAC CCC ACC AAC AAG
CTG AT ‘3. The PCR reaction mixes were 50°C for 2 min and 95°C for 10 min, followed by 40
cycles of 95°C for 15 sec and 60°C for 1 min monitoring SYBR Green fluorescence in an ABI
StepOne Plus System (Applied Biosystems, CA, USA). In order to convert RNA/DNA Real-
Time PCR signal in number of live M. leprae genomes, we added different concentrations of
live M. leprae, ranging from 10° to 10", in non infected insect tissues extracts dissected 2h and
20 days after blood meal, building fourteen curves, one for each condition. Their angular coeffi-
cient were used to determined the number of viable M. leprae in each condition.

Fluorescence microscopy

In order to observe M. leprae in triatomine feces, we infected the insects with M. leprae pre-
stained with PKH-26 fluorophore (Sigma- Aldrich, St. Louis, USA) according to the manufac-
turer instructions. In all other tissues, non-fluorescent M. leprae was evidenced by immunos-
taining as followed. After artificial feeding, the triatomines tissues were fixed with 4%
paraformaldehyde for 24 h at 4°C and cryopreserved by a two hour sequential incubations in
PBS containing 15% and 30% sucrose. Soon after, the tissues were embedded in O.C.T. (Sakura
Finetechnical, Tokyo, Japan), immediately frozen in liquid nitrogen and 10 pm semi thin sec-
tions were prepared using a Leica CM3050 cryostat and mounted on KCr (SO,), gelatinized
slides.

M. leprae immunolocalization was performed using the monoclonal Anti-M. leprae lipoara-
binomannan (LAM) antibody CS-35, kindly provided by Biodefense and Emerging Infections
Research Resources Repository at http://www.beiresources.org/TBVTRMResearchMaterials/
tabid/1431/Default.aspx. Briefly, slides were permeabilized and blocked by 30 minutes incuba-
tion with 0.01% Triton X-100 and 10% of fetal bovine serum in PBS pH 7.2. Tissues were incu-
bated for 2 hours with mouse IgG anti-LAM antibodies (1:50 vol/vol) and nuclei were stained
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by DAPI (Sigma-Aldrich, St. Louis, USA). Secondary antibodies conjugated with Alexa 633
IgG anti-mouse; (Invitrogen, CA, USA) were incubated with the samples for an additional 2 h
and tissue observed in a Zeiss Axiobserver Z1 with a Colibri illumination system (Carl Zeiss,
Heidenheim, Germany).

Rhodhnius prolixus feces infectivity determined using the Shepard’s
model

In order to check triatomine feces for M. leprae infectivity, we used a model based on inocula-
tion of M. leprae into mice footpads and counting acid-fast bacilli after 6 months, as previously
described. Briefly, we infected R. prolixus with blood containing 10”"/ml PKH-26 stained M.
leprae according to manufacturer instructions, a procedure known as non-interfering with
mycobacteria viability [33]. After 20 days, R. prolixus were fed with non-infected blood. Feces
from 8 pools of 10 insects each were collected and pelleted by 10.000g / 5 min. The pellet was
homogenized in a sterile solution of NaOH 0.1N during 5 minutes followed by centrifuging
(10.000g / 5 min). The pellet was resuspended in sterile PBS and counted by fluorescence
microscopy and Fite-Faraco Staining. Only samples which presented negative contaminants
grow after 24h culture on blood agar and TH10 plates at 33 and 37°C (6 from 8 samples) were
inoculated in animals. A total of 10* M. leprae were injected per BALB/c hind foot pad (ILSL,
Sao Paulo, Brazil), using a conventional Sheppard's infection model [34]. As positive control
we inoculate 10* M. leprae purified from nude mice foot pad. A negative control was generated
by treating animals with 10mg/Kg/week rifampicin by weekly gavage during five months, one
month after inoculum with 10* Thai-53 M. leprae purified from nude mice foot pad.

Animals were monitored each 48 h during seven months. None animal died as a result of
M. leprae infection. After six months, animals were sacrificed through intraperitoneal adminis-
tration of 15 mg/Kg and 150 mg/Kg of xylazine and ketamine (Vallée, SP, Brazil) respectively,
followed by cervical dislocation, and foot pads were excised and macerated for bacillary count-
ing by Fite-Faraco Staining.

Ethics Statement

Animal protocols were in agreement with the 8" edition of the Guide of Care and Use of Labo-
ratory Animals of the National Institutes of Health. All procedures were approved by the Ani-
mal Welfare Committee of Sagrado Coragdo University (Sao Paulo, Brazil), responsible for
Instituto Lauro de Souza Lima animal care and use inspections, were all animal protocols were
performed according license number 219/11.

Results

There are several reports on mosquitoes capacity to carry M. leprae from one mammal to
another through biting [18], being able to maintain its cell wall morphology inside their diges-
tive tract for until four days [19], as the only viability parameter used on that moment. To ver-
ify if M. leprae maintains its viability after ingestion by A. aegypti or C. quinquefasciatus using
a reliable molecular tool, these mosquitoes were offered a blood meal containing 10 live M.
leprae / blood mL, and 16SrRNA levels in the abdomen containing: posterior midgut, ventral
diverticulum and hindgut; or thorax and head containing: proboscis, salivary glands and fore-
gut; were measured by qPCR (Fig 1).

As we can see, viable M. leprae levels inside Aedes aegypti abdomen 20 days after blood meal
(ABM) are at least two fold lower than levels observed immediately after feeding (2 hours
ABM) (Fig 1A). M. leprae viability was virtually abolished inside C. quinquefasciatus digestive
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Fig 1. M. leprae loss viability in mosquitoes. The number of life M. leprae was determined by M. leprae 16SrRNA levels in Aedes aegypti
(A) and Culex quinquefasciatus (B) abdomen (spheres) and thorax (squares). All mosquitoes were dissected 2 hours and 20 days after
blood meal. Line represents median and each point is a pool of 10 mosquitoes, obtained in three independent experiments. Non-infected
controls did not show amplification of the targets (CT>39).

doi:10.1371/journal.pone.0156037.g001

tract, presenting a very low positivity only in two and three groups of abdomen and thorax
respectively (Fig 1B), indicating that neither A. aegypti nor C. quinquefasciatus presents, in our
model, potential to transmit leprosy.

We concluded that there is a lack of an essential characteristic of a disease vector in both
mosquito species regarding its interaction with M leprae, which is the ability to keep the patho-
gen infectious until the next blood meal.

Although there are some circumstantial evidence suggesting that armadillos could be
infected by Culex mosquitoes with the St. Louis encephalitis virus in Florida (USA) [35], larger
insects, such as kissing bugs, were more frequently found feeding on armadillos, which are rec-
ognized sylvatic reservoirs of Chagas Disease [24, 36], transmitted by several species of triato-
mine bugs in Central and South Americas [37]. Rhodnius prolixus has been used over the last
decades as a model to study Chagas Disease vectoring [38], due to its adaptability to artificial
feeding and growth in laboratory. For these reasons, our next approach was to measure the
same parameters observed in mosquitoes, in the kissing bug digestive tract compartments:
anterior midgut, posterior midgut and hindgut. When Rhodnius prolixus adults were fed with
blood containing M. leprae, (Fig 2) high viability was detected in anterior midgut and hindgut
of the insects even 20 days after infection. During this time interval, M leprae levels dropped in
posterior midgut, but increased 100-fold in the hindgut, suggesting that the bacteria were mov-
ing along with the blood meal. Our data suggests that there was no mycobacterial replication
along these 20 days of blood digestion, but the bacteria remained alive, due to the fact that
insects exposed to M. leprae inactivated just before ingestion by freeze-thaw was not able to
sustain detectable levels of 16Sr RNA in none of the insect digestive compartments after the
same period of time (S1 Fig).

In addition to PCR-based detection of live M. leprae cDNA, we performed immunolocaliza-
tion of the parasite. Fig 3 demonstrates the immunohistofluorescence images from anterior
midgut, posterior midgut and hindgut 2 hours and 20 days after the M. leprae infected or con-
trol blood meal. As we can see, a small number of mycobacteria could be observed after stain-
ing with anti-LAM IgG (red) inside anterior and posterior midgut epithelial cells (arrows) 20
days after infection. In fact, the majority of M. leprae signal was located in the luminal region
of the posterior midgut and hindgut (asterisks), and virtually absent from the anterior midgut
luminal region.
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Fig 2. The kissing bug Rhodhnius prolixus is able to maintain M. leprae viability inside its digestive tract
after infection. M. leprae viability was determined by the persistence of 16Sr RNA at the different digestive
compartments of artificially infected adult Rhodnius prolixus: anterior midgut (spheres), posterior midgut
(squares) and hindgut (triangles), just after blood meal (2h) and after total blood meal digestion (20 days),
infected with the pathogen. As we can see, the hindgut was the only compartment where the level of living M.
leprae increases after 20 days of infection. Scatter plot showing mean and SEM of four independent
experiments, each point represent five insects group. *** means p < 0.001 (2h x 20 days, for each group of
sample). Non-infected controls did not present amplification of the targets.

doi:10.1371/journal.pone.0156037.g002

The posterior midgut epithelial cells, in contrast with the anterior one, are refractory to M.
leprae infection, been scarcely colonized (arrows), maintaining the large majority of the bacil-
lary load free in the luminal region (asterisk), on its way to the hindgut (Fig 3E). This indicates
that the bacillus that did not get arrested at the anterior midgut epithelial cells, were dislocated
within the luminal content to the hindgut (Fig 3H) through the posterior midgut (Fig 3E). Due
to the huge number of bacteria in the luminal region, and the fragility and autofluorescence of
the hindgut epithelia, we were not able to determine precisely the M. leprae location within epi-
thelial cells in this tissue. Regarding the limitation in order to immunolocalize structures inside
hindgut epithelia, M. leprae location is clearly predominantly luminal in this tissue, due to the
proportional area of these two compartments.

In order to observe if the hindgut high titers of M. leprae observed by PCR are defecated
during blood meal, six groups of 10 R. prolixus were fed with blood containing 10"/mL PKH-
26 stained M. leprae. After 20 days, we offered a non-infected blood meal to these insects in
sterilized tubes and collected their feces (Fig 4).

M. leprae amount in feces was evaluated by counting in a fluorescence microscope. We used
this material for injecting six mice with 10* M. leprae per BALB/c foot pad. After six months,
animals were sacrificed, foot pads were macerated and acid-fast mycobacteria number esti-
mated (Table 1). Among the animals, three demonstrated a tenfold increase and one animal
presented one hundred times more bacteria than injected in the inoculum. Two animals did
not demonstrate mycobacterial growth. After comparing bacillary counts of foot pads inocu-
lated with M. leprae purified from R. prolixus feces with the positive and negative controls,
where M. leprae viability is recognized to be higher than 90% and virtually absent respectively,
we can see that four from six animals listed on Table 1 presented positive M. leprae infection. It
is important to notice that M. leprae cell wall is a mycolic acid rich structure, able to persist
intact for months mammal’s tissues [39], and for that reason we were able to count dead myco-
bacteria in negative controls. To conclude, we observed that R. prolixus infected by M. leprae
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Fig 3. M. leprae rarely infects digestive epithelial cells of Rhonius prolixus. Immunohistofluorescence of tissue section from anterior
midgut (A-C), posterior midgut (D-E) and hindgut (G-I) from infected and non-infected kissing bugs 2h and 20 days after infection. M. leprae
was evidenced in red by IgG-LAM staining, and epithelial cells nuclei in blue by DAPI staining. Asterisks mark the luminal regions in all
images, and arrows point to intracellular M. leprae. Images are representative of at least 15 fields, captured from six different insects,
infected in three different experiments. Scale bar means 20um.

doi:10.1371/journal.pone.0156037.g003

through blood meal are able to maintain the initial inoculums alive, spreading to the environ-
ment feces containing infectious M. leprae.

Discussion

Until now, the impact of all possible aspects of transmission of M. leprae is unknown [40]. We
investigated here the hypothesis that arthropods could contribute to the transmission of lep-
rosy to vertebrates. This hypothesis was elaborated based on reports regarding the contribution
of several insect species to the transmission of Buruli ulcer, a dermal infection caused by M.
ulcerans, including predatory water bugs Hemipteras such as belostomatids and naucorids in
Africa [41, 42] and mosquitos (Diptera) in Australia [43]. We therefore investigated if M.
leprae could infect and maintain its viability inside the Dipteras A. aegypti, C. quinquefasciatus
and the Hemiptera R. prolixus. The choice of these species was based on reports suggesting that
A. aegypti [17, 18] and Culex sp. mosquitoes [20, 35] proboscis could be infected by M. leprae
during the blood meal, mechanically transferring live mycobacteria during the next blood meal
[21]. Our data that was focused in long term survival inside the digestive tract, indicates that
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Fig 4. M. leprae reaches Rhodnius prolixus feces 20 days after infection. Rhodnius prolixus were
allowed to feed rabbit blood containing (A-B) or not (C-D) 10” PKH26-M. leprae / mL. During the next non-
infected blood meal (20 days after infection), feces from groups of ten insects were collected in a sterile tube
and analyzed by fluorescence microscopy (B and D). Stained M. leprae was identified only in the infected
insects (A-B), allowing its counting. Images are representative of six pools of feces, where at least five fields
were analyzed. Scale bar indicates 20pm.

doi:10.1371/journal.pone.0156037.g004

M. leprae are not viable after 20 days inside mosquitoes digestive tract, which does not turn
impossible its transmission through mechanical ways just after an incomplete blood meal in an
infected mammal. Literature data estimates M. leprae viability inside mosquitoes through cell
wall integrity accessed by microscopy for short periods of time from two [17] to 3 days [19].
On the other hand, longer observation periods in A. aegypti ranging from four [19] to nine
days [17] did not demonstrate viable M. leprae in proboscis or posterior midguts, corroborat-
ing our data.

Different from what we observed for mosquitoes, we observed that the majority of the M.
leprae inoculum was kept alive in the luminal region of the R. prolixus digestive tract, being epi-
thelial cells scarcely infected by M. leprae. This resembles T. cruzi infection in R. prolixus, that
also moves from the anterior midgut to hindgut [44]. Differently from the protozoan parasite,
we did not observe significant proliferation of M. leprae in the insect gut, in spite of its capacity
to maintain viability during prolonged periods. This discrepancy observed between mosquitoes
and kissing bug could be attributed to the differences between their digestive tract and intesti-
nal microflora control mechanisms. Both groups of insects are able to generate oxygen and

Table 1. Numbers of M. leprae recovered from mice footpads after a six month infection with 10* bacillus isolated from Rhodnius prolixus feces
that received an infectious blood meal.

BalbC 1 2 3 4 5 6
M. Leprae from R. prolixus feces 1,3x10°8 5,3x10° 3,5x10° 2x10° 1,1x10° 1,2x10*
Positive Control 1,6x10° 1,7x10° 3,4x10° 1,4x10°8 1,7x10° 1,3x10°
Negative Control 1,0x10* <10® 1,2x10% 6,5x10* 6,9x10* 0,7x10*

Positive control was generated by 10* Thai-53 M. leprae purified from nude mice foot pad inoculation. A negative control was generated by treating
positive control animals with 10mg/Kg/week rifampicin by weekly gavage during five months, one month after inoculum with 10* Thai-53 M. leprae purified
from nude mice foot pad.

doi:10.1371/journal.pone.0156037.t1001
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nitrogen reactive intermediates through prophenoloxidase system in their haemolymph [45,
46]. But recently a new microflora control mechanism was described on Aedes aegypti digestive
tract. This mechanism involves the formation of reactive intermediates of oxygen by epithelial
cells mitochondria, which are responsible for drastically reduce the bacterial load in midgut
luminal region 56h after the blood meal [47]. This mechanism could be involved in the com-
plete abolishment of M. leprae viability during blood meal digestion in both mosquitoes ana-
lyzed on the present work.

Due to a drastic reduction of its genome, suffered during its adaptation to live inside a
eukaryotic cell, M. leprae presents 1116 pseudogenes in contrast with 6 in M. tuberculosis [48].
Based on this, the observation that the majority of living M. leprae maintained in the kissing
bug midgut is located in the extracellular intestinal lumen contrasts with the usual idea that M.
leprae is an obligatory intracellular pathogen [40]. This particular environment represented by
R. prolixus digestive tract: microaerobic presenting high amounts of heme-iron and blood-pro-
teins, pH 5,0 and 28°C, maintained M. leprae viability almost intact for 20 days. This is better
than the viability observed in Middlebrook 7H12 at 4°C in the same period of time, a condition
recognized as the best alternative to maintain extracellular M. leprae viability [31].

In our model we applied 10” M. leprae / blood mL as initial inoculum in order to success-
tully trace M. leprae viability in all intestinal compartments. Since an adult kissing bug can
ingest 250 yl of blood and mosquitoes 2 pl, this represents an initial inoculum around 2.5x10°
and 2x10* bacteria per insect respectively. Although this high number of circulating bacteria is
improbable to occur in humans, it is possible in infected wild armadillos.

In order to control leprosy efficiently, observing a strong reduction in the number of new
cases in the endemic countries, we need to identify other transmission factors beyond multiba-
cillary patients. Multibacillary patients are considered as the primary source of infection of lep-
rosy. The introduction of WHO defined chemotherapy in 1981 reduced in 90% the prevalence
of the disease with a reduction in the number of new cases of 50% since then [1, 3]. It therefore
seems that treatment of multibacillary patients has no impact in the control of leprosy trans-
mission, since the number of new cases around the world remained at similar levels during the
last two decades [49]. Leprosy was virtually eradicated from Norway one century before the
development of an efficient treatment against the disease [50] by means of industrialization,
migration of the population from the countryside to the cities and deforestation of innumerous
habitats of insects and small mammals [51-53]. New evidences point that other factors con-
tribute to the maintenance of the disease among humans, such as water and soil contaminated
with M. leprae infected amoebas [54].

The mode of Leprosy transmission by Rhodnius prolixus kissing bug hypothesized here is
analogous to that described for the contribution of insect species to the transmission of Buruli
ulcer, a dermal infection caused by M. ulcerans, for which transmission by predatory water
bugs Hemipteras, such as belostomatids and naucorids, has been reported in Africa [41, 42]
and by mosquitos (Diptera) in Australia [43]. The hemipterans present potential as leprosy
vectors, since kissing bugs usually feed on nine-band armadillos, the most acceptable wild res-
ervoir of leprosy [12, 24]. In fact, about 1% of nine-band armadillos population in the south of
US is co-infected by M. leprae and T. cruzi [23]. Although M. leprae persistence inside R. pro-
lixus, or even in free-living amoebae [54], is not a proof of involvement of these organisms in
leprosy transmission, we hypothesize that kissing bugs, well distributed in Americas, Asia and
Africa could be infected by M. leprae during blood meal in natural reservoirs such as armadillos
in Americas. These infected kissing bugs could develop a role in the endemic leprosy observed
in the Brazilian agricultural frontier, where we can find high incidence of leprosy, armadillos
and triatomines [24].
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Our data indicate that kissing bugs are able to defecate infectious M. leprae after being
infected through a blood meal. The incidence of kissing bugs infected by M. leprae in highly
endemic areas is currently under investigation by our group, through detection of the presence
of live M. leprae in kissing bugs captured from leprosy patients domiciliary and peridomiciliary
areas in Brazilian countryside.

Supporting Information

S1 Fig. Inactivated M. leprae was not able to sustained detectable levels of 16SrRNA after
20 days inside digestive tract. Freeze-thaw inactivated M. leprae 16Sr RNA persistence at the
different digestive compartments of adult Rhodnius prolixus: anterior midgut (spheres), poste-
rior midgut (squares) and hindgut (triangles), just after blood meal (2h) and after total blood
meal digestion (20 days). Scatter plot showing mean and SEM of four independent experi-
ments, each point represent five insects group. *** means p < 0.001. Controls did not present
amplification of the targets.
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