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Background: Parkinson’s disease (PD) is a common neurodegenerative disorder. The

contribution of the immune system to its pathogenesis remains incompletely understood.

Methods: In this study, we performed comprehensive immune cell profiling in the

cerebrospinal fluid (CSF) and peripheral blood (PB) of PD patients. Ten PD patients were

diagnosed according to brain bank criteria and underwent detailed clinical examination,

magnetic resonance imaging, PB and CSF immune cell profiling by multiparameter flow

cytometry, and cytokine and chemokine measurements by bead-based arrays. Thirteen

healthy elderly volunteers served as control population.

Results: The proportions of activated T-lymphocytes and non-classical monocytes

in the CSF were increased in patients with PD compared to the control group. In

accordance, we found increased levels of the pro-inflammatory cytokines IL-2, IL-6 and

TNFα and of the monocyte chemoattractant protein 1 (MCP-1) in the CSF of the included

PD patients.

Conclusions: Our data provide novel evidence for a response of the innate and adaptive

immune system in the central nervous system of patients with PD.
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INTRODUCTION

Parkinson’s disease (PD) represents the most common neurodegenerative disorder following
Alzheimer’s disease (1). PD prevalence and incidence increase exponentially with age and peak
beyond the age of 80 years (2). Clinically, PD is defined by the presence of classical parkinsonian
motor symptoms, accompanied by a variety of non-motor features (3–5).

PD is a slowly progressive neurodegenerative disorder characterized by an early prominent
death of dopaminergic neurons in the substantia nigra (6). Affected neurons display cytoplasmic
accumulation of proteinaceous aggregates called Lewy bodies, which are mainly composed of α-
synuclein and ubiquitin (6). PD results from a complicated interplay of genetic and environmental
factors (1). Accumulating research provides evidence for a prominent response of the innate and
adaptive immune system in PD (7, 8). In humans, neuropathological studies demonstrated the
presence of activated microglia, the resident macrophages of the central nervous system (CNS),
in the substantia nigra and other affected brain regions. Additional post-mortem studies found
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infiltration of the substantia nigra by T lymphocytes, the
presence of activated astrocytes, and increased parenchymal
cytokine levels (9–13). Functional brain imaging studies detected
significant microglial activation in various regions of the CNS
(14–16). In particular, PD patients with dementia revealed
widespread cortical microglial activation in addition to the
subcortical changes (17, 18). Patients with PD have increased
cerebrospinal fluid (CSF) levels of inflammatory chemo- and
cytokines, including tumor necrosis factor α (TNFα) and
interleukin (IL)-6 (12, 19, 20). Genetic studies identified several
polymorphisms in genes that are involved in inflammatory
processes, such as TNF, IL1B, CD14, and TREM2, as risk factors
for PD (21, 22). Moreover, genome wide association studies
revealed HLA-DRB5 as another susceptibility locus (23).

CSF was shown to reflect many biochemical and cellular
events within the brain parenchyma. It is easily accessible in
clinical practice and routinely obtained for a variety of diagnostic
purposes. Immunophenotyping of CSF cells may be useful to gain
insight into the pathophysiology of CNS disorders, and sharpen
diagnostic accuracy or estimation of individual prognosis (24).

In this study, we aimed to determine the immune cell profile
in the CSF of patients with PD by using multiparameter flow
cytometry. We found an intrathecal increase of non-classical
monocyte and activated T-lymphocyte proportions in the PD
group compared to healthy elderly controls. Correspondingly, we
detected increased concentrations of pro-inflammatory cytokines
and the chemokine MCP-1 in the CSF of PD patients. Together,
these data provide new lines of evidence for a role of both innate
and adaptive immune responses in human PD.

METHODS

Protocol Approval, Registration, and
Patient Consent
All patients were recruited from the movement disorder unit
at the Department of Neurology, University Hospital Münster,
Germany. All participants in this study gave written informed
consent. The study was approved by the local ethics committee
(2014-624-f-S).

Participants and Study Population
We included 10 PD patients that presented to our movement
disorder clinic. Patients were diagnosed according to the
UK Brain Bank criteria. Exclusion criteria for this study
were concomitant autoimmune diseases, anti-inflammatory
co-medication (e.g., cytotoxic agents, steroids, non-steroid
analgesia), evidence of an acute systemic inflammatory process at
the time of CSF withdrawal (elevated erythrocyte sedimentation
rate above 25 mm/h, C-reactive protein above 0.5 mg/dL, or
leukocytes above 11 × 103/µL), or blood-tinged CSF. Patient
characteristics are described in detail in Table 1. The CSF control
group consisted of 13 healthy elderly participants with a normal
neurologic examination. There was no statistical difference
regarding their age. CSF was collected during spinal anesthesia
before hip replacement and yielded, in all cases, normal cell
counts and protein levels.

TABLE 1 | Demographics and clinical characteristics of study participants.

Demographics PD (n = 10), CTRL (n = 13)

Age, range [y] (controls) 79, 69–82 (68, 50–79)

Gender [female, %] (controls) 20 (80)

CLINICAL CHARACTERISTICS

PD type [hypokinetic-rigid/mixed, %] 50/50

Disease duration [years] 3 ± 3.96

Hoehn and Yahr stage (25) 3 ± 0.75

L-Dopa/equivalent dose [mg/d] (26) 612.5 ± 324.38

MDS-UPDRS-ON III score (27) 16 ± 6.25

MoCA score (28) 23.5 ± 9.30

CSF-ANALYSIS

CSF protein [mg/l] (controls) 553 ± 271 (368 ± 94)

Numbers represent the mean ± standard deviation. y, years; disease duration, time

between the first reported symptoms and the diagnosis; CTRL, healthy elderly controls.

Multiparameter Flow Cytometry and CSF
Analysis
Multiparameter flow cytometry of immune cells in PB and
CSF samples was done as described previously (24, 29). During
lumbar puncture CSF was sampled into polypropylene tubes.
All CSF samples were processed in <20min. Cells were isolated
from CSF by centrifugation (15min, 290 g, 4◦C) and subsequent
incubation in VersaLyse buffer (Beckman Coulter, Germany).
PB samples were collected in EDTA monovettes and cells
were isolated by using VersaLyse buffer. For immunostainings,
the following fluorochrome-conjugated antibodies were
used: CD14-FITC, CD138-PE, HLA-DR-ECD, CD3-PC5.5,
CD56-PC7, CD4-APC, CD19-APC-Alexafluor700, CD16-APC-
Alexafluor750, CD8-PacificBlue, and CD45-KromeOrange (all
from Beckman-Coulter). Data acquisition was performed with
a Navios flow cytometer (Beckman-Coulter). Gating strategy
for Leukocytes and Monocytes is described and illustrated in
Supplementary Figure 1.

Quantification of Cytokines and
Chemokines in the Serum and
Cerebrospinal Fluid
CSF was sampled, and supernatants were obtained by
centrifugation as described above. The CSF supernatants
were then stored at −20◦C until analysis of cytokines (IL-2,
IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17A, IL-17F, IL-21, IL-22,
IFNy, TNFa) and chemokines (CCL11, CCL17, CCL20, CXCL1,
CXCL5, CXCL9, CXCL11, IL-8, IP-10, MCP-1, MIP-1a, MIP-1b,
RANTES) using a bead-based cytokine array (LEGENDplex;
BioLegend) according to the manufacturer’s instructions.

Statistics
Statistical analysis was performed using Graphpad Prism 6. All
data are reported as mean ± standard deviation, and the pre-
chosen significance level for all confirmatory tests was p < 0.05.
Flow cytometry data were analyzed by using the Mann-Whitney
test, presuming a non-Gaussian distribution.
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RESULTS

The Immune Cell Profile of Patients With
PD
Multicolor flow cytometry did not detect significant differences
in the proportions or absolute numbers of granulocytes,
monocytes, and lymphocytes in the CSF of patients with PD
compared to healthy elderly controls (Figure 1, and data not
shown). Interestingly, subpopulation analysis of innate immune
cells revealed an intrathecal shift in cell proportions from
classical monocytes (defined as CD14+/CD16−) to non-classical
monocytes (CD14+/CD16+; Figure 1). This intrathecal shift
was not reflected in the PB (Figure 1). Adaptive immune cell
subgroup analysis demonstrated no differences in the levels
of B lymphocytes (data not shown), but an increase in the
fractions of both total T lymphocytes and activated (defined
by HLA-DR expression) T lymphocytes in the CSF (Figure 2).
The CD4/CD8T lymphocyte ratio remained unchanged, but
specifically CD8+ T lymphocytes showed a larger fraction of
HLA-DR activated cells (Figure 2). Both CD4+ and CD8+ T
lymphocyte activation was also increased in the PB (Figure 2).
However, we detected no significant alterations in the absolute

cell numbers of monocyte or T lymphocyte subsets (data not
shown).

The Cytokine and Chemokine Profile of
Patients With PD
Using a bead-based cytokine array, we detected no significant
differences in cytokine (IL-2, IL-4, IL-5, IL-6, IL-9, IL-
10, IL-13, IL-17A, IL-17F, IL-21, IL-22, IFNy, TNFa) and
chemokine (CCL11, CCL17, CCL20, CXCL1, CXCL5, CXCL9,
CXCL11, IL-8, IP-10, MCP-1, MIP-1a, MIP-1b, RANTES) levels
in the serum (data not shown) of PD. Interestingly, we
found an increase of the pro-inflammatory cytokines IL-2,
IL-6, and TNFα as well as of the pro-migratory chemokine
MCP-1 (monocyte chemoattractant protein-1) in the CSF of
PD patients, whereas anti-inflammatory IL-9 was decreased

(Figure 3 A+B, only detected cytokines and chemokines
shown).

DISCUSSION

In summary, phenotyping of CSF immune cells by
multiparameter flow cytometry in patients with PD revealed
a strong phenotypical shift of intrathecal monocytes and an
increased percentage of activated T lymphocytes. In accordance,
the levels of pro-inflammatory cytokines andMCP-1 were higher
in the CSF of PD patients.

Evidence for a response of the innate immune system in
the disease course of PD has been reported previously by
neuropathological and functional brain imaging studies, genetics
and CSF cytokine profiling assays (22). The hallmark response
of innate immunity had been increased microglia activation
and microglia recruitment to affected brain areas (13). Our
results showing a strong shift from classical (CD14+CD16−) to
non-classical (CD14+CD16+) monocytes within the intrathecal
compartment represent a novel line of evidence for a response
of innate immunity within the CNS. In contrast to a previous
study that reported a significant increase in the proportion of
PB classical monocytes in patients with PD (30), we found no
significant differences in the proportion of peripheral monocyte
subtypes. Monocytes originate from myeloid precursors in the
bone marrow and are divided into two major subpopulations,
the classical CD14+CD16− and the non-classical CD14+CD16+

monocytes (31). Classical monocytes are highly plastic and, upon
recruitment to inflamed tissue, modify their phenotype according
to the requirements of the specific microenvironment. They
can differentiate into macrophages and are involved in tissue
maintenance, pathogen clearance and induction of adaptive
immune responses. Non-classical monocytes are thought to
patrol along blood vessels and to be involved in tissue
homeostasis and local regeneration, however recent reports
describe them as the primary inflammatory monocyte subtype
with properties for antigen presentation (32, 33). Together, our

FIGURE 1 | Monocytes in the peripheral blood and cerebrospinal fluid. The proportion of monocytes in relation to total leukocytes was determined in the peripheral

blood (PB, closed symbols, white background) and cerebrospinal fluid (CSF, open symbols, gray background) from healthy elderly controls (n = 13; blue circles) and

PD patients (n = 10; red triangles). While the proportion of total monocytes did not differ between study groups, monocyte subgroup analysis based on expression of

the surface marker CD16 demonstrated a highly significant decrease of classical monocytes (CD14+CD16−) and a concomitant highly significant increase of

non-classical monocytes (CD14+CD16+). For statistical analysis, the Mann-Whitney test was performed (***p < 0.001).
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FIGURE 2 | Lymphocytes in the peripheral blood and cerebrospinal fluid. The proportion of T lymphocytes in relation to total leukocytes was determined in the

peripheral blood (PB, closed symbols, white background) and cerebrospinal fluid (CSF, open symbols, gray background) from healthy elderly controls (n = 13; blue

circles) and PD patients (n = 10; red triangles). We found a significant increase of total and activated T lymphocytes in the CSF. CD4 and CD8 expression did not differ

between study groups, but specifically CD8+ T lymphocytes displayed a larger fraction of HLA-DR expressing activated cells, both in the PB and CSF. For statistical

analysis, the Mann-Whitney test was performed (*p < 0.05, **p < 0.01, ***p < 0.001).

data showing a strong increase in the proportion of CSF, but not
PB, non-classical monocytes in patients with PD and previous
evidence of increased classical monocytes in the PB of patients
with PD suggest the occurrence of specific intrathecal monocyte
activation. Thus, it is tempting to speculate that in PD classical
monocytes are recruited from the periphery across the blood-
liquor barrier to give rise to non-classical monocytes within the
CSF.

Changes in the chemokine profile have been reported in PD
patients in different stages of the disease (34). Interestingly, we

found increased levels of MCP-1 (CCL-2) in the CSF of PD
patients. The MCP-1 receptor CCR2 is expressed on monocytes
and MCP-1/CCR2 signaling is involved in the regulation of
migration and infiltration of monocytes into host tissues (35).
Increased levels of MCP-1 had been previously described in
both serum and CSF samples of PD patients, and higher
levels of MCP-1 correlated with manifestation of cognitive
impairment and depression (30, 36, 37). However, only classical
monocytes express high levels of CCR2. Therefore, the shift in
monocyte subsets might be related (1) to an enhanced evasion
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FIGURE 3 | Cytokine and chemokine production in the cerebrospinal fluid. The concentrations of cytokines and chemokines were determined in the cerebrospinal

fluid from healthy elderly controls (n = 11; blue circles) and PD patients (n = 7; red triangles) by a bead-based cytokine array. We found a significant increase of the

pro-inflammatory cytokines IL-2, IL-6, and TNFα as well as of the pro-migratory chemokine MCP-1 in the CSF of PD patients, whereas anti-inflammatory IL-9 was

decreased. For statistical analysis, the Mann-Whitney test was performed (*p < 0.05).

of classical monocytes into the brain tissue or (2) classical
monocytes increasingly developing into non-classical monocytes.
We found no evidence for a peripheral expansion of non-
classical monocytes and their subsequent migration into the CNS
since the specific monocyte subtype composition was confined
to the CSF compartment. Monocytes invading the CNS might
develop into macrophages within the brain parenchyma, thus
strengthening the innate arm of the CNS immune system (30, 38).

In addition to the well-established response of innate
immunity, more recent evidence has suggested a role for
the adaptive immune system in PD. Genome-wide association
studies have established an association of PD with alleles of
the major histocompatibility complex (MHC) (23). Previous
PB immune cell phenotyping had demonstrated increased
LRRK2 levels in peripheral lymphocytes, which are involved
in the regulation of T cell activation and division (39).
Neuropathological studies have reported T cell infiltration
into the substantia nigra (13). Interestingly, quantitative
analysis demonstrated a substantial accumulation of CD8+ T
lymphocytes and to a lesser degree of CD4+ T lymphocytes
within the substantia nigra, although animal models suggested
a more enigmatic functional role of the latter in the disease
process (10). Our data support the neuropathological post-
mortem results and provide the first direct in vivo evidence
in man showing increased invasion of T lymphocytes into

the intrathecal compartment and their functional activation.
Recently, an elegant series of immunological studies led to
the current concept of the contribution of T lymphocytes to
the pathogenesis of PD: degenerating dopaminergic neurons
present modified α-synuclein-derived peptides via MHC class I
molecules on their surface and release them to the extracellular
space, where they activate microglia, and drain into the periphery
outside the CNS. In lymph nodes, they activate antigen-
presenting cells, which present the α-synuclein fragments via
MHC II surface molecules leading to T lymphocyte activation.
The latter infiltrate the CNS and accumulate at sites of
inflammation, where they are re-stimulated by α-synuclein-
presenting neurons andmicroglia. This may result in exacerbated
inflammation, oxidative stress, and neuronal injury (7, 10, 40, 41).
Our data contribute to these findings by providing direct in
vivo evidence for activated T lymphocytes in the intrathecal
compartment.

In accordance to previous studies, we found increased levels
of the pro-inflammatory cytokines IL-2, IL-6, and TNFα (12, 20).
However, we were not able to detect a cytokine pattern indicating
the enrichment of a specific T-helper (TH) subtype. Interestingly,
IL-9 was decreased in PD patients, a pleiotropic cytokine with
supposed regulatory effects in CNS autoimmunity (42). Low
patient numbers and the assays’ detection limits might affect
our results or explain differences between them and previous
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studies. Concomitant autoimmune diseases, anti-inflammatory
co-medication, or evidence of an acute inflammatory process at
the time of CSF withdrawal were exclusion criteria for patients in
the present study. However, we cannot exclude the possibility of
unknown comorbidities that may affect results in the presented
patient cohort.

In conclusion, our results demonstrate a shift of monocyte
subsets and activation of T lymphocytes in the CSF of PD
patients. Although it remains unclear whether such alterations
play a primary or secondary role in neurodegeneration, our
results provide a new tier of evidence for activation of both
innate and adaptive immune responses in the disease course
of PD. Moreover, dysregulated immune cells may represent
interesting molecular targets accessible as biomarkers for
the identification of disease-associated neuroinflammatory
processes and amenable to therapeutic intervention. Such
intervention could have positive clinical effects and potentially
modify the disease course. Future studies are necessary
to corroborate our findings. Correlation analysis based
on larger cohorts will be necessary to link CSF immune
cell responses to PD disease stages and other clinical and
paraclinical parameters. Additional cellular surface markers
and translational research will be required to unveil the
cascade of events leading to altered CSF monocyte and
lymphocyte phenotypes and define their origins and exact
cellular identities.
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