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A B S T R A C T   

Acute myeloid leukemia (AML) is a prevalent hematological malignancy among adults. Recent 
studies suggest that the length of telomeres could significantly affect both the risk of developing 
AML and the overall survival (OS). Despite the limited focus on the prognostic value of telomere- 
related genes (TRGs) in AML, our study aims at addressing this gap by compiling a list of TRGs 
from TelNet, as well as collecting clinical information and TRGs expression data through the Gene 
Expression Omnibus (GEO) database. The GSE37642 dataset, sourced from GEO and based on the 
GPL96 platform, was divided into training and validation sets at a 6:4 ratio. Additionally, the 
GSE71014 dataset (based on the GPL10558 platform), GSE12417 dataset (based on the GPL96 
and GPL570 platforms), and another portion of the GSE37642 dataset (based on the GPL570 
platform) were designated as external testing sets. Univariate Cox regression analysis identified 
96 TRGs significantly associated with OS. Subsequent Lasso-Cox stepwise regression analysis 
pinpointed eight TRGs (MCPH1, SLC25A6, STK19, PSAT1, KCTD15, DNMT3B, PSMD5, and 
TAF2) exhibiting robust predictive potential for patient survival. Both univariate and multivariate 
survival analyses unveiled TRG risk scores and age as independent prognostic variables. To refine 
the accuracy of survival prognosis, we developed both a nomogram integrating clinical param-
eters and a predictive risk score model based on TRGs. In subsequent investigations, associations 
were emphasized not solely regarding the TRG risk score and immune infiltration patterns but 
also concerning the response to immune-checkpoint inhibitor (ICI) therapy. In summary, the 
establishment of a telomere-associated genetic risk model offers a valuable tool for prognosti-
cating AML outcomes, thereby facilitating informed treatment decisions.  
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1. Introduction 

Acute myeloid leukemia (AML) is the most common type of leukemia in adults [1]. It is characterized by significant heterogeneity. 
Stratifying AML into favorable, intermediate, and adverse risk categories based on cytogenetic profiles is crucial for directing clinical 
management. However, notable variations in treatment response and survival were observed among patients within the same risk 
group [2]. The traditional prognostic factors in AML include cytogenetic abnormalities, molecular mutations, patient age, and per-
formance status. Nevertheless, relying solely on these factors frequently falls short in comprehensively capturing the intricate nature of 
disease biology and accurately predicting patient outcomes. Therefore, constructing an accurate prognostic model to identify patients 
and assist clinicians in providing suitable treatment is important. 

Telomeres, found at the ends of chromosomes, are comprised of repetitive DNA sequences. Their primary function is safeguarding 
chromosome termini, shielding them from degradation and fusion [3]. Telomere gradually shorten with cell division in normal cells. In 
contrast, in malignant cells, telomere maintenance is a crucial characteristic that is essential for unrestricted proliferation [4–8]. 
Decreased telomere length and elevated telomerase activity show a correlation with the severity of diseases in hematologic malig-
nancies [4,9,10]. Additionally, several studies indicate that leukemic cells possess significantly shorter telomeres compared to those of 
healthy adults [11,12]. Nonetheless, the significance of telomere length in predicting the prognosis of AML remains controversial [13, 
14]. 

In our research, we posited that telomere-related genes (TRGs) might function as dependable prognostic markers for patients with 
AML. To validate this hypothesis, we developed a risk model utilizing TRGs sourced from a public database and subsequently tested its 
efficacy using external datasets. 

2. Materials and methods 

2.1. Collection and processing of data 

We obtained transcriptomic data of AML patients from the Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) 
database with the series numbers GSE37642, GSE12417, and GSE71014, each cohort containing detailed clinical and transcriptomic 
data. Patients with a survival time of shorter than 30 days after the diagnosis of AML, ambiguous survival outcomes, or incomplete 
clinical data were excluded from the analysis. Due to the limitations of the different platforms, our study analyzed the data from the 
different platforms separately, which will increase the reliability of the conclusions. GSE37642 and GSE12417 were based on the 
GPL96 and GPL570 platforms, respectively. GSE71014 was based on the GPL10558 platform. GSE37642 (GPL96, n = 322) was 
partitioned into training and testing cohorts with a 6:4 ratio for model training and evaluation. In the process of evaluating gener-
alization and robustness of the prognosis-associated risk model, we utilized the GSE37642 (GPL570, n = 124), GSE12417 (GPL570, n 
= 78), GSE12417 (GPL96, n = 162), and GSE71014 (GPL10558, n = 104) datasets as external validation cohorts to assess accuracy of 
the risk model. Detailed clinicopathological features of the patients can be found in Table S1. 

2.2. Acquisition of TRGs 

From TelNet (http://www.cancertelsys.org/telnet/), a total of 2086 TRGs were collected. TelNet offers an extensive and current 
compilation of genes implicated in the telomere maintenance, as documented in the literature. Among the expression profiles acquired 
from GSE37642, 1656 TRGs were identified (Table S2). 

2.3. Identification of overall survival (OS)-related TRGs 

We randomly divided (6:4 ratio) the 322 cases extracted from the GSE37642 (GPL96) dataset into training (n = 193) and testing (n 
= 129) cohorts. Overall survival (OS)-related TRGs with a statistically significant level of P < 0.05 were identified for inclusion in the 
training dataset through univariate survival analysis. 

2.4. Construction of TRGs-related prognostic model 

To mitigate the risk of the model fitting too closely to its training data, we chose a least absolute shrinkage and selection operator 
(LASSO) regularization. This method was utilized to pinpoint the most crucial attributes among the OS-related TRGs [15]. Subse-
quently, we constructed a multivariate survival model by employing stepwise selection according to Akaike information criterion [16, 
17]. Then, we defined the risk score of TRGs by the formula: 

Risk score=
∑n

i
Coefi ∗ Ei  

where Coefi indicates the regression parameters of the Cox model for each TRG index comprising the signature and Ei indicates 
corresponding expression value of every TRG within this set, with n representing the cardinality of the set [17]. After stratifying 
patients into low-risk and high-risk groups according to the middle value of the number set derived from the formula above, we 
conducted a logrank method to observe the sequential unfolding of events over time in each group. Furthermore, the predictive ca-
pabilities of the model were assessed using area under the curve (AUC) score. 
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2.5. Validation of TRGs-related model 

To measure the model’s ability, we utilized four external AML datasets: GSE12417 (GPL96, n = 162), GSE12417 (GPL570, n = 78), 
GSE71014 (GPL10558, n = 104), and GSE37642 (GPL570, n = 124) as testing sets. The discrimination-related performance of these 
groups was compared using Kaplan-Meier curves. Additionally, we assessed the prognostic ability of the TRG-based model using AUC 
score [18]. 

2.6. Identification of differentially expressed genes (DEGs) between high-risk and low-risk group 

We used the Bioconductor package limma to conduct differential expression analysis and identify DEGs [19]. Genes meeting the 
criteria of P < 0.05 and the absolute value of Log2 fold-change (log2FC) ≥ 0.585 were considered as DEGs. Furthermore, we utilized the 
package clusterProfiler in the process of enrichment analysis. This analysis encompassed Gene Ontology (GO) keywords, covering 
biological process, cellular component, and molecular function, alongside the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways [20]. 

2.7. Functional enrichment analyses 

We conducted GO and KEGG analyses of the DEGs utilizing the package clusterProfiler [20]. DEGs with adjusted P < 0.05 were 
deemed enriched. 

2.8. Development of telomere-related clinicopathological nomogram 

We employed the package rms to develop a telomere-related clinicopathological nomogram. The nomogram integrated the 
prognostic TRG signature with the clinicopathological information from training set to extrapolate the OS of every participant [21]. In 
assessing the accuracy of OS predictions among AML patients, we employed a calibration curve, implemented using the package 
PredictABEL [22]. 

2.9. Immune features and immune subtype analysis 

Utilizing single-sample gene set enrichment analysis, we estimated infiltration levels of twenty-eight immune cell types within a 
complex gene expression dataset from AML patients. This encompassed thirteen subtypes of T cells, three subtypes of B cells, dendritic 
cells, and NK cells across both low-risk and high-risk groups [23]. Two-sided probability value less than 0.05 was considered statis-
tically significant. 

2.10. Correlation analysis between immune checkpoints and TRG risk scores 

We employed Pearson correlation analysis to evaluate the potential therapeutic impact of the TRG risk score by examining its 
relationship with therapeutic targets identified in clinical practice. Among the gene targets implicated in this therapeutic strategy were 
DOT1L, CD33, IDH2, CD47, CTLA4, CHEK1, BCL2, IDH1, MCL1, MDM2, and ASXL1. 

2.11. Prediction of half-maximal inhibitory concentrations (IC50) of target therapy agents 

The IC50 values of targeted drugs were utilized for predicting treatment sensitivity through the package oncoPredict [24]. 
Furthermore, we obtained the tumor immune dysfunction and exclusion (TIDE) scores, which evaluate TIDE of patients with AML 
(http://tide.dfci.harvard.edu/) [25]. Finally, we compared the TIDE scores between the two groups. 

2.12. Disease cell lines 

We acquired the AML cell line, OCI-AML-2, from Zhejiang Meisen Cell Technology Co., LTD based in Zhejiang, China. OCI-AML-2 
cells were cultured in RPMI-1640 medium supplied by Thermo Fisher Scientific, US, enriched with 10 % fetal bovine serum. Addi-
tionally, penicillin (100 I.U./mL) and streptomycin (100 I.U./mL) were applied to the cultures prior to their placement in an incubator 
(CO2 concentration: 5 %; temperature:37 ◦C/98.6 ◦F). 

2.13. Healthy blood sample 

The study received approval from the Ethics Review Committee of the Institute of Blood Transfusion, Chinese Academy of Medical 
Sciences. Four healthy adults aged 18–30 years, free from blood disorders, were enrolled as controls. EDTA tubes were used to collect 
whole blood samples from the participants following standard techniques, with written informed consent obtained beforehand. 
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2.14. Peripheral blood mononuclear cells (PBMCs) isolation 

The blood samples (15 ml) were collected from peripheral sources and anticoagulated with EDTA. Subsequently, PBMCs were 
isolated according to the manufacturers’ guidelines via density gradient centrifugation employing Ficoll Histopaque-1077 (Sigma- 
Aldrich). 

2.15. RNA extraction, cDNA synthesis, and quantitative real-time PCR (qPCR) 

Total RNA was extracted using TRIzol reagent from Thermo Fisher Scientific, and first-strand cDNA was subsequently synthesized 
with the TransScript All-in-One First-strand cDNA Synthesis SuperMix by TransGen, Beijing, China. RT-qPCR was performed using the 
Perfect Start Green qPCR SuperMix by Bio-Rad CFX Maestro, Hercules, California, USA. qPCR analysis was conducted on a Bio-Rad 
CFX Maestro real-time monitoring system, with GAPDH used as the internal loading control. We calculated relative expression 
levels by the 2^-ΔΔCT method. Primer sequences were obtained from Sangon Biotechnology Co., Ltd., Beijing, China, and are detailed 
in Table 1. 

3. Results 

3.1. Analysis of the DEGs in the training set 

We found 109 DEGs between the two groups within the training dataset. Among these, 79 genes exhibited an increase in expression, 
while 30 genes showed a decrease (Table S4, Fig. 1A). 

In the molecular function subontology, GO terms related to serine-type peptidase activity, immune receptor activity, carbohydrate 
binding, growth factor activity and serine hydrolase activity were identified. In terms of biological processes, enrichment analysis 
revealed significant involvement in activation of immune response-associated cells, defense response to bacteria, cytokine release, 
migration of myeloid leukocytes and antigen processing and presentation. Moreover, in cellular components, the DEGs were found to 
be associated with secretory granule lumen, endocytic vesicles, cytoplasmic vesicle lumen, collagen-containing extracellular matrix 
and vesicle lumen (Table S5, Fig. 1B). These findings indicate that DEGs could play essential roles in biological processes pertinent to 
immunity, cellular signaling, and molecular interactions. Data obtained through the KEGG database reveal that DEGs with heightened 
expression in the high-risk population participate primarily in complement and coagulation cascades, as well as neutrophil extra-
cellular trap formation (Table S6, Fig. 1C). 

3.2. Identification and validation of TRG-related prognostic markers 

From TelNet, a total of 2086 TRGs were retrieved. Among these, 1656 genes were identified within the gene dataset of patients with 
AML (Table S2). We utilized a univariate Cox proportional hazards model, incorporating the 97 OS-associated TRGs (P < 0.05), to 
assess the significance of each TRG within the training dataset (Table S3). To mitigate the risk of the model potentially fitting too 
closely to its training data, we employed regularization-based survival analysis to identify the OS-related TRGs (Figs. S1A–B). Sub-
sequent multivariate survival analysis indicated that eight TRGs (DNMT3B, PSAT1, MCPH1, SLC25A6, KCTD15, TAF2, PSMD5, and 
STK19) emerged as independent risk factors for OS (Fig. 2B). The TRG risk score was defined by the equation mentioned above as 
follows: TRG risk score = [Expression (DNMT3B) * 0.5824] + [Expression (PSAT1) * 1.5397] + [Expression (MCPH1) * (− 1.4489)] +
[Expression (SLC25A6) * (− 1.5621)] + [Expression (KCTD15) * (− 1.1344)] + [Expression (TAF2) * 0.9745] + [Expression (PSMD5) * 
(− 1.1864)] + [Expression (STK19) * 2.0010]. It was observed that the probability of survival decreased as the risk score escalated 
(Fig. 2A). 

In both the validation set and the other four external testing datasets, all patients underwent stratification into low-risk and high- 
risk groups according to their median TRG risk scores. In the training set, patients classified as high-risk exhibited poorer survival 
status (P < 0.0001). This trend was similarly observed in the validation set (P = 0.00054), as well as in datasets GSE37642 (GPL570, P 
= 0.00018), GSE12417 (GPL570, P = 0.068), GSE12417 (GPL96, P = 1e-04), and GSE71014 (P = 0.0084). (Fig. 2C–D, Fig. 3A–B, 
Fig. 4A–J, Fig. S2). For the prediction of OS, we created a nomogram that integrated clinical characteristics and TRG risk score 

Table 1 
The primers for the TRG risk model genes used in qRT-PCR.  

Genes Forward primer sequence Reverse primer sequence 

DNMT3B ACCTCGTGTGGGGAAAGATCA CCATCGCCAAACCACTGGA 
PSAT1 ACAGGAGCTTGGTCAGCTAAG CATGCACCGTCTCATTTGCG 
STK19 AGAAATCACGCATCTGGTGAAT GACCATGCTAAGGACAGCCT 
TAF2 AATTTCAGGCTATATCTATGGAC GTAGTAAAACCCCACCAGT 
MCPH1 ATGTAGTGGCCTATGTTGAAGTG CCACAAGCTGTGTTGTAAATGTC 
PSMD5 CTGTAGCAAAAGCGGCTATCA CACCCTGTATCGAACAATGTCA 
KCTD15 ATGGCACTGAACCCATCGTC GGCTGGAGCTGATGATGACG 
SLC25A6 CAGCGGACGTGGGAAAGTC TTGGCCGTATCGTACACGC 
GAPDH CTGGGCTACACTGAGCACC AAGTGGTCGTTGAGGGCAATG  
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Fig. 1. Identification of differentially expressed genes (DEGs). (A) Heatmap of 50 DEGs between low-risk and high-risk group in the training set, 
including 25 up-regulated and 25 down-regulated genes. (B) Significantly enriched GO terms (P < 0.05). (C) KEGG pathways of OS-related TRGs (P 
< 0.05). 
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Fig. 2. The prognostic signature based on OS-relevant TRGs and validated on the training dataset. (A) Ranked dot and scatter plots showing the TRG 
score distribution, patient survival status (the up and middle panel), and the value of TRGs risk model gene expression (the lower panel). (B) The 
hazard ratios of model genes. (C) Kaplan–Meier curve of the prognostic model in the training dataset. (D) The ROC curve and AUC value of the 
training dataset. 
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(Fig. 5A). Additionally, we utilized a calibration method to predict 1-year, 3-year, and 5-year OS (Fig. 5B–D). Furthermore, the TRG 
risk score remained an independent risk factor of AML across these datasets (Fig. 5E–F). 

3.3. Correlations between the 8-telomere-based genes and immune microenvironment 

Various immune cell types displayed different infiltration levels in the tumor microenvironment between the low-risk and high-risk 
groups. Analyzing the tumor microenvironment in the training set revealed elevated proportions of central memory CD4 T cells, CD56 
bright NK cells, type 2 T helper cells, plasmacytoid dendritic cells, activated CD8 T cells and immature dendritic cells in the high-risk 
cohort. Conversely, low-risk patients exhibited increased proportions of immature B cells, regulatory T cells, neutrophils, macro-
phages, myeloid-derived suppressor cells, activated B cells and eosinophils (Fig. 6A). In high-risk patients, these immune cell types are 
typically associated with increased immune activity, suggesting a potentially more aggressive or active immune response within the 
tumor microenvironment. Conversely, in low-risk patients, these immune cell types are often associated with regulatory or suppressive 
functions within the immune system, implying a less active or suppressed immune response. 

Furthermore, our analysis unveiled an inverse correlation between DNMT3B expression and myeloid-derived suppressor cells, 
activated dendritic cells, and neutrophils. Conversely, DNMT3B exhibited a positive association with central memory CD4 T cells, type 
2 T helper cells and immature dendritic cells (Fig. 6B). Analogous outcomes were observed in the validation set (Fig. S3). In addition, 
within the training set, DNMT3B exhibited statistically significant higher expression levels in the high-risk participants and compa-
rable results were recorded in the validation set (Figs. S4A–B). 

Pearson analysis unveiled a statistically negative association between the TRG risk score and mRNA expression levels of DOT1L 
(correlation: − 0.17, P = 0.021), IDH2 (correlation: − 0.16, P = 0.028), and IDH1 (correlation: − 0.16, P = 0.03). Conversely, a sta-
tistically positive association was observed between the TRG risk score and mRNA expression levels of CTLA4 (correlation: 0.2, P =
0.0046) and BCL2 (correlation: 0.17, P = 0.017) (Fig. 7A–C, H, E, and G). However, Pearson analysis did not provide proof of the 
association of TRG risk score with mRNA expression levels of CD33, CD47, CHEK1, MCL1, MDM2, and ASXL1 (Fig. 7 B, D, F, and I – K). 

3.4. Telomere-based risk models can be used to guide immunotherapy strategies 

We observed that high-risk patients in the training set exhibited elevated TIDE scores, suggesting a high probability of experiencing 
immunological escape. However, no noticeable difference in dysfunction scores was discerned between the two groups. Interestingly, 
the high-risk group displayed a higher exclusion score (Fig. 8A). Moreover, we observed that the IC50 of ribociclib was elevated in the 
high-risk patients. Conversely, the IC50 value of SB505124 exhibited the opposite trend (Fig. 8B). 

Fig. 3. The distribution of survival status and TRGs risk model gene expression in two datasets. The distribution of TRG scores and patient survival 
status were depicted in ranked dot, scatter plots (upper and middle panels, respectively), and the value of TRGs risk model gene expression was 
depicted in the lower panel. (A) validation dataset; (B) GSE37642 (GPL570) dataset. 
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3.5. qPCR results 

For further validation of the expression of the eight TRGs, qPCR analysis was conducted on AML cell lines (OCI-AML-2) and human 
PBMCs. Compared to normal volunteers, expression levels of DNMT3B, PSAT1, STK19, and TAF2 were considerably higher, however, 
KCTD15 and SLC25A6 were significantly lower in the AML cell lines (Fig. 9A–D, G, and H) (Fig. 9B–F). Additionally, we found no 
evidence of differences in the levels of expression of MCPH1 and PSMD5 (Fig. 9C–E). Specifically, genes with positive coefficients in 

Fig. 4. Survival curves of patients with different TRGs risk and ROC curves of the signature for 1-year, 3-year and 5-year in five datasets. (A, B) 
validation dataset. (C, D) GSE37642 (GPL570) dataset. (E, F) GSE12417 (GPL570) dataset. (G, H) GSE12417 (GPL96) dataset. (I, J) 
GSE71014 dataset. 

Fig. 5. A nomogram incorporating TRG risk score for OS prediction in patients with AML. (A) Nomogram for predicting the 1- year, 3- year, and 5- 
year OS of patients with AML in the training cohort. (B–D) Calibration curves for assessing the accuracy of 1-year, 3-year and 5-year overall survival 
in patients with AML. (E) Univariate Cox regression analysis of the risk scores and clinical parameters. (F) Multivariate Cox regression analysis of the 
risk scores and clinical parameters. 
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the model exhibited higher expression levels in patients with AML comparing to healthy individuals, while those with negative co-
efficients show the opposite trend. This alignment underscored the consistency and validation of the risk score with the qPCR results. 

4. Discussion 

Telomeres play a crucial role in the regulation of proliferation and senescence in tumor cells. Nevertheless, the roles of TRGs in AML 
remain poorly understood. This study represents the first effort to elucidate the significance of TRGs in AML prognosis. 

Fig. 6. Tumor immune microenvironment analysis of the high-risk and low-risk groups. (A) Comparison of different immune cell types between 
high-risk and low-risk groups. The blue box indicates the group at low risk, while the red box represents the group at high risk. (B) Spearman 
correlations between different immune cells and eight OS-related TRGs in heatmap. Blue represents a negative correlation, whereas red represents a 
positive correlation. The correlation coefficient increases with the degree of color. *p < 0.05, **p < 0.01, ***p < 0.001. 
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We identified eight TRGs, including four poor prognostic genes (DNMT3B, PSAT1, STK19, and TAF2) and four favorable prognostic 
genes (MCPH1, PSMD5, KCTD15, and SLC25A6). Some of these genes have different roles in various diseases. PSAT1 is pivotal in 
cancer cell metabolism, catalyzing the conversion of 3-phosphohydroxy-pyruvate to 3-phosphoserine during the biosynthesis of L- 
serine [26]. Previous studies have shown that elevated PSAT1 expression correlated with cancer proliferation, metastasis, and drug 
resistance [27–29]. A recent pan-cancer analysis revealed high expression levels of PSAT1 in gynecological cancer and gastrointestinal 
tumor were associated with poor prognosis [30]. KCTD15 is part of the potassium channel tetramerization domain family [31]. Ac-
cording to a previous study, KCTD15 downregulation caused cell death and apoptosis, and KCTD15 was actively involved in the 
physiological and pathological transformation of leukocytes [32]. Nevertheless, further research is necessary to elucidate the mech-
anism through which KCTD15 facilitates leukemia cell proliferation. However, there are no published studies on the roles of the five 

Fig. 7. Pearson correlation of the TRG risk score and different targets of immunotherapy. (A) DOT1L. (B) CD33. (C) IDH2. (D) CD47. (E) CTLA4. (F) 
CHEK1. (G) BCL2. (H) IDH1. (I) MCL1. (J) MDM2. (K) ASXL1. 
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other OS-related TRGs, MCPH1, SLC25A6, STK19, PSMD5, and TAF2, in the regulation of AML progression. Thus, our study identified 
novel TRGs associated with AML prognosis. Further research is needed for validating the importance of these TRGs in the biological 
processes of AML [33–35]. 

We developed a risk model using eight TRGs. Through this model, patients with AML can be categorized into two risk groups, 
displaying substantial discrepancies in survival outcomes. In the training set, receiver operating characteristic analysis indicated AUCs 
of 0.8, 0.85, and 0.84 for 1-year, 3-year, and 5-year periods, respectively. The calibration method confirmed the model’s ability of 
predicting patient survival in validation set. Additionally, we constructed a nomogram incorporating the risk score of the model and 
clinical parameters to personalize patient prognosis, enhancing the model’s practical applicability. Ultimately, this risk model may 
provide insights into potential immune modulation pathways and aid in identifying promising therapeutic targets for patients with 
AML. 

Subsequently, we performed a differential analysis, revealing statistically significant differences in immunomodulatory responses. 
These variances encompassed antigen processing and presentation as well as neutrophil extracellular trap formation, suggesting 
distinct immune states between the two risk groups. We demonstrated a statistically significant increase in the infiltration of myeloid- 
derived suppressor cells into the immune microenvironment in the low-risk group (P < 0.001). Interestingly, the expression level of 
DNMT3B was statistically lower in the low-risk group (P = 1.2e-09), with consistent findings observed in the validation set (P = 5.5e- 
09). A study by Niederwieser suggested that DNMT3B, encoding a DNA methyltransferase enzyme, was associated with aberrant 
epigenetic alterations implicated in leukemia development. The study also identified that high DNMT3B expression as an independent 
risk factor was linked to poor overall survival [36]. Our study aligns with previous findings, underscoring the need for further research 
to clarify the regulatory mechanism of DNMT3B and its interplay with the tumor immune microenvironment. Additionally, exami-
nation of the TIDE scores of the training set indicated that participants classified as high-risk were more prone to immune evasion (P <
0.001), implying potential limited benefits from immune-checkpoint inhibitor (ICI) therapy for these individuals. Conversely, patients 
classified as low-risk group might experience improved survival outcomes with ICI therapy. 

In the following step, we performed a drug sensitivity prediction analysis, unveiling that high-risk patients might exhibit greater 
sensitivity to SB505124 therapy (P = 0.00045), while ribociclib treatment could potentially benefit the low-risk patients (P = 0.0031). 
SB505124 functions as a selective inhibitor of the TGF-β receptor type I receptor, thereby impeding downstream cytoplasmic signaling 
transducers Smad4 and Smad5 [37]. Ribociclib, a CDK4/6 inhibitor, is commonly utilized in the treatment for women with 
HR+/HER2-progression or metastatic breast cancer [38]. Moreover, ribociclib interacts with several ABC transporters, including 
ABCB1 and ABCG2 [39,40]. Recent study revealed two primary mechanisms of ribociclib in the treatment of AML. First, by inhibiting 
the production of ABCB2 transporter proteins linked to AML resistance, it is possible to decrease the likelihood that AML would become 
resistant to medications caused by the overexpression of ABCB1 and ABCG2 transporter proteins. Second, ribociclib induces the 

Fig. 8. TIDE score and IC50 of SB505124 and ribociclib. (A) TIDE score of high-risk and low-risk group. (B)Comparison of IC50 of SB505124 and 
ribociclib between high-risk and low-risk group. 
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accumulation of cytotoxic chemicals (like mitoxantrone) in AML tumor cells, thereby improving therapeutic effectiveness [41]. As a 
result, our study may offer new therapeutic options to clinicians, allowing them to choose the most appropriate medication for each 
patient. 

For example, ICIs have recently been discovered and evaluated in preclinical and clinical studies on patients with AML. In recent 
years, these drugs have found utility in both immunotherapy and targeted therapies. By examining the association between prognosis 
genes and immune checkpoints, we can discern potential biomarkers predictive of immunotherapy response, thereby guiding the 
formulation of novel combination treatment strategies. Combining targeted molecular inhibitors with immunotherapy holds promise 
for enhancing patient outcomes, potentially improving recovery rates. In our study, levels of DOTIL, IDH1, and IDH2 exhibited a 
negative correlation with the TRG risk score, whereas BCL2 and CTLA4 levels demonstrated a positive correlation with the TRG risk 
score. This suggests that medications targeting both CTLA4 and BCL2 could serve as beneficial adjuvant therapy for high-risk patients. 

There were several limitations to our study. First, the TRGs included were selected based on existing data, necessitating prospective 
studies to validate the clinical significance of these findings. Second, data from public databases were collected through retrospective 
research, in which inherent selection bias may weaken the robustness and require independent external validation to evaluate their 
potential therapeutic function. Finally, clinical trials involving large sample sizes and basic researches are essential to determine the 
roles of TRGs in the risk model genes pertaining to AML. 

Fig. 9. Comparison of the relative mRNA expression of the eight TRGs in AML cell lines and healthy volunteers. *p < 0.05, **p < 0.01, ***p 
< 0.001. 
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5. Conclusions 

We constructed a TRGs model utilizing the training dataset through the GEO database and subsequently validated its efficacy using 
a separate validation dataset as well as four external testing datasets. The TRG risk score was independently associated with OS in 
validation and testing datasets. We explored the unique molecular landscapes characterized by this signature, covering aspects such as 
potential targets, immune cell infiltration and targeted therapies. Nevertheless, unveiling the molecular mechanisms will necessitate 
future studies. 
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[26] N. Vié, V. Copois, C. Bascoul-Mollevi, V. Denis, N. Bec, B. Robert, et al., Overexpression of phosphoserine aminotransferase PSAT1 stimulates cell growth and 
increases chemoresistance of colon cancer cells, Mol. Cancer 7 (2008) 14, https://doi.org/10.1186/1476-4598-7-14. 

[27] Y.C. Chan, Y.C. Chang, H.H. Chuang, Y.C. Yang, Y.F. Lin, M.S. Huang, et al., Overexpression of PSAT1 promotes metastasis of lung adenocarcinoma by 
suppressing the IRF1-IFNγ axis, Oncogene 39 (12) (2020) 2509–2522, https://doi.org/10.1038/s41388-020-1160-4. 

[28] H. Wang, L. Cui, D. Li, M. Fan, Z. Liu, C. Liu, et al., Overexpression of PSAT1 regulated by G9A sustains cell proliferation in colorectal cancer, Signal Transduct. 
Targeted Ther. 5 (1) (2020) 47, https://doi.org/10.1038/s41392-020-0147-5. 

[29] M. Feng, H. Cui, W. Tu, L. Li, Y. Gao, L. Chen, et al., An integrated pan-cancer analysis of PSAT1: a potential biomarker for survival and immunotherapy, Front. 
Genet. 13 (2022) 975381, https://doi.org/10.3389/fgene.2022.975381. 

[30] X. Teng, A. Aouacheria, L. Lionnard, K.A. Metz, L. Soane, A. Kamiya, et al., KCTD: a new gene family involved in neurodevelopmental and neuropsychiatric 
disorders, CNS Neurosci. Ther. 25 (7) (2019) 887–902, https://doi.org/10.1111/cns.13156. 

[31] G. Smaldone, L. Coppola, M. Incoronato, R. Parasole, M. Ripaldi, L. Vitagliano, et al., KCTD15 protein expression in peripheral blood and acute myeloid 
leukemia, Diagnostics 10 (6) (2020), https://doi.org/10.3390/diagnostics10060371. 

[32] Y. Liang, H. Gao, S.Y. Lin, J.A. Goss, C. Du, K. Li, Mcph1/Brit1 deficiency promotes genomic instability and tumor formation in a mouse model, Oncogene 34 
(33) (2015) 4368–4378, https://doi.org/10.1038/onc.2014.367. 

[33] A. Levin, A. Minis, G. Lalazar, J. Rodriguez, H. Steller, PSMD5 inactivation promotes 26S proteasome assembly during colorectal tumor progression, Cancer Res. 
78 (13) (2018) 3458–3468, https://doi.org/10.1158/0008-5472.Can-17-2296. 
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